Arash Arami
+1-519-888-4567 x37648
Location: 
EC4 1023

Research Interests:

  • Assistive Robotics and Rehabilitation Engineering

  • Neuromechanical Modeling; Robot-Based System ID
  • Human-Robot Interaction and Neural Control
  • Movement Analysis and Sensorimotor Deficit Modeling
  • Smart Implants and Prosthetics
  • Intelligent Systems and Machine Learning 

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Data Science, Disease Modelling, Fall Prevention, Neurodegenerative Diseases, Rehabilitation, Stroke, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Computational Modeling, Disease Modelling, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Biotechnology, Computer Science, Electrical and Computer Engineering, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Physiology, Public Health, Robotics; Faculty→Engineering
Michael Barnett-Cowan
519-888-4567 ext. 39177
Location: 
BMH 1042

Research Interests:

  • Multisensory integration
  • Perception and action
  • Psychophysics
  • The vestibular system
  • Virtual reality

LinkedIn

ResearchGate

Google Scholar

[Waterloo News] September 25, 2018 "Virtual reality motion sickness may be predicted and counteracted"

[ScienceDaily] December 15, 2018 "Aging warps our perception of time, study finds"

[Record] October 12, 2017 "Aging slows perception of falls: UW study"

Group(s): 
Application Areas→Aging, Biomechanics, Fall Prevention, Neurodegenerative Diseases, Optometry, Space, Virtual Reality, Wearable Devices; Technology Areas→Biomarkers, Computational Modeling, Diagnostics, Imaging, Machine Learning/AI, Medical Devices, Sensors; Discipline Areas→Biology, Biomechanical Engineering, Biomedical Engineering, Computer Science, Electrical and Computer Engineering, Genetics, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Philosophy, Physics, Physiology, Robotics; Faculty→Applied Health Sciences
Clark Dickerson
519-888-4567 x37844
Location: 
BMH 3034

Research Interests:

  • Fundamental shoulder function and dysfunction
  • Creation and validation of mathematical models to predict shoulder demands
  • Applications of shoulder biomechanics to workplace injury prevention
  • Rehabilitative and preventative strategies for ensuring shoulder health
  • Digital human modeling, Computational musculoskeletal modeling
  • Ergonomics
  • Motion Capture
  • Upper limb biomechanics

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Shoulder Mechanics [Canada Research Chair Profile]

[Waterloo News] February 19, 2019 "How to make the push-up work for you" 

[Waterloo Stories] October 7, 2013 "Reducing shoulder injuries in the workplace"

Group(s): 
Application Areas→Aging, Biomechanics, Rehabilitation; Technology Areas→Computational Modeling, Imaging, Therapeutics; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Human Factors, Kinesiology; Faculty→Applied Health Sciences; Canada Research Chairs
Lora Giangregorio
519-888-4567 x30218
Location: 
TT 1166

Research Interests:

  • Osteoporosis, fracture risk assessment algorithms, exercise interventions for reducing fracture risk in high risk individuals.

  • Bone health and body composition in individuals with neurological impairment due to spinal cord injury (SCI).

  • Medical imaging analysis to explore bone and muscle responses to activity or neurologic impairment, and evaluate new methods for image analysis.

  • Rehabilitation and quality indicators, and in long term care

Schlegel Research Chair in Mobility & Aging

LinkedIn

ResearchGate

Google Scholar

Group(s): 
Application Areas→Aging, Fall Prevention, Muscle, Joint and Bone Diseases, Rehabilitation; Technology Areas→Imaging; Discipline Areas→Kinesiology; Faculty→Applied Health Sciences
Ehsan Hashemi
519-888-4567 x32205
Location: 
E3 4118

Research Interests

  • Control system development for Driver Assistance Systems
  • Fault-tolerant state estimation for biped robots
  • Distributed Estimation
  • Control Theory
  • Multibody Dynamics

Google Scholar

Group(s): 
Application Areas→Biomechanics, Healthcare Systems, Rehabilitation, Wearable Devices; Technology Areas→Actuators, Diagnostics, Medical Devices, Robotics, Sensors; Discipline Areas→Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
A. Laing
519-888-4567 x38947
Location: 
BMH 3121

Research Interests:

  • Musculoskeletal biomechanics related to human health and injury prevention, and the role that advanced age has on these relationships.
  • Fall-related tissue trauma including hip fractures, spinal cord injuries, and traumatic brain injuries
  • Workplace musculoskeletal disorders (WMSD)
  • Orthopedic biomechanics

ResearchGate

Google Scholar

[YouTube] Andrew Laing, Department of Kinesiology, UW

Group(s): 
Application Areas→Aging, Biomechanics, Fall Prevention, Muscle, Joint and Bone Diseases; Technology Areas→Computational Modeling, Therapeutics; Discipline Areas→Biomechanical Engineering, Kinesiology; Faculty→Applied Health Sciences
Monica R Maly

Research Interests

  • Knee biomechanics
  • Osteoarthritis
  • Clinical outcomes
  • Mobility
  • Exercise
  • Muscle
  • Imaging and disability

Google Scholar

Research Gate

Group(s): 
Application Areas→Aging, Biomechanics, Muscle, Joint and Bone Diseases, Rehabilitation; Discipline Areas→Biomechanical Engineering, Kinesiology; Faculty→Applied Health Sciences
Bill McIlroy
519-888-4567 x38109
Location: 
BMH 3030

Research Interests:

  • Neuroscience and neurological disorders
  • Balance, gait, exercise
  • Aging
  • Understanding how the brain and other parts of the central nervous system control movements of the body
  • Using advanced measurements systems to improve recovery time after a neurological injury (such as a stroke) and minimize age-related effects on movement control (such as reducing the risk of falling). 
  • Electroencephalography and electromyography
  • Transcranial magnetic stimulation, magnetic resonance imaging, peripheral nerve stimulation
  • Galvanic skin measurement
  • Eye-tracker, motion analysis, and kinetic measurement

Google Scholar

[Waterloo News] August 19, 2015 "Wearable technologies will improve stroke rehabilitation"

[Waterloo Stories] February 4, 2014 "Finding your way after a stroke"

Group(s): 
Application Areas→Aging, Biomechanics, Stroke, Wearable Devices; Technology Areas→Imaging, Sensors; Discipline Areas→Biomechanical Engineering, Human Factors, Kinesiology; Faculty→Applied Health Sciences
J. McPhee
519-888-4567 x35341
Location: 
E3 4114

Research Interests:

  • Biomechanics engineering (injury rehabilitation, assistive devices for elderly, athletes, disabled)

  • Mechatronic and robotic systems

  • Multibody system dynamics

  • Computational methods for analysis and design

  • Advanced vehicle systems

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Biomechatronic System Dynamics [Canada Research Chair Profile]

NSERC/Toyota/Maplesoft Industrial Research Chair in Mathematics-Based Modelling and Design [NSERC Profile]

[Waterloo Stories] February 20, 2019 "Engineering innovation for wheelchair curlers"

[Waterloo Stories] August 5, 2016 "Rio Olympics 2016: Engineering speed for the Canadian track cycling team"

[Waterloo Stories] June 17, 2015 "Waterloo’s $10M dream facility for smarter, greener cars"

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Aging, Biomechanics, Rehabilitation, Stroke, Wearable Devices; Technology Areas→Actuators, Computational Modeling, Machine Learning/AI, Robotics; Discipline Areas→Biomechanical Engineering, Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering; Canada Research Chairs; NSERC Industrial Research Chairs
Siby Samuel
519-888-4567 x37656
Location: 
EC4 2119

Research Interests:

  • Simulation & Virtual Reality/Augmented Reality
  • Novice And Older Driver Training
  • Predictive & Conceptual Modeling Of Behavior
  • Eye Tracking
  • Attention & Cognition
  • Perception
  • Decision Making
  • Aging
  • Automotive Human Factors
  • Autonomous Vehicles And Connected Vehicles & Intelligent Transportation Systems
  • Caregiver Behaviors & Errors
  • Assistive & Automotive Interfaces
  • Vulnerable Road User Safety (Pedestrians & Bicyclists)
  • Motorcyclist Safety
  • Special Populations (ADHD & Dementia)
  • Traffic Control Devices & Roadway Infrastructure Design
Group(s): 
Application Areas→Aging, Data Science, Healthcare Systems, Virtual Reality, Wearable Devices; Technology Areas→Computational Modeling, Diagnostics, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biosystem Engineering, Human Factors, Kinesiology, Physics, Robotics; Faculty→Engineering
Oliver Schneider
519-888-4567 x38505
Location: 
CPH 3677

Research Interests

  • Virtual Reality
  • Wearables Devices
  • Computer Human Interaction, haptics, design
  • Data Science
  • Mental Health
  • Nutritional Science

Google Scholar

LinkedIn

Research Gate

[YouTube] October 11, 2018 "DualPanto: A Haptic Device that Enables Blind Users to Continuously Interact with Virtual Worlds"

Group(s): 
Application Areas→Data Science, Mental Health, Nutritional Science, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Computational Modeling, Machine Learning/AI, Robotics, Sensors, Therapeutics; Discipline Areas→Computer Science, Electrical and Computer Engineering, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
J. Tung
519-888-4567 x43445
Location: 
E7 3428

Research Interests:

  • Rehabilitation engineering and assistive technologies (gerontology, Osteoporosis, Alzheimer’s disease, fall risk in stroke survivors, and rehabilitation following traumatic brain injury)

  • Neuromotor control

  • Biomedical signal analysis

LinkedIn

ResearchGate

Google Scholar

[Waterloo Stories] July 8, 2014 "GPS technology may help detect Alzheimer’s disease earlier"

Group(s): 
Application Areas→Aging, Biomechanics, Data Science, Fall Prevention, Healthcare Systems, Mental Health, Neurodegenerative Diseases, Personalized Medicine, Rehabilitation, Stroke, Virtual Reality, Wearable Devices; Technology Areas→Actuators, Diagnostics, Imaging, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Kinesiology, Mechanical and Mechatronics Engineering; Faculty→Engineering
Thomas Willett
519-888-4567 x38405
Location: 
DWE 3505A

Research Interests:

  • Biomaterials and mechanics of biomaterials and tissues

  • Bone quality and fragility, collagen

  • Engineering of bone mimetic materials for skeletal reconstruction (3D printing)

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Cancer, Diabetes, Inflammatory Diseases, Muscle, Joint and Bone Diseases, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Biomarkers, Biomaterials, Computational Modeling, Imaging, Medical Devices; Discipline Areas→Biochemistry, Biology, Biomechanical Engineering, Biomedical Engineering, Kinesiology, Regenerative Medicine, Tissue Engineering; Faculty→Engineering
Stacey Acker photo
519-888-4567 x31338
Location: 
BMH 1038

Research Interests:

  • Identifying mechanisms linking physical exposures with knee osteoarthritis
  • Global aim of preventing exposure-related musculoskeletal disorders

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Muscle, Joint and Bone Diseases; Technology Areas→Computational Modeling, Disease Modelling; Discipline Areas→Biomechanical Engineering, Kinesiology; Faculty→Applied Health Sciences

Contacts by group