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Abstract—As an emerging computing paradigm, mobile edge computing (MEC) can improve users’ service experience by
provisioning the cloud resources close to the mobile devices. With MEC, computation-intensive tasks can be processed on the
MEC servers, which can greatly decrease the mobile devices’ energy consumption and prolong their battery lifetime. However,
the highly dynamic task arrival and wireless channel states pose great challenges on the computation task allocation in MEC.
This article jointly investigates the task allocation and CPU-cycle frequency, to achieve the minimum energy consumption while
guaranteeing that the queue length is upper bounded. We formulate it as a stochastic optimization problem, and with the aid of
stochastic optimization methods, we decouple the original problem into two deterministic optimization subproblems. An online
Task Offloading and Frequency Scaling for Energy Efficiency (TOFFEE) algorithm is proposed to obtain the optimal solutions of
these subproblems concurrently. TOFFEE can obtain the close-to-optimal energy consumption while bounding the applications’
queue length. Performance evaluation is conducted which verifies TOFFEE'’s effectiveness. Experiment results indicate that
TOFFEE can decrease the energy consumption by about 15% compared with the RLE algorithm, and by about 38% compared

with the RME algorithm.

Index Terms—Mobile edge computing; energy efficiency; task allocation; dynamic frequency scaling

1 INTRODUCTION

With the increasing proliferation of mobile services,
the applications running on mobile devices are
becoming more computation-intensive and energy-
hungry [1]. For the mobile device, the constrained
computing and battery capacities have become the
bottlenecks for processing these application tasks lo-
cally. Mobile cloud computing (MCC) is put forward
as a potential solution to address this problem [2].
Mobile devices can transmit the computation tasks to
MCC with the abundant cloud resources for process-
ing. Offloading to the MCC can greatly augment the
device’s computing capacity and reduce their work-
load. However, the cloud servers usually locate far
from the mobile devices. Data transmission from the
devices to cloud servers would incur a large amount
of energy consumption and transmission delay [3].
To mitigate these drawbacks, mobile edge computing
(MEC) emerges as a promising paradigm providing
the cloud resources at the radio access network (i.e.,
base station) [4], [5]. Unlike MCC, MEC deploys
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the computing resources in proximity to the mobile
devices. Therefore, MEC can significantly reduce the
network’s energy consumption and the traffic of core
network. In addition, with the help of computation
offloading, the users’ quality of experience (QoE),
including battery consumption and response delay,
would be greatly improved [6].

In the MEC system, one of the resource-limited
device’s major concerns is the battery lifetime [7]. To
reduce the device’s energy consumption, computation
offloading and CPU-cycle frequency scaling have at-
tracted increasing interests in academia and industry
[6], [8], [9]. The computation offloading decisions are
greatly affected by the wireless channel condition and
tail energy. Transmitting tasks on the good channel
condition or in batch can reduce the transmission
energy consumption [7], [10]. Another solution for
reducing the device’s energy consumption is dynamic
voltage frequency scaling (DVFS). When the applica-
tion tasks are served on the device, the execution ener-
gy consumption mainly relies on the local CPU-cycle
frequency. As CPU’s power rises exponentially with
the CPU-cycle frequency, the local execution energy
can be significantly conserved by reducing the CPU-
cycle frequency [11]. However, these energy conserva-
tion approaches would incur extra queueing delay for
the application tasks, even making the mobile device
unstable [2]. Therefore, in order to achieve the tradeoff
between the mobile device’s energy consumption and
applications’ performance (i.e., queuing delay), it is



critical to determine the optimal task allocation and
CPU frequency decisions effectively.

It is a challenging work to devise an algorithm that
couples the task allocation and frequency scaling for
the MEC system. First, the task arrival of each appli-
cation is dynamic and stochastic over time. Allocating
more or less computation on the local CPU may both
lead to the large queueing delay [12]. Second, the
task allocation should take into consideration of the
current queue state as well as the wireless channel
condition. Transmitting computation tasks intermit-
tently or on the bad channel condition would incur
extra energy consumption. However, the task arrival
and wireless channel are not only affected by the
characteristics of the MEC system, but also influenced
by the external environment [13]. As a result, the
statistical information of these stochastic processes is
hardly obtained precisely in advance. It would face
considerable challenges to design an algorithm that
could adapt to the highly dynamics of task arrival
and wireless channel.

To tackle the above challenges, we investigate the
stochastic joint task allocation and CPU-cycle frequen-
cy scaling for the MEC system. We seek to achieve
the minimum average energy consumption when the
queueing delay is upper bounded. A stochastic opti-
mization problem is formulated to achieve the energy
efficient for mobile device. By employing the stochas-
tic optimization techniques, the original problem is
decoupled into two deterministic subproblems. An
effective algorithm, TOFFEE, is designed to solve
these subproblems. TOFFEE requires no prior statisti-
cal information about the stochastic processes (task
arrival and wireless network). Mathematic analysis
shows the asymptotic optimality of TOFFEE. The
performance of TOFFEE is also evaluated via the
experiments.

For the rest of the article, the system model and
stochastic optimization problem are provided in Sec.
2. We propose TOFFEE to solve this optimization
problem in Sec. 3. In Sec. 4, we analyze TOFFEE’s
performance. In Sec. 5, the experiment results are
presented. Related works are introduced in Sec. 6, and
Sec. 7 is the summary of this article.

2 SYSTEM MODEL

Consider that a mobile device runs n different applica-
tions N = {1,2,...,n}, and a MEC server is installed
at the base station (BS) for providing computing ser-
vices. The mobile device can send application tasks to
the MEC server through wireless channel to get pow-
erful computing ability and extend battery life. A dis-
crete time-slotted system, whichis¢ = {0,1,...,7-1},
is considered. Each time slot’s length is 7. In slot ¢,
according to the wireless channel condition and queue
backlog of the unprocessed data, the mobile device
jointly determines the task allocation decision (i.e., the
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TABLE 1
NOTATIONS AND DEFINITIONS
Notion Definition
N Applications set
T Slot length
P Mobile device’s transmit power
h(t) Wireless channel’s power gain
B Bandwidth of the wireless channel
o2 Noise power at the receiver
R;(t) Task offloading rate
A;(t) Amount of i-th application’s
input tasks
Dé(t) Amount of tasks processed locally from
the i-th application
DI (t) Amount of i-th application’s
offloaded tasks
D;(t) Amount of processed tasks from
the i-th application
ws The required CPU cycles to compute
1 bit i-th application task
7 @) CPU-cycle frequency
E'(t) Energy consumption for local execution
E"(t) Energy consumption for transmission
E*(t) Tail energy consumption
Eiotar(t) Total energy consumption
Q;(t) Queue backlog of the application ¢

local execution and offloaded computation) and local
CPU-cycle frequency. In Table 1, the main notations
in the system model are provided.

2.1 Task and Queueing Models

In this article, the tasks generated by the |N| ap-
plications are computation-intensive. It is considered
that the tasks can be divided into several parts for
local execution or MEC execution, and the processing
complexity of these tasks is proportional to the input
tasks size (in bits) [4], [6], [9]. In slot ¢, let A;(¢) (in bits)
be the amount of input tasks from the i-th application.
For generality, the task arrival A;(t) is different among
these applications. For the i-th application, D.(t) s-
tands for the amount of task processed locally, and
@i > 0 denotes the required CPU cycles to compute 1
bit data, which can be obtained by using the call graph
analysis method [5], [14]. ¢; depends on the nature of
application, and is different among the n applications
[15]. Thus, the sum of the n applications’ required
CPU cycles is >, ¢;D(t). Besides, f(t) denotes the
CPU-cycle frequency, and is upper bounded by the
maximum value ™%, which is expressed by,

fle) < fmee. )

Given the CPU-cycle frequency f(t), the local com-
puting capability of the device is limited. Thus, the
local computation should satisfy (2).

> @iDi(t) < f(t)r. ¢)
=1

Let DI(t) denote the amount of offloaded tasks
from the i-th application. Then, the total offloaded
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computation is Y, D7 (t). Define h(t) as the wireless
channel’s power gain, P as the device’s transmit
power. Thus, the achievable data transmission rate is

Ph(t)

R(t) = Blogy(1 +

); ®)

In (3), 02 represents the power of channel noise, B
denotes the channel bandwidth,.

In slot ¢, the device’s data transmission capability is
also limited. Thus, the offloaded computation should

satisfy (4).
> Di(t) < R(t)r. (4)
=1

Recall that D] (¢) represents the amount of task pro-
cessed locally, D!(t) represents the amount of offload-
ed tasks. Thus, the i-th application’s total computation
tasks D;(t) that leaves the queue is

Di(t) = Di(t) + Dy (). 5)

For each application, let Q;(t) denote the queue
backlog of the unaccomplished tasks. Then, the i-th
application’s queue length evolves as the following
equation,

Qi(t+1) = [Q:(t) — D;i(t),0]" + A;(t). (6)

Notice that the task queueing delay of each ap-
plication is proportional to its queue backlog [16].
Therefore, in order to guarantee the performance of
each application, all the queue backlogs need to be
stable, which is

¢ = lim —ZE{Q t)}<e,IeeRT, (7

T—oo T
where ¢; is the average queue backlog over the slots.
In this article, the overhead of partitioning, migrating,
and bringing the results back is ignored, as done by
most literatures on computation offloading, such as
[17], [18], [19].

2.2 Energy Consumption Model

The device’s energy consumption includes the local
execution energy, transmission energy and tail energy
[14]. Specifically, tail energy is generated after the data
transmission because the device would maintain at
the high power state during a certain period (tail
time). In the 3G/4G/LTE networks, tail time is in-
troduced to reduce the high signaling overhead [10],
[20].

The local execution energy is mainly consumed by
the mobile device’s CPU operation, and depends on
the computation load and CPU-cycle frequency [21].
Then, define E'(t) as the energy consumed by local
execution, which is

2(6) 3 iDL (1), ®)
1=1

where £ represents the effective switched capacitance,
and is determined by the chip architecture [22].

The energy consumed by data transmission is equal
to the product of transmission power and duration.
Therefore, let E7(t) denote the energy consumed by
data transmission, which can be derived by (9).

=P Dj(t)/R(t). ©)
i=1

In the current cellular network, the channel allo-
cation is determined by the Radio Resource Control
(RRC) protocol. The RRC protocol have three different
states, including: data transmission (DT), tail (TA) and
idle (ID) [20], [23]. The three states’ radio powers
are P, Pr and Pj, respectively. When the radio is
at TA or ID, the transmission data’s arrival would
trigger it to DT with the higher power. After the data
transmission, it would switch to TA. If no data needs
to be transmitted, the radio would stay at the TA for
a period of 7, and switch to ID.

Define At as the time duration after the last trans-
mission. Then, if > 1", D7 (¢t) > 0, there exists com-
putation tasks which need to be transmitted during
the slot, so the tail time in slot ¢ is 0. Otherwise, no
computation tasks need to be transmitted, and the tail
time would be 7. Therefore, the tail time At in slot ¢

is (10). )
A — {0, > i Di(t) >0

(10)
T, otherwise.

Then, let E%(t) represent the tail energy consump-
tion in slot ¢, which can be obtained by (11).

0, At > 67 or At =0

Ea(t): Pr T, At<(5T,At+At/§(5T

Pr«x (6r — At), otherwise.
(11)
Thus, the device’s energy consumption in slot ¢ can
be given by (12).
Etotal £f2

Z% +PZD’“ )/R(t)+E*(t).
=1 (12)

In different time, due to the dynamics in the quality
of wireless channel, the energy consumed to transmit
the same task may vary from each other. And the
device’s tail energy consumption is also relative with
the last computation offloading decision. Therefore,
this article focuses on the device’s long-term (I" — oo)
average energy consumption,

o 2o B{Bwa(t)})

F = lim
T— o0 T

(13)

2.3 Optimization problem

In this article, we optimize the device’s average en-
ergy consumption in (13). The energy consumed by



local computing can be conserved by reducing the
local computation and CPU-cycle frequency. The en-
ergy consumed to transmit data can be decreased
by transmitting data on good channel condition or
reducing the offloaded computation [7]. Moreover,
transmitting data in batch would decrease the tail
energy consumption [10]. However, these approaches
would cause that the queue backlog of each applica-
tion becomes large and the mobile device tends to be
unstable. Thus, in the article, we aim at achieving the
minimum average energy consumption and bounding
the queueing delay of each application. The optimiza-
tion problem is,

I
g

min E

= 2 EdErorar(t)},
D!(t),D" (1), £(t) oo T £~ {Etotar(t)}

(14)

subject to constraints (1), (2), (4) and (7).

Because the task arrival and wireless channel con-
dition are both dynamic and stochastic, Problem (14)
is a stochastic optimization problem

3 ALGORITHM DESIGN

A task offloading and frequency scaling for energy
efficiency (TOFFEE) algorithm is designed in this sec-
tion. By employing the Lyapunov optimization tech-
niques [24], [25], Problem (14) is decomposed into two
deterministic optimization sub-problems. TOFFEE can
obtain the optimal solutions of theses sub-problems in
low time complexity. In addition, TOFFEE makes the
task allocation and CPU frequency decisions without
any prior statistic information about the task arrival
and wireless network, which are also hard to predict
or acquire precisely in practice.

3.1

According to Lyapunov optimization theory, we trans-
form Problem (14) into the deterministic optimization
problem in each slot. Let ©(¢) denote the backlog
matrix about the n applications” queues. And the
Lyapunov function is,

Problem Transformation

L) = 5 3 Q0. (15)

ieN

In (15), L(©(t)) > 0 represents the device’s queue
backlog. When L(O(t)) is large, it means that at least
one application’s queue backlog is also large. Only
when all the applications” queue backlogs are small,
the value of L(©(t)) is small. Therefore, in order to
decrease the applications” queue backlog and keep the
backlog state of the mobile device at a low level, we
aim at reducing the value of L(©(t)). Then, A(O(t))
is defined as the conditional Lyapunov drift,

A(O(1) = E{L(O(t + 1)) - L(O®)[O(1)}.  (16)
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Following the Lyapunov optimization framework
and combining the energy consumption with the ap-
plication’s performance (queueing delay), we define a
drift plus energy, Ay (©(t)), which is given as follows,

Ay (O(t) = A(O(1) + VE{ Etorar (1)|O(1)},  (17)

where V is non-negative and indicates the weight put
on the energy consumption. A larger V puts more
weight on the energy consumption. In the realistic
scenario, V' is determined according to the preference
on the queue backlog and energy consumption .

Next, Theorem 1 gives Ay (0(¢))’s upper bound.

THEOREM 1: In each slot ¢, for any V and ©(t), if
there exist the upper bounds of A;(t) and R(t), which
are A"** and R™*, the Ay (O(t)) of any possible
algorithms would satisfy,

A(O(t)) + VE{Eyorai (1)|O(t)}

< C+ Y QOB[A(L) - Di()]O())

i=1

+VEE{f2(1) ) @:iDi(1)|O(1)}
i=1

+ VPZ E{D;(t)/R(t)|0(t)} + VE{E"(1)|O(1)}
=1 (18)
T+ RM™7r)?] is a

f'mam

where €' = 1 371, [(A7"%)? + (
constant.
Theorem 1’s proof is in the Appendix A.

Pi

3.2 Online Algorithm

We design TOFFEE to minimize Ay (O(t))’s upper
bound. We also prove that TOFFEE can achieve a
close-to-optimal energy consumption in Section 4.

In slot ¢, since C and A;(t) can be regarded as the
constant, we can rewrite the minimization problem as,
{D_Ver (eiDi(t) — Qi(t) Di(t)]

i=1

+ Y _[VP/R(t) - Qi(0)]Df () + VE“(t)}.

i=1

min
D!(t),D" (1), f(t)

s.t. (1),(2),(4).

We first simplify the above minimization prob-
lem by determining the optimal CPU-cycle frequency,
which is given in Lemma 1.

LEMMA 1: For the given local computation
S @iDL(t), the optimal CPU-cycle frequency f*(t)
for Problem (19) is

(19)

F1(#6) =D eiDi(t)/7. (20)
i=1

Proof: With the given Y"1 | ¢;D.(t), the objective

of Problem (19) is a non-decreasing function with

f(t). The optimal value of f(¢) must be as small as
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possible However, f(t) should satisfy that f(t) >
Y @iDL(t)/7 in (2). Thus, we can obtain the optlmal
[*(t) should be "7, ¢;DL(t)/T. O

By using Lemma 1, constraint (1) can be converted
to the following inequality,

Z%

Then, Problem (19) can be equivalently reformulated
as,

min
D! (t),D"(t)

{= Z DI = > Qi) Di(t)

Z[VP/R( ) = Qi()IDi (1) + VE*()}.

i=1

s.t. (4),(21). (22)

Note that D'(t) and D"(t) are decoupled in the
objective and constraints of Problem (22). Therefore,
Problem (22) can be decomposed into two indepen-
dent subproblems. Particularly, the two sub-problems
are: local computation allocation (LCA) and offloaded
computation allocation (OCA). In the following, the
optimal solution of each sub-problem is obtained
separately.

3.2.1 Local Computation Allocation (LCA)

Considering the first two terms of the objective in (22)
and the relevant constraint (21), we can obtain the
optimal local computation D'(t) by solving (23).

min fo > leiDLB)P = Qi(t)Dit (23)
Di(t) T 1EN 1EN
st Z <pz < fma'r

i€EN

To get the optimal solution of LCA, we first assume

that Y1 | ¢;D!(t) has been determined. Then, the
LCA problem is simplified as (24).
min — @it) ©iDL(t). (24)
D!(t) = i

Problem (24) can be regraded as a generalized min-
weight problem. Specifically, the local computation
@:DL(t) is weighted by — Q (t) . It is evident that the
optimal solution is

Z:L 1 ‘P?D (t) Z — Z*
Dy(t) = ” (25)

0, otherwise,
where i* € argmax;c ;5 .. .y Q;Et) represents the in-
dex of the application with the maximum value of
<2 Therefore, for the given >_" | ; D(t), the opti-
mal local computation can be obtained according to
(25). However, the value of > ;" ¢;D!(t) has not be

determined yet. Then, let X equal to > i, ¢;DL(t),
and the LCA problem is rewritten as follows,

VExs_ Qi (1) X

— (26)
st.0< X < fmerr

min
X

Problem (26) is simple convex optimization prob-
lem, for which, the optimal solution X* can be ob-
tained by the derivation. After the value of X =
S ¢iDL(t) is determined, we can obtain the LCA’s
optimal solution according to (25).

3.2.2 Offloaded Computation Allocation (OCA)

Considering the last two terms of the objective in
(22) and the relevant constraint (4), we can obtain the
optimal offloaded computation D" (¢) by solving (27).

min Y [VP/R(t) - Qi(t)|D (1) + VE“(t).
i€EN

D" (t)
s.t. ZD:(t) < R(t)T
ieN

(27)

According to (10) and (11), there exist two possible
values for the tail energy E“(t), which is expressed

by (28).
) — {el, Ly Di(t) >0

(28)
€2, otherwise.

Therefore, if >"! , D7 (t) = 0, the minimum objec-
tive value of OCA problem equals to V' - e2, which
is represented by O1. If >  DI(t) > 0, the OCA
problem can be transformed into (29).

[VP/R(t) -

st.0< Y Di(t) < R(t)r
=1

Problem (29) also is a generalized min-weight prob-
lem. Specifically, the offloaded computation D] (t) is
weighted by VP/R(t) — Q;(t). It evident that the
optimal solution is

D (t) = {R(t)r, i=*

0, otherwise,

min
D7 (t)

Qi(t)] D (). (29)

(30)

where i* € argmin, _({V P/R(t) — Q;(t)}. Then, when
S . Di(t) > 0, we can obtain its optimal objective
value O2 as follows,

02 = [VP/R(t) - Qi- (t)] -

Thus, according to the above discussion, the opti-
mal solution to DCO problem is (32).

R(t)r+V-el. (31

R(t)r, i=1i*01>02
Dr(t) =0, i #i*,01> 02 (32)
0, 01 < 02.



Algorithm 1 Task offloading and frequency scaling for
energy efficiency (TOFFEE)

1: Observe the current queue backlog of each appli-
cation Q;(t).
2: Obtain the Y_!" , ¢; Di(t) by solving the convex
optimization problem (26).
: for all i € N do
Calculate the %@ for the i-th application.
end for
: for all i € N do
%e?tr)ch for index i* with the maximum value of
: endwfor
9: Set the D!(t) according to (25).
10: Set the f(t) according to (20).
11: Calculate the tail energy el and e2 according to
(10) and (11).
12: for all i € N do
13:  Compute the VP/R(t) — Q;(t) for the i-th ap-
plication.
14: end for
15: for all i € N do
16:  Search for index i* with the minimum value of
VP/R(t) - Qi(t).
17: end for
18: Calculate the O1 and O2.
19: Set the Dj (t) according to (32).

N9k w

(o]

After the optimal computation allocation D'(t),
D"(t) and CPU-cycle frequency f(t) are determined,
the queue backlog Q;(t) of each application updates
according to (6).

In Algorithm 1, the detail of TOFFEE is presented.

4 ALGORITHM ANALYSIS

To analyze the performance of TOFFEE, we conduct
the theocratical analysis in this section. It can be
proven that TOFFEE can arbitrarily approach the min-
imal average energy consumption when the queue
backlog has bound.

Let @ denote the mobile device’s average queue
length, which is expressed as (33).

T—1 n

Q=Jm 23" S B{Qi).

t=0 i=1

(33)

THEOREM 2: For any value of V, given all the
application’s average arrival rates A = {A1, -, A},
if there exists € > 0 which satisfies Y ., (\; +¢€) € A,
the average energy consumption of TOFFEE would
be upper bounded by,

_ C
EO'U/I‘ < * —. 4
Sty (34)
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Furthermore, the time average queue backlog of
TOFFEE would also be bounded by,
Q< M7 (35)
€

where C is defined in (18), e* denotes the minimum
average energy consumption.

Theorem 2’s proof is in the Appendix B.

Remark: Theorem 2 shows that the energy con-
sumption E decreases when V becomes larger; mean-
while the queue length @ increases. Thus, TOFFEE
is able to reach the energy consumption and queue
length tradeoff. Although @ increases with V, it can
also be upper bounded. In addition, according to (34),
TOFFEE can approach the optimal energy consump-
tion with the sufficiently large value of V. Practically,
V can be determined referring to characteristics of the
mobile device and applications.

Then, TOFFEE’s time complexity is given. For the
two inner loops (line 6-8 and line 15-17) in Algorithm
1, TOFFEE traverses each application once. Therefore,
each loop would stoop in O(n) operations, in which
n represents the application types’ number. Thus,
TOFFEE’s time complexity is O(n). According to the
above analysis result, our TOFFEE would be feasible
for the large systems.

5 EVALUATION

We conduct the parameter analysis and comparison
experiments to evaluate TOFFEE’s performance. In
the experiments, there are three type applications
in the device, which are video transcoding, chess
game and 6-queues puzzle [26]. The amount of each
application’s input task is set to follow certain fixed
distributions. Specifically, the i-th application’s input
tasks in each slot ¢ follows a uniform distribution
within [0, A7***] bits. In fact, TOFFEE does not need
any statistical information about the task arrival. For
each application, the required CPU cycles to compute
1 bit task is uniformly distributed in [1000,2000] cy-
cles/bit [17]. Similar to [27], the wireless channel is
considered as a Ralyigh fading channel, where the
channel gain h(t) follows the exponential distribution
and the mean is 1. In addition, the slot length 7 =1
s, P=16W, B=1MHz, 02 =105 W, fmer =1
GHz, Pr=1.1W, 67 =10 s, £ = 1027 [8], [23].

5.1 Parameter Analysis
5.1.1 Effect of tradeoff parameter V

Fig. 1 and Fig. 2 evaluate the effects of different V'
on the energy consumption and queue length, re-
spectively. Fig. 1 shows that the energy consumption
becomes smaller when V rises, which is in accor-
dance with (34) in Theorem 2. It is because when
increasing V, more weight would be put on the energy
consumption. In this case, TOFFEE would adaptively
tune the computation allocation decisions to decrease
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Energy consumption (W)

\ x10%

Fig. 1. Energy consumption with different V

35

Queue length

\ x10%

Fig. 2. Queue length with different V

the energy consumption. Fig. 2 shows that the queue
length becomes larger when V' increases, confirming
to (35) in Theorem 2. It also shows that although
the queue length rises when V rises, it can still be
upper bounded. We can also see that TOFFEE can
always keep the device stable no matter what V'
is. Together with Fig. 1 and Fig. 2, by adjusting V,
TOFFEE reaches the arbitrary tradeoff between the
energy consumption and queue length. Additionally,
when V is sufficiently large, the minimum energy
consumption can be reached by TOFFEE and the
queues are stabilized.

5.1.2 Effect of arrival rate

Fig. 3 and Fig. 4 show TOFFEE’s energy consumption
and queue length with the different arrival rates.
In the experiment, each application’s arrival rate is
a - A;(t). Three different arrival rates are considered,
in which o = 0.5, 1 and 1.5, respectively. As shown in
Fig. 3, the energy consumption increases when arrival
rate becomes larger. The reason is that as arrival rate
increases, more computation tasks would be allocated
to be computed locally and offloaded. As a result, the
total energy consumption including local execution
energy and transmission energy would also rise. As

1.4

1.35F
< 13
<
S 125
o
IS
? 12
c
8
> 1.15
2
[}
S 11
——a=05
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Fig. 4. Queue length with different arrival rate

expected, we can observe in Fig. 4 that the queue
length rises when arrival rate becomes larger. Addi-
tionally, for the three different arrival rates, TOFFEE
can all quickly stabilize the energy consumption and
queue length. It indicates that TOFFEE can adaptively
allocate the computation workload to keep the device
stable in a short time.

5.1.3 Effect of slot length

In this experiment, we discuss the queue length with
different slot lengths, which is shown in Fig. 5. Three
different slot lengths (i.e., time intervals) are consid-
ered, where = 0.5s, 1s and 1.5s, respectively. It can be
seen that for the three settings, all the queue lengths
of TOFFEE would stabilize quickly. It can also be
seen that as the slot length becomes larger, the queue
length would increase. The reason is that when the
slot length 7 is set larger, it is harder for TOFFEE to
adapt to system dynamics. However, when 7 is set
too small, it may incur high overhead to acquire the
system parameters or variables.

5.2 Comparison Experiments

In the experiments, to verify TOFFEE'’s effectiveness,
two baseline algorithms are introduced to compare



x10°

Queue length (bit)

1=05s
1=1s |]
——1=15s

i i i i N
0 500 1000 1500 2000 2500 3000

Fig. 5. Queue length with different slot lengths

with TOFFEE [27], [28], [29]:

o Round-robin Local Execution (RLE): The compu-
tation tasks of the different applications are pro-
cessed in different slots in turn. And in each slot,
all the computation tasks are computed locally.

e Round-robin MEC Execution (RME): The com-
putation tasks of the different applications are
processed in different slots in turn. And in each
slot, all applications’ tasks in the device is offload-
ed.

Fig. 6 presents the energy consumption of three dif-
ferent algorithms. The TOFFEE’s energy consumption
is the lowest among the three algorithms. We can see
that TOFFEE can reduce the energy consumption by
about 15% compared with the RLE algorithm, and
by about 38% compared with the RME algorithm. It
demonstrates that TOFFEE can decrease the device’s
energy consumption effectively. It is because that
TOFFEE can dynamically allocate the computation
workload and schedule the CPU-cycle frequency to
adapt to the dynamics of the task arrival and channel
condition. And Fig. 7 plots the three different algo-
rithms” queue length. It shows that the RLE’s queue
length rises linearly, which causes the device instabil-
ity. It is because that the mobile device’s computing
ability is limited, and the computation tasks arrived
per slot exceed the device’s processing capacity. As a
result, more and more computation tasks would be
backlogged in the mobile device, and queue length
would also increase continuously. However, we can
also see that the queue length of TOFFEE and RME
are both small. It shows that TOFFEE can maintain
the queue backlog at a low level. Combining Fig. 6
and Fig. 7, TOFFEE can decrease the energy consump-
tion effectively while guaranteeing the performance of
each application.

Table 2 shows the execution times (in millisecond)
of the three different algorithms. Every experiment is
run 500 times, and the average result is computed.
It shows that RLE’s execution time is the smallest
among the three algorithms, and TOFFEE’s execution
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time is larger than the other two algorithms. It is
because that TOFFEE needs to collect the system in-
formation (e.g, queue length, wireless channel and tail
time) and refers these information to select the opti-
mal decision. Although the execution time of TOFFEE
algorithm is the largest, it only takes 0.776(ms) to
make task offloading and frequency scaling decisions.

Additionally, to further evaluate TOFFEE’s perfor-
mance, task scheduling (TS) algorithm proposed in
[30] is adopted to compare with TOFFEE. Fig. 8
plots the energy consumption of TOFFEE and TS. We
can see that the energy consumption of TOFFEE is
smaller than that of TS. This is because our TOFFEE
optimizes not only the energy consumed by local
execution and data transmission, but also the tail
energy consumption. Fig. 9 shows the queue length
of TOFFEE and TS. We can observe that TOFFEE’s
queue length is also smaller than that of TS. The
reason is that TOFFEE could adaptively tune the task
allocation decisions according to the dynamic and
changing wireless channel condition.

6 RELATED WORK

Recently, the mobile edge computing has been ex-
tensively studied. In [19], Sun et al. focused on the
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TABLE 2
Execution Time of Different Algorithms

Algorithm  Execution time (ms)
TOFFEE 0.7760
RLE 0.0166
RME 0.0204
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energy-aware mobility management for the MEC sys-
tem, and formulated a delay minimization problem
with the energy consumption constraint. Then, an
user-oriented mobility management scheme was de-
signed to address this problem. Dinh et al. [6] deter-
mined the task allocation decision and CPU frequency
together, and formulated a minimization problem to
optimze the device’s energy consumption as well as
the tasks” execution delay. Ma et al. [31] studied the
workload scheduling in the cloud assisted MEC sys-
tem, and formulated it as an optimization problem to
reduce the system cost and delay. Then, an algorithm
with linear complexity was designed. Xiao et al. [32]
focused on the workload offloading problem in the
cooperative fog computing system, and maximized
the users” QoE with the power efficiency constraint.
These works mainly focused on the short-term per-
formance and assumed that task arrival or wireless
channel was static or could be fetched in advance.
However, the task arrival and wireless channel in the
real environment are all highly dynamic and hardly
predicted precisely. Thus, the computation offloading
policy should take into consideration of the dynamics
of real system environment. In our work, we focus
on the system’s long-term performance. To capture
the highly dynamics and randomness of the task ar-
rival and wireless network, an stochastic optimization
problem is proposed in this article.

Mao et al. [8] focused on the computation offload-
ing for the green MEC system with a single-user.
They jointly optimized the transmit power, CPU-cycle
frequency and computation offloading decisions to
minimize the user’s execution cost. Yang et al. [12]
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worked on the task offloading, and formulated an
energy minimization problem with the constraints of
computation capability and delay requirement. Based
on the artificial fish swarm algorithm, they proposed
an offloading scheme to solve this problem. You et
al. [17] researched the resource allocation problem for
multiuser MEC system, and minimized the mobile
devices” energy consumption with the computation
latency constraint. Zhang et al. [18] optimized re-
source allocation decision in the single and multi-cell
MEC system. To achieve the energy-delay tradeoff,
an iterative search algorithm was proposed. For the
energy consumed to offload tasks, the above works
only considered the energy consumed by data trans-
mission. The tail energy was not taken into accoun-
t in these works. However, in the current cellular
network, the tail energy is also critical for energy-
efficient offloading [10], [33]. To deal with this issue,
this article jointly optimizes the transmission energy
consumption and tail energy consumption, and seeks
to reduce both of them.

7 CONCLUSION

We have jointly studied the stochastic task alloca-
tion and CPU-cycle frequency scaling for the MEC
system to minimize the energy consumption while
guaranteeing task queue length is upper bounded.
We have proposed one stochastic optimization based
algorithm, TOFFEE, which requires no statistical in-
formation related with the tasks arrival or wireless
network states in advance. Theoretical analysis shows
that through increasing V’s value, TOFFEE can ap-
proach the minimum energy consumption arbitrarily
and bound the queue length. Experiments demon-
strate that TOFFEE can decrease the device’s energy
consumption effectively and maintain a short queue
length.
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