K. Erkorkmaz
519-888-4567 x35214
EC4 1013

Research Interests:

  • Machining of Tissue-Engineered Bone Implants

  • Biomanufacturing

  • Precision motion control (high speed machine tools, robots, and electronic/semiconductor manufacturing equipment)

  • Modeling and identification

  • Optimal trajectory planning


Google Scholar

[Engineering News] October 19, 2016 "Researchers join advanced manufacturing network"

Application Areas→Industrial Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Computational Modeling, Robotics, Sensors; Discipline Areas→Mechanical and Mechatronics Engineering, Tissue Engineering; Faculty→Engineering
Veronika Magdanz
519-888-4567 x41532
E7 6432

Research Interests:

  • microrobots

  • sperm cells
  • magnetic actuation
  • remote control
  • wireless
  • soft robots
  • medical robots
  • bioprinting
  • 3D printing

We develop microrobots for medical applications. The goal is to develop more targeted, active, but less invasive strategies for drug or cell delivery with the help of wireless, autonomously moving microrobots. One strategy is to combine biological elements with artificial components in a biohybrid approach. The biological component (cells, molecules) can serve as power source, loading unit or structural unit.

One example is the "spermbot" - a sperm cell remotely controlled with magnetic fields: https://phys.org/news/2014-01-sperm-bots-desired-video.html
Another example is IRONSperm: a magnetically functionalized nonmotile sperm driven by magnetic fields:https://www.science.org/doi/10.1126/sciadv.aba5855

Inspired by the motion of sperm, we also develop small scale flexible magnetic robots for noninvasive surgery (coming soon). I am also interested in reproductive biology and research that elucidates reasons for infertility. We look into the mechanisms of sperm migration and some interesting phenomena, such as sperm bundling (publication online soon)

[Google Scholar]

Application Areas→Cancer, Cardiovascular, Disease Modelling, Neurodegenerative Diseases, Personalized Medicine, Targeted Drug Delivery; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Medical Devices, Microfabrication, Polymer, Robotics, Surface Coating; Discipline Areas→Biochemistry, Biology, Biomechanical Engineering, Biomedical Engineering, Biomedicine, Bionanotechnology, Biophysics, Biosystem Engineering, Biotechnology, Cell Biology, Chemistry, Nanotechnology, Polymer Chemistry, Regenerative Medicine, Robotics, Stem Cell Engineering, Tissue Engineering; Faculty→Engineering
519-888-4567 x38037
QNC 4618

Research Interests:

  • Nanomaterials, nanodevices, biosensors for applications in food processing, bioreactors and biotechnology, natural gas purification, fuel cell, and water purification

  • Nano-Bio Hybrids for Tissue Engineering and Medicine for drug delivery, tissue engineering and regenerative medicine

  • Bio-molecule assisted nanomaterial self-assembly

  • Health and environmental effects of engineered nanomaterials

Application Areas→Disease Modelling, Environmental Biotechnology, Targeted Drug Delivery; Technology Areas→Biomaterials, Diagnostics, Imaging, Medical Devices, Microfluids, Sensors, Therapeutics; Discipline Areas→Biology, Biomedical Engineering, Biomedicine, Bionanotechnology, Chemistry, Nanotechnology, Regenerative Medicine, Tissue Engineering; Faculty→Science
Ehsan Toyserkani
519-888-4567 x37560
EC4 1031
Contact for: 
Expertise in additive manufacturing of biodegradable scaffolds for regenerative medicine and tissue engineering applications, optical sensors for biomedical area.

Research Interests:

  • Tissue engineering and biodegradable implants for regenerative medicine (3D printing)

  • Bio-additive and microscale-additive manufacturing (opto-mechanical sensors, smart structures, developed through additive manufacturing)

  • Novel multi-scale additive manufacturing technologies for biomedical, oil/gas and manufacturing sectors

  • Laser-based fabrication techniques with particular focus on direct write processes in micro- and macro-scale

  • Modeling, sensing and real-time control of laser-based manufacturing techniques

University Research Chair



Google Scholar

Canada Research Chair in Multi-Scale Additive Manufacturing  [Canada Research Chair Profile]

[Office of Research News] May 8,2018 "Waterloo researchers named Canada Research Chairs" 

[YouTube Lecture] May 6, 2014 "Additive manufacturing"

Office of Research - Technology Transfer & Commercialization:

Application Areas→Healthcare Systems, Industrial Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Computational Modeling, Imaging, Microfabrication, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Mechanical and Mechatronics Engineering, Regenerative Medicine, Tissue Engineering; Faculty→Engineering; Canada Research Chairs; University Research Chairs
Thomas Willett
519-888-4567 x48405
E7 6438

Research Interests:

  • Biomaterials and mechanics of biomaterials and tissues

  • Bone quality and fragility, collagen

  • Engineering of bone mimetic materials for skeletal reconstruction (3D printing)

Google Scholar

Application Areas→Aging, Biomechanics, Cancer, Diabetes, Inflammatory Diseases, Muscle, Joint and Bone Diseases, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Biomarkers, Biomaterials, Computational Modeling, Imaging, Medical Devices; Discipline Areas→Biochemistry, Biology, Biomechanical Engineering, Biomedical Engineering, Kinesiology, Regenerative Medicine, Tissue Engineering; Faculty→Engineering
Evelyn Yim
519-888-4567 x33928
E6 4014

Research Interests:

  • Stem cells, nanofabrication and advancement of biomaterials in healthcare technologies to repair, replace or regenerate damaged tissue and organ structures

  • Fabrication and application of nano-structure for biomedical applications in neural, vascular, and cornea tissue engineering

  • ​Biomaterial approach to study ex-vivo pluripotent stem cell expansion

  • Modulation of cell behavior with nanotopography

  • Topography-regulation of stem cells lineage commitment and differentiation

  • Differentiation of adult and pluripotent stem cells with nanotopography

Google Scholar


Application Areas→Cardiovascular, Disease Modelling, Neurodegenerative Diseases, Optometry, Personalized Medicine, Stroke, Targeted Drug Delivery; Technology Areas→Biomaterials, Cell Therapy, Disease Modelling, Medical Devices, Microfabrication, Polymer, Surface Coating, Therapeutics; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Biotechnology, Cell Biology, Nanotechnology, Regenerative Medicine, Stem Cell Engineering, Tissue Engineering; Faculty→Engineering
M. Moo-Young
B2 357C

Research Interests:

  • Biopharmaceuticals (therapeutics, treatment of autoimmune diseases, prevent rejection of organ transplants)

  • Industrial biomanufacturing and biotechnology (fermentation, food ingredients, enzymes, biofuels)

  • Environmental management (bioremediation of carcinogenic environmental pollutants, filtration, chromatography)

The Royal Society of Canada Fellow

[YouTube Lecture] September 29, 2014 "Biofuels and Waste Treatment"

[YouTube Lecture] September 19, 2013 "Industrial Biotechnology: Current developments and trends"

[UW Eng-e-news] August 14, 2013 "Engineering Life-enhancing research"

[Waterloo Stories] May 3, 2013 "Can bacteria help create a cheaper fuel for our cars?"

[CBB researcher story] December 6, 2012 "Bringing Bioengineering and Biotechnology to its Fullest Potential"

Application Areas→Environmental Biotechnology, Industrial Biotechnology; Technology Areas→Biomaterials, Computational Modeling, Drug Development, Polymer, Therapeutics, Vaccines; Discipline Areas→Biochemistry, Bioprocessing/Biochemical Engineering, Biosystem Engineering, Biotechnology, Environmental Biotechnology, Genetic Engineering, Industrial Biotechnology, Physics, Polymer Chemistry, Synthetic Biology, Tissue Engineering; Faculty→Engineering; The Royal Society of Canada Fellows

Contacts by group