Our People - Canada Research Chairs

Jack Callaghan
519-888-4567 x47080
Location: 
BMH 3122

Research Interests:

My research program combines a fundamental in-vitro research approach, examining the time varying response of the lumbar spine tissues, with in-vivo human research, examining biological responses to cumulative loading exposure from both pain generating and tissue altering/injuring perspectives. Work in my laboratories involves developing approaches to assess workplace cumulative loading exposure and injury in conjunction with in-vitro tissue mechanics studies investigating the injury pathways from repetitive loading. Currently, quantifying the influence of modifiers such as repetition and magnitude of exposure to establish the relationship between cumulative loading and low back pain is a major focus in my research. This knowledge will complement existing epidemiological data, linking cumulative loading and low back pain, for setting exposure limits and helping to prevent low back injuries.

Google Scholar

Group(s): 
Application Areas→Biomechanics, Fall Prevention, Muscle, Joint and Bone Diseases, Wearable Devices; Technology Areas→Actuators, Biomarkers, Computational Modeling, Diagnostics, Imaging, Medical Devices, Robotics, Sensors; Discipline Areas→Biology, Biomechanical Engineering, Biomedical Engineering, Biophysics, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering; Faculty→Applied Health Sciences; Canada Research Chairs
Clark Dickerson
519-888-4567 x37844
Location: 
AHS 2684

CBB Executive Director

Research Interests:

  • Fundamental shoulder function and dysfunction
  • Creation and validation of mathematical models to predict shoulder demands
  • Applications of shoulder biomechanics to workplace injury prevention
  • Rehabilitative and preventative strategies for ensuring shoulder health
  • Digital human modeling, Computational musculoskeletal modeling
  • Ergonomics
  • Motion Capture
  • Upper limb biomechanics

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Shoulder Mechanics [Canada Research Chair Profile]

[Waterloo News] February 19, 2019 "How to make the push-up work for you" 

[Waterloo Stories] October 7, 2013 "Reducing shoulder injuries in the workplace"

Group(s): 
Application Areas→Aging, Biomechanics, Rehabilitation; Technology Areas→Computational Modeling, Imaging, Therapeutics; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Human Factors, Kinesiology; Faculty→Applied Health Sciences; Canada Research Chairs
Brian Dixon
519-888-4567 x32665
Location: 
B2 247A

Research Interests:

  • Genomics, proteins, antibodies
  • Molecular immunology and immunotoxicology in fish populations and the design for better vaccines for aquaculture

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Fish and Environmental Immunology [Canada Research Chair Profile]

[UW Science News] June 15, 2018, Waterloo Biologist mentors local teen, the 2018 International BioGENEius Challenge winner

[Waterloo Stories] January 22, 2018 "Vaccines not protecting farmed fish from disease"

[Waterloo Stories] February 13, 2014 "True love makes pacific salmon healthier"

[YouTube] October 9, 2013 "Science Scoop - For the love of fish!"

[Waterloo Stories] September 9, 2013 "Video conferencing connects Waterloo biologist to young students"

Group(s): 
Application Areas→Environmental Biotechnology, Infectious Diseases, Inflammatory Diseases, Pathogen Detection; Technology Areas→Biomarkers, Diagnostics, Vaccines; Discipline Areas→Biochemistry, Biology, Biotechnology, Cell Biology, Immune Engineering, Physiology; Faculty→Science; Canada Research Chairs
Laura Hug
519-888-4567 x31151
Location: 
B1 281

Research Interests:

  • Microbial diversity and function at contaminated sites (primarily municipal landfills)
  • DNA, RNA, and protein (meta-omics) sequences
  • Environment remediation
  • Impacts of human activities on the environment

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Environmental Microbiology [Canada Research Chair Profile]

[YouTube] October 23, 2015 "Piecing life together - microbial diversity and function through meta-omic analyses"

[Waterloo Stories] April 12, 2016 "New tree of life may hold clues to cleaning up pollution"

Group(s): 
Application Areas→Environmental Biotechnology; Technology Areas→Biomarkers, Computational Modeling, Microbiome; Discipline Areas→Bioinformatics, Biology, Environmental Biotechnology; Faculty→Science; Canada Research Chairs
M. Li
519-888-4659 or 519-888-4567, ext. 84659
Location: 
DC 3355

Research Interests:

  • Bioinformatics tools (protein structures, genome mapping, conducting homology searches)

  • Protein structure prediction, and automated NMR protein structure determination

  • Stem cell image recognition

  • Deep learning, natural language processing and automated conversation, AI

Google Scholar

Canada Research Chair in Bioinformatics [Canada Research Chair Profile]

The Royal Society of Canada Fellow

[Waterloo Stories] April 5, 2013 "RSVP: Responding to a need"

[Waterloo Stories] July 6, 2012 "Solving life's big issues, one question at a time"

Group(s): 
Application Areas→Disease Modelling; Technology Areas→Biomaterials, Cell Therapy, Gene Therapy, Imaging, Machine Learning/AI; Discipline Areas→Bioinformatics, Biology, Biomedical Engineering, Bioprocessing/Biochemical Engineering, Biotechnology, Chemistry, Computer Science, Stem Cell Engineering; Faculty→Mathematics; Canada Research Chairs; The Royal Society of Canada Fellows
John McPhee
519-888-4567 x35341
Location: 
E3 4114

Research Interests:

  • Biomechanics engineering (injury rehabilitation, assistive devices for elderly, athletes, disabled)

  • Mechatronic and robotic systems

  • Multibody system dynamics

  • Computational methods for analysis and design

  • Advanced vehicle systems

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Biomechatronic System Dynamics [Canada Research Chair Profile]

NSERC/Toyota/Maplesoft Industrial Research Chair in Mathematics-Based Modelling and Design [NSERC Profile]

[Waterloo Stories] February 20, 2019 "Engineering innovation for wheelchair curlers"

[Waterloo Stories] August 5, 2016 "Rio Olympics 2016: Engineering speed for the Canadian track cycling team"

[Waterloo Stories] June 17, 2015 "Waterloo’s $10M dream facility for smarter, greener cars"

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Aging, Biomechanics, Rehabilitation, Stroke, Wearable Devices; Technology Areas→Actuators, Computational Modeling, Machine Learning/AI, Robotics; Discipline Areas→Biomechanical Engineering, Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering; Canada Research Chairs; NSERC Industrial Research Chairs
C. Ren
519-888-4567 x38233, 519-888-4567 x33030
Location: 
E3 2108G, E3 4105
Contact for: 
Expertise in microfluidics, Lab-on-a-Chip technology, protein and DNA separation towards disease diagnosis and drug discovery, living cell analysis and water toxicity testing.

Research Interests:

  • Protein and DNA separation analysis towards disease diagnosis and drug discovery

  • Biosensing and Devices (bacterial, proteins, fluorescence)

  • Living cell analysis and water toxicity testing

  • Lab-on-a-Chip technology (point-of-care biomedical diagnosis , chemical detection, protein separation and identification, environmental testing)

  • Micro-scale fluid mechanics, droplet microfluidics and nanofluidics

  • High Throughput Screening For Drug Screening
  • Manufacturing Nanomaterials and Carbon Management

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Lab-on-a-Chip Technology [Canada Research Chair Profile]

[Waterloo Stories] June 14, 2012 "Creating the tiny future of science"

Group(s): 
Application Areas→Healthcare Systems, Infectious Diseases, Pathogen Detection, Personalized Medicine, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Biomaterials, Imaging, Machine Learning/AI, Medical Devices, Microfabrication, Microfluids, Sensors, Vaccines; Discipline Areas→Biochemistry, Biomechanical Engineering, Biomedical Engineering, Biomedicine, Biophysics, Bioprocessing/Biochemical Engineering, Biosystem Engineering, Biotechnology, Cell Biology, Chemistry, Mechanical and Mechatronics Engineering, Nanotechnology; Faculty→Engineering; Canada Research Chairs
Ehsan Toyserkani
519-888-4567 x37560
Location: 
EC4 1031
Contact for: 
Expertise in additive manufacturing of biodegradable scaffolds for regenerative medicine and tissue engineering applications, optical sensors for biomedical area.

Research Interests:

  • Tissue engineering and biodegradable implants for regenerative medicine (3D printing)

  • Bio-additive and microscale-additive manufacturing (opto-mechanical sensors, smart structures, developed through additive manufacturing)

  • Novel multi-scale additive manufacturing technologies for biomedical, oil/gas and manufacturing sectors

  • Laser-based fabrication techniques with particular focus on direct write processes in micro- and macro-scale

  • Modeling, sensing and real-time control of laser-based manufacturing techniques

University Research Chair

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Multi-Scale Additive Manufacturing  [Canada Research Chair Profile]

[Office of Research News] May 8,2018 "Waterloo researchers named Canada Research Chairs" 

[YouTube Lecture] May 6, 2014 "Additive manufacturing"

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Healthcare Systems, Industrial Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Computational Modeling, Imaging, Microfabrication, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Mechanical and Mechatronics Engineering, Regenerative Medicine, Tissue Engineering; Faculty→Engineering; Canada Research Chairs; University Research Chairs
Justin Wan
519-888-4567 x34468
Location: 
DC 3625

Research Interests:

  • Medical imaging (processing, registration, cell segmentation, tracking)
  • Computer simulations (biomedical, brain and soft tissue injury and biomechanics, architectural, remote sensing, natural phenomena, fine arts)
  • Computational finance
  • Scientific computing (numerical solutions of partial differential equations, iterative methods, and multigrid preconditioning, parallel computation on high performance platforms)

Canada Research Chair in Scientific Computing [Canada Research Chair Profile]

ResearchGate

Google Scholar

Group(s): 
Application Areas→Cancer, Disease Modelling; Technology Areas→Cell Therapy, Computational Modeling, Diagnostics, Imaging; Discipline Areas→Computer Science; Faculty→Mathematics; Canada Research Chairs
Alex Wong
519-888-4567 x31299
Location: 
EC4 2019

Research Interests:

  • Biomedical image processing and analysis (prostate, breast, lung and dermatological cancer analysis, retinal photoreceptor and blood vessel analysis, musculoskeletal kinematic analysis

  • Remote sensing data processing and analysis (sea ice, underwater object, oil spill analysis)

  • Perceptual based video and image processing (noise reduction, compression, enhancement)

  • Computer vision and pattern recognition

  • Multimedia management systems

  • 3D graphics and game development

  • Cognitive radio networks

LinkedIn

Google Scholar

Canada Research Chair in Medical Imaging Systems [Canada Research Chair Profile]

[Daily Bulletin] June 1, 2018, 11 CBB Members Named Outstanding Performance Award Winners

[Waterloo News] [CBC News] [Gadgets] May 16, 2018, Co-authors discuss the use of aerobic fitness data from wearable tech to predict illness

[Waterloo News] May 15, 2018 "Researchers combine wearable technology and AI to predict the onset of health problems"

[Global Impact] [570 news] [Youtube] April 11, 2018 "How AI is helping doctors diagnose Cancer" 

[The Star] February 9, 2018 "How TheRedPin aims to take a swipe at the real estate industry"

[Waterloo News] June 7, 2017 "Artificial intelligence-driven imaging research makes diagnosing disease easier"

[Waterloo Stories] January 28, 2017 "Artificial intelligence and the Waterloo-Toronto tech supercluster"

[Waterloo Stories] May 20, 2016 "Breakthrough tech helps doctors more accurately diagnose cancer"

[CBB researcher story] January 9, 2013 "Improving Early Diagnosis to Save Lives"

[Waterloo Stories] January 9, 2013 "Making it harder for cancer to hide"

[YouTube Lecture] October 1, 2014 "Integrative systems for biomedical imaging and analysis"

Group(s): 
Application Areas→Aging, Cancer, Cardiovascular, Data Science, Disease Modelling, Fall Prevention, Healthcare Systems, Neurodegenerative Diseases, Optometry, Pathogen Detection, Rehabilitation; Technology Areas→Computational Modeling, Diagnostics, Disease Modelling, Imaging, Machine Learning/AI, Medical Devices, Sensors; Discipline Areas→Biomedical Engineering, Computer Science, Electrical and Computer Engineering; Faculty→Engineering; Canada Research Chairs
J. Yeow
519-888-4567 x32152
Location: 
E3 3159

Research Interests:

  • MEMS/NEMS

  • Nanodevices and carbon nanotube-based sensors for biomedical applications (early disease detection)

  • Microassembly and micromirror devices for genetic microarray reading and tissue imaging

  • Lab-on-a-chip designs

Canada Research Chair in Micro and NanoDevices [Canada Research Chair Profile]

Group(s): 
Application Areas→Cancer, Cardiovascular, Pathogen Detection, Wearable Devices; Technology Areas→Actuators, Diagnostics, Medical Devices, Microfabrication, Robotics, Sensors, Therapeutics; Discipline Areas→Biomedical Engineering, Electrical and Computer Engineering, Mechanical and Mechatronics Engineering, Nanotechnology, Robotics; Faculty→Engineering; Canada Research Chairs
N. Zhou
519-888-4567 x36095
Location: 
E5 3007
Contact for: 
Expertise in welding and joining, especially for medical implantable devices, programmable shape memory alloys, corrosion of laser processes NiTi alloys.

Research Interests:

  • Microjoining (wire bonding, laser & resistance microwelding, etc.) for medical and electronics applications

  • Nanojoining (laser joining, soldering, etc.) for sensing and biomedical applications

  • Brazing/soldering (diffusion brazing, ceramic/metal bonding, etc.) for aerospace, automotive and electronics applications

  • Welding (laser, resistance welding, etc.) for automotive applications

Google Scholar

Canada Research Chair in Advanced Materials Joining and Processing [Canada Research Chair Profile]

[Office of Research News] May 8, 2018 Waterloo researchers named Canada Research Chairs

Group(s): 
Application Areas→Industrial Biotechnology; Technology Areas→Computational Modeling, Microfabrication, Polymer; Discipline Areas→Biomechanical Engineering, Mechanical and Mechatronics Engineering, Nanotechnology; Faculty→Engineering; Canada Research Chairs

Contacts by group