Arash Arami
519-888-4567 x47648
Location: 
E7 3426

Research Interests:

  • Assistive Robotics and Rehabilitation Engineering

  • Neuromechanical Modeling; Robot-Based System ID
  • Human-Robot Interaction and Neural Control
  • Movement Analysis and Sensorimotor Deficit Modeling
  • Smart Implants and Prosthetics
  • Intelligent Systems and Machine Learning 

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Data Science, Disease Modelling, Fall Prevention, Neurodegenerative Diseases, Rehabilitation, Stroke, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Computational Modeling, Disease Modelling, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Biotechnology, Computer Science, Electrical and Computer Engineering, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Physiology, Public Health, Robotics; Faculty→Engineering
Jack Callaghan
519-888-4567 x47080
Location: 
BMH 3122

Research Interests:

My research program combines a fundamental in-vitro research approach, examining the time varying response of the lumbar spine tissues, with in-vivo human research, examining biological responses to cumulative loading exposure from both pain generating and tissue altering/injuring perspectives. Work in my laboratories involves developing approaches to assess workplace cumulative loading exposure and injury in conjunction with in-vitro tissue mechanics studies investigating the injury pathways from repetitive loading. Currently, quantifying the influence of modifiers such as repetition and magnitude of exposure to establish the relationship between cumulative loading and low back pain is a major focus in my research. This knowledge will complement existing epidemiological data, linking cumulative loading and low back pain, for setting exposure limits and helping to prevent low back injuries.

Google Scholar

Group(s): 
Application Areas→Biomechanics, Fall Prevention, Muscle, Joint and Bone Diseases, Wearable Devices; Technology Areas→Actuators, Biomarkers, Computational Modeling, Diagnostics, Imaging, Medical Devices, Robotics, Sensors; Discipline Areas→Biology, Biomechanical Engineering, Biomedical Engineering, Biophysics, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering; Faculty→Applied Health Sciences; Canada Research Chairs
K. Erkorkmaz
519-888-4567 x35214
Location: 
EC4 1013

Research Interests:

  • Machining of Tissue-Engineered Bone Implants

  • Biomanufacturing

  • Precision motion control (high speed machine tools, robots, and electronic/semiconductor manufacturing equipment)

  • Modeling and identification

  • Optimal trajectory planning

ResearchGate

Google Scholar

[Engineering News] October 19, 2016 "Researchers join advanced manufacturing network"

Group(s): 
Application Areas→Industrial Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Computational Modeling, Robotics, Sensors; Discipline Areas→Mechanical and Mechatronics Engineering, Tissue Engineering; Faculty→Engineering
B. Fidan
519-888-4567 x38023
Location: 
E3 4119
Contact for: 
Expertise in system/parameter identification, adaptive control and signal processing, mathematical modeling, sensor networks, localization, optimization, driver assistance systems.

Research Interests:

  • Cooperative systems and sensor networks (multi-agent, multi-sensor systems)

  • Nonlinear, adaptive, and switched dynamical systems; robust adaptive control; nonlinear and adaptive control designs for mechatronic systems
  • Control applications (high performance flight and vehicle stability control, biomedical)

  • Robotics and intelligent systems (multi-agent, motion planning, vision control, biomedical and assistive robotics)

Google Scholar

Group(s): 
Application Areas→Biomechanics, Fall Prevention, Healthcare Systems, Rehabilitation, Wearable Devices; Technology Areas→Actuators, Computational Modeling, Machine Learning/AI, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Computer Science, Electrical and Computer Engineering, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
Moojan Ghafurian

Research interests:

  • Human-Computer/Robot Interaction
  • Affective Computing
  • Social Robotics
  • Assistive Technology
  • Artificial Intelligence
  • Cognitive Science
  • Human Factors

LinkedIn

Media:

[Waterloo Stories] August 31, 2020 "Pandemic isolation increases acceptance of robot companions"
   
[Waterloo Chronicle] August 31, 2020 "People are now willing to accept social robots as companions due to COVID-19 isolation: University of Waterloo study"
   
[Cheriton School of Computer Science News] August 29, 2019 "Moojan Ghafurian, Kerstin Dautenhahn and Jesse Hoey awarded funding to develop emotionally intelligent robots to help people with dementia"
   
[ACM Technews] May 21, 2019 "Making AI More Human"
   
[Semiconductor Engineering] May 28, 2019 "Crocheted robots; humanizing AI agents; training autonomous control systems"
   
[Cheriton School of Computer Science News] May 21, 2019 "Moojan Ghafurian, Neil Budnarain and Jesse Hoey make AI more human"
   
[Therapy Toronto News] October 22, 2018 "Study suggests faster countdowns may make people more patient"
   
[Education News Canada] May 22, 2019 "Making AI more human is key to widespread acceptance"

Group(s): 
Application Areas→Aging, Data Science, Mental Health; Technology Areas→Machine Learning/AI, Robotics, Therapeutics; Discipline Areas→Computer Science, Electrical and Computer Engineering, Human Factors, Robotics; Faculty→Engineering
Ehsan Hashemi
519-888-4567 x32205
Location: 
E3 4118

Research Interests

  • Control system development for Driver Assistance Systems
  • Fault-tolerant state estimation for biped robots
  • Distributed Estimation
  • Control Theory
  • Multibody Dynamics

Google Scholar

Group(s): 
Application Areas→Biomechanics, Healthcare Systems, Rehabilitation, Wearable Devices; Technology Areas→Actuators, Diagnostics, Medical Devices, Robotics, Sensors; Discipline Areas→Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
Jesse Hoey
519-888-4567 x37744
Location: 
DC 3613

Research Interests:

  • Assistive technology (physical, cognitive disabilities, dementia)

  • Health informatics

  • Artificial intelligence

  • Computational social science

  • Affective computing, computer vision

Research Gate

Google Scholar

[VJDementia] "The complex issue of emotion" 

[Computer Science News] June 29, 2017 "ACT@Home: An emotionally intelligent cognitive assistant to help people with Alzheimer’s disease"

[Waterloo Stories] January 2, 2013 "Making life easier for those living with Alzheimer's"

Group(s): 
Application Areas→Aging, Data Science, Healthcare Systems, Neurodegenerative Diseases, Rehabilitation, Wearable Devices; Technology Areas→Computational Modeling, Machine Learning/AI, Robotics, Sensors; Discipline Areas→Computer Science; Faculty→Mathematics
Yue Hu
519-888-4567 x40709
Location: 
E7 3416

Research Interests:

  • Robotics
  • Collaborative robots
  • Human-robot interaction
  • Human Motion Analysis
  • Humanoid Robots
  • Optimal control

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Healthcare Systems, Rehabilitation, Virtual Reality; Technology Areas→Computational Modeling, Machine Learning/AI, Robotics, Sensors; Discipline Areas→Computer Science, Electrical and Computer Engineering, Human Factors, Mechanical and Mechatronics Engineering; Faculty→Engineering
Jan Huissoon
519-888-4567 x33595
Location: 
E3 4116

Research Interests:

  • Mobility assistive devices
  • Neuro-Musculo-Skeletal Modeling of Human Locomotion
  • Autonomous Navigation Using Artificial Neural Networks
  • Dynamic Seam Tracking for Robotic Welding, Arc Acoustics in GMA welding, Walking Robot Welder
  • Automatic end-of-arm and tool-centre-point calibration

Google Scholar

Group(s): 
Application Areas→Fall Prevention, Rehabilitation; Technology Areas→Actuators, Computational Modeling, Medical Devices, Robotics, Sensors; Discipline Areas→Mechanical and Mechatronics Engineering; Faculty→Engineering
Behrad Khamesee
519-888-4567 x35095
Location: 
E3 3148

Research Interests:

  • Smart structures, actuators, biomechanics, assistive devices, human-robot interaction, wearable sensors (fitness, monitoring, fall prevention, Alzheimer's)
  • Ophthalmic instrumentation, senors, technologies and hardware design (MRI, CT, ultrasound)
  • Micro-energy harvester through human locomotion
  • Magnetically driven medical microrobots for drug delivery and microsurgery
  • Regenerative prosthetic knee, and cost-effective prosthetic leg (structural design, sensory system, and controller)
  • Micromanipulation using magnetic levitation
  • Auto-focusing mechanism for microscopy using electrorestrictive
  • ​Clean room applications 

Google Scholar

[Waterloo Stories] August 28, 2018 "New sensor could help doctors monitor patient progress from a distance"

[Waterloo Stories] March 2, 2014 "Charge your phone while you shovel - and shiver"

Group(s): 
Application Areas→Rehabilitation, Targeted Drug Delivery, Wearable Devices; Technology Areas→Actuators, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Mechanical and Mechatronics Engineering; Faculty→Engineering
J. Kofman
519-888-4567 x45185
Location: 
E7 6318

Research Interests:

  • Biomedical systems & biomechatronics - rehabilitation, assistive devices, intelligent design of prostheses and orthoses, 3D body surface measurement
  • Optomechatronics - computer vision (2D and 3D), range-image registration, range-sensing, range-sensor design, vision-based 3D surface measurement systems, optical system design, laser-camera range, sensor design, phase-shifting / fringe-projection 3D surface measurement systems, real-time full-field 3D imaging sensors / real-time full-field 3D surface measurement systems, hand-held 3D imaging sensors / hand-held 3D surface measurement systems, vision-based robot control, vision-based human-robot interfaces
  • Robotics - robot teleoperation, robot vision, human-robot interfaces, human-robot interaction, human-guided robot learning, vision-based robot control (visual servoing), human-assistive/service robots

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Aging, Biomechanics, Fall Prevention, Mental Health, Muscle, Joint and Bone Diseases, Neurodegenerative Diseases, Rehabilitation, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Imaging, Machine Learning/AI, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Computer Science, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
Veronika Magdanz
519-888-4567 x41532
Location: 
E7 6432

Research Interests:

  • microrobots

  • sperm cells
  • magnetic actuation
  • remote control
  • wireless
  • soft robots
  • medical robots
  • bioprinting
  • 3D printing

We develop microrobots for medical applications. The goal is to develop more targeted, active, but less invasive strategies for drug or cell delivery with the help of wireless, autonomously moving microrobots. One strategy is to combine biological elements with artificial components in a biohybrid approach. The biological component (cells, molecules) can serve as power source, loading unit or structural unit.

One example is the "spermbot" - a sperm cell remotely controlled with magnetic fields: https://phys.org/news/2014-01-sperm-bots-desired-video.html
Another example is IRONSperm: a magnetically functionalized nonmotile sperm driven by magnetic fields:https://www.science.org/doi/10.1126/sciadv.aba5855

Inspired by the motion of sperm, we also develop small scale flexible magnetic robots for noninvasive surgery (coming soon). I am also interested in reproductive biology and research that elucidates reasons for infertility. We look into the mechanisms of sperm migration and some interesting phenomena, such as sperm bundling (publication online soon)

[Google Scholar]

Group(s): 
Application Areas→Cancer, Cardiovascular, Disease Modelling, Neurodegenerative Diseases, Personalized Medicine, Targeted Drug Delivery; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Medical Devices, Microfabrication, Polymer, Robotics, Surface Coating; Discipline Areas→Biochemistry, Biology, Biomechanical Engineering, Biomedical Engineering, Biomedicine, Bionanotechnology, Biophysics, Biosystem Engineering, Biotechnology, Cell Biology, Chemistry, Nanotechnology, Polymer Chemistry, Regenerative Medicine, Robotics, Stem Cell Engineering, Tissue Engineering; Faculty→Engineering
V. Maheshwari
519-888-4567 x38885
Location: 
QNC 5619

Research Interests:

  • High Resolution flexible pressure and tactile sensors

  • Microbial fuel cells

  • Nano electrodes for electrochemical detection

  • Flexible Electrodes for bio-interfacing, electrical mapping self-powered devices

  • Cell-inorganic composites
  • Multi-functional materials and devices
  • Wearable sensors
  • Composite membranes
Group(s): 
Application Areas→Diabetes, Healthcare Systems, Pathogen Detection, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Biomaterials, Diagnostics, Medical Devices, Microfabrication, Robotics, Sensors, Surface Coating; Discipline Areas→Bionanotechnology, Chemistry, Nanotechnology; Faculty→Science
John McPhee
519-888-4567 x35341
Location: 
E3 4114

Research Interests:

  • Biomechanics engineering (injury rehabilitation, assistive devices for elderly, athletes, disabled)

  • Mechatronic and robotic systems

  • Multibody system dynamics

  • Computational methods for analysis and design

  • Advanced vehicle systems

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Biomechatronic System Dynamics [Canada Research Chair Profile]

NSERC/Toyota/Maplesoft Industrial Research Chair in Mathematics-Based Modelling and Design [NSERC Profile]

[Waterloo Stories] February 20, 2019 "Engineering innovation for wheelchair curlers"

[Waterloo Stories] August 5, 2016 "Rio Olympics 2016: Engineering speed for the Canadian track cycling team"

[Waterloo Stories] June 17, 2015 "Waterloo’s $10M dream facility for smarter, greener cars"

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Aging, Biomechanics, Rehabilitation, Stroke, Wearable Devices; Technology Areas→Actuators, Computational Modeling, Machine Learning/AI, Robotics; Discipline Areas→Biomechanical Engineering, Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering; Canada Research Chairs; NSERC Industrial Research Chairs
Katja Mombaur
519-888-4567 x40362
Location: 
E7 6448

Research Interests:

  •  design and control of spinal exoskeletons for he prevention of back pain
  •  development of assistive robotic devices to increase mobility of older person
  •  design studies of lower limb exoskeletons
Group(s): 
Application Areas→Aging, Biomechanics, Data Science, Mental Health, Muscle, Joint and Bone Diseases, Neurodegenerative Diseases, Personalized Medicine, Rehabilitation, Stroke, Virtual Reality, Wearable Devices; Technology Areas→Actuators, Computational Modeling, Diagnostics, Imaging, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Computer Science, Human Factors, Kinesiology, Physics, Robotics; Faculty→Engineering
Siby Samuel
519-888-4567 x37656
Location: 
EC4 2119

Research Interests:

  • Simulation & Virtual Reality/Augmented Reality
  • Novice And Older Driver Training
  • Predictive & Conceptual Modeling Of Behavior
  • Eye Tracking
  • Attention & Cognition
  • Perception
  • Decision Making
  • Aging
  • Automotive Human Factors
  • Autonomous Vehicles And Connected Vehicles & Intelligent Transportation Systems
  • Caregiver Behaviors & Errors
  • Assistive & Automotive Interfaces
  • Vulnerable Road User Safety (Pedestrians & Bicyclists)
  • Motorcyclist Safety
  • Special Populations (ADHD & Dementia)
  • Traffic Control Devices & Roadway Infrastructure Design
Group(s): 
Application Areas→Aging, Data Science, Healthcare Systems, Virtual Reality, Wearable Devices; Technology Areas→Computational Modeling, Diagnostics, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biosystem Engineering, Human Factors, Kinesiology, Physics, Robotics; Faculty→Engineering
Oliver Schneider
519-888-4567 x38505
Location: 
CPH 3627

Research Interests

  • Virtual Reality
  • Wearables Devices
  • Computer Human Interaction, haptics, design
  • Data Science
  • Mental Health
  • Nutritional Science

Google Scholar

LinkedIn

Research Gate

[YouTube] October 11, 2018 "DualPanto: A Haptic Device that Enables Blind Users to Continuously Interact with Virtual Worlds"

Group(s): 
Application Areas→Data Science, Mental Health, Nutritional Science, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Computational Modeling, Machine Learning/AI, Robotics, Sensors, Therapeutics; Discipline Areas→Computer Science, Electrical and Computer Engineering, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
Hamed Shahsavan
519-888-4567 x34805
Location: 
E6 2018

Research interests:

  • Smart Polymers
  • Liquid Crystal Elastomers
  • Soft Robotic Materials
  • Micro Additive Manufacturing
  • 4D Printing
  • Surface and Interfacial Engineeirng
Group(s): 
Application Areas→Targeted Drug Delivery, Wearable Devices, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomaterials, Medical Devices, Microfabrication, Polymer, Robotics, Sensors, Surface Coating; Discipline Areas→Chemistry, Nanotechnology, Polymer Chemistry, Robotics; Faculty→Engineering
Mahesh Tripunitara
519-888-4567 x42864
Location: 
E7 5432

Research Interests:

  • Computer & Software Engineering
  • Information security
  • Authorization and access control
  • Cryptographic key transport
  • Secure payments
  • Usable security
  • Security and reliability of computer hardware
  • Connectivity and Internet of Things
  • Cybersecurity
  • Application security
  • Privacy and cryptography
  • Information security
  • IoT
  • Dependability and security
Group(s): 
Application Areas→Data Science, Wearable Devices; Technology Areas→Actuators, Computational Modeling, Disease Modelling, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Computer Science, Electrical and Computer Engineering; Faculty→Engineering
J. Tung
519-888-4567 x43445
Location: 
E7 3428

Research Interests:

  • Rehabilitation engineering and assistive technologies (gerontology, Osteoporosis, Alzheimer’s disease, fall risk in stroke survivors, and rehabilitation following traumatic brain injury)

  • Neuromotor control

  • Biomedical signal analysis

LinkedIn

ResearchGate

Google Scholar

[Waterloo Stories] July 8, 2014 "GPS technology may help detect Alzheimer’s disease earlier"

Group(s): 
Application Areas→Aging, Biomechanics, Data Science, Fall Prevention, Healthcare Systems, Mental Health, Neurodegenerative Diseases, Personalized Medicine, Rehabilitation, Stroke, Virtual Reality, Wearable Devices; Technology Areas→Actuators, Diagnostics, Imaging, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Kinesiology, Mechanical and Mechatronics Engineering; Faculty→Engineering
A.KCWong
519-888-4567 x35775
Location: 
EC4 2029

Research Interests:

  • Data mining and bioinformatics

  • Machine intelligence, computer vision, intelligence robotics

  • Pattern recognition and discovery methods of genomic and proteomic data

  • DNA sequencing, colon cancer and leukemia gene and data analysis

[YouTube Lecture] September 19, 2013 "Pattern discovery and analysis of genomic and proteomic data"

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Cancer; Technology Areas→Biomaterials, Machine Learning/AI, Robotics; Discipline Areas→Bioinformatics, Biomedical Engineering, Computer Science, Genetic Engineering, Mechanical and Mechatronics Engineering; Faculty→Engineering
Yimin Wu
519-888-4567 x40185
Location: 
E7 3418

Research interests:

  • Advanced Manufacturing
  • Materials Interfaces
  • Energy Materials
  • Solar Fuels
  • CO2 reduction
  • Ammonia synthesis
  • Batteries
  • Plastic recycling and upcycling
  • In situ Multimodal Characterizations
  • Artificial Intelligence
  • Connectivity and Internet of Things
  • Electronic and Photonic Materials
  • Responsive Materials
  • Neuromorphic Computing
  • Flexible Electronics and Soft Robotics
  • Sensing
  • Healthcare
  • Nanotechnology
Group(s): 
Application Areas→Aging, Data Science, Healthcare Systems, Wearable Devices; Technology Areas→Actuators, Biomaterials, Diagnostics, Imaging, Machine Learning/AI, Medical Devices, Microfabrication, Microfluids, Polymer, Robotics, Sensors, Surface Coating; Discipline Areas→Biomechanical Engineering, Bionanotechnology, Electrical and Computer Engineering, Mechanical and Mechatronics Engineering, Nanotechnology, Physics, Polymer Chemistry, Robotics; Faculty→Engineering
J. Yeow
519-888-4567 x32152
Location: 
E3 3159

Research Interests:

  • MEMS/NEMS

  • Nanodevices and carbon nanotube-based sensors for biomedical applications (early disease detection)

  • Microassembly and micromirror devices for genetic microarray reading and tissue imaging

  • Lab-on-a-chip designs

Canada Research Chair in Micro and NanoDevices [Canada Research Chair Profile]

Group(s): 
Application Areas→Cancer, Cardiovascular, Pathogen Detection, Wearable Devices; Technology Areas→Actuators, Diagnostics, Medical Devices, Microfabrication, Robotics, Sensors, Therapeutics; Discipline Areas→Biomedical Engineering, Electrical and Computer Engineering, Mechanical and Mechatronics Engineering, Nanotechnology, Robotics; Faculty→Engineering; Canada Research Chairs

Contacts by group