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Abstract—In this paper, we study physical layer message
authentication with perfect security for wireless networks, regard-
less of the computational power of adversaries. Specifically, we
propose an efficient and feasible authentication scheme based
on Low-density parity-check (LDPC) codes and ε-AU2 hash
functions over Binary-input Wiretap Channel (BIWC). Firstly, a
multi-message authentication scheme for noiseless main channel
case is presented by leveraging a novel ε-AU2 hash function
family and the dual of large-girth LDPC codes. Concretely, the
sender Alice first generates a message tag T with message M and
key K by using a lightweight ε-AU2 hash functions; then Alice
encodes T to a codeword Xn with the dual of large-girth LDPC
codes; finally, Alice sends (M,Xn) to the receiver Bob noiselessly.
An adversary Eve has infinite computational capacity, and he
can obtain M and the output Zn of the BEC with input Xn.
Then, an authentication scheme over binary erasure channel and
binary-input wiretapper’s channel is further developed, which
can reduce the noisy main channel case to noiseless main channel
case by leveraging public discussion. We theoretically prove that,
the proposed schemes are perfect secure if the number of attacks
from Eve is upper bounded by a polynomial times in terms of n.
Furthermore, the simulation results are provided to demonstrate
that the proposed schemes can achieve high authentication rate
with low time latency.

Index Terms—Physical layer security, Message authentication,
Binary-input wiretap channel, LDPC codes.

I. INTRODUCTION

Due to the broadcast characteristic of wireless medium,
wireless communication systems (e.g., 5G networks, vehicular
communication networks, and e-health system as discussed
in [1], [2]) face several serious security issues [3], including
modification attack, substitution attack, and replay attack. It
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is a core requirement for wireless systems to provide data
integrity and identification with high level of security, which
guarantee that the data is not changed in transit and is
from the stated sender. Message authentication techniques as
proposed in [4] are the typical approaches to ensuring data
integrity and identification. In cryptographic systems, Public
Key Infrastructure (PKI) based digital signature authentication
is usually adopted for message authentication.

However, these traditional crypto-based message authenti-
cation schemes have several limitations: 1) due to the dynamic
topology of wireless networks (i.e., vehicle networks, and
massive IoT) and the energy constrained end devices (i.e., sen-
sors, and mobile phones), frequent key distribution in wireless
networks is problematic; and 2) PKI-based schemes heavily
rely on the computational hardness of certain mathematical
problems and the condition that the adversaries have finite
computation power. As the computation power of adversaries
keep increasing, those systems become vulnerable. Multiple
messages authentication with perfect security (or information-
theoretic security/ unconditional security) as proposed in
[5] can address these issues. Nevertheless, when performing
multiple-message authentication with perfect secrecy over
noiseless channel model as derived in [4], it is proved in [5]
that the probability for successful attacks is at least 2H(K)/(l+1)

after l times of authentication, which quickly approaches 1 as
l increases.

Physical layer (PHY-layer) based multiple messages au-
thentication with secret key can achieve perfect security by
exploring the characteristics of the bottom layer, e.g., the chan-
nel, signal, and hardware, as discussed in [9]. It can provide
security even when adversaries have infinite power, and it does
not require frequent key exchange. Actually, great research
efforts have been devoted on multiple-message authentication
achieving perfect security over noisy channel model by using
PHY-layer based techniques as proposed in [10], [11], [29],
[30]. However, most of the existing works still focus on
theoretical study by using the random coding techniques, and
an efficient and feasible authentication solution is urgently
needed based on coding scheme with low complexity encoding
and decoding algorithms.

In this paper, we study message authentication, where Alice
sends multiple messages to Bob in presence of the adversary
Eve. We aim to propose an efficient and practical multiple-
message authentication scheme by using lightweight ε-AU2
hash functions and Low-desnsity parity-check (LDPC) codes
[12], to achieve perfect security with the same secret key K
over binary-input wiretap channel (BIWC) model. Actually,



0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2018.2825079, IEEE Journal
on Selected Areas in Communications

2

LDPC codes have been adopted in many wireless systems,
especially for 5G systems as discussed in [13]. In this way,
the proposed authentication scheme is more suited to 5G.
We consider binary-input wiretap channel (BIWC) model,
since it is a very general model and many practical wiretap
scenarios, such as binary erasure wiretap channel (BEWC),
binary symmetric wiretap channel (BSWC), and binary-input
Gaussian wiretap channel (BIGWC) belong to such a channel
model (details please refer to Sec. III).

We first study multiple-message authentication over noise-
less main channel case, where the wiretapper’s channel is
a binary erasure channel (BEC). It is considered that Eve
has infinite computational capability, and can receive (M,Zn),
where M is the message sent from Alice to Bob, and Zn

is the output of BEC from Alice to Eve given the input
Xn. Eve aims to forge a message M̂ and a code X̂n, and
he is successful if Bob accepts M̂ as a valid message. A
multiple-message scheme is proposed as follows. Alice 1)
generates a message tag T with M and K by using ε-AU2
hash functions with high efficiency; 2) leverages the large-girth
LDPC codes to encode T to Xn; and 3) transmits (M,Xn) to
Bob though noiseless channel. Upon receiving (M,Xn), Bob
decides to reject or accept the authentication by checking the
consistency of (M,Xn). The conditions/requirements for the
proposed scheme achieving perfect security is discussed. The
theoretical result shows that, to achieve perfect security, the
family of hashing functions and the LDPC code used in this
scheme should satisfy certain requirements (please refer to
Sec. V-B).

Based on the aforementioned results, we further study the
multiple-message authentication for noisy main channel case,
where both the main channel and the wiretapper’s channel are
BECs. A novel solution is proposed for this case by using
public discussion. The main idea is to reduce the noisy main
channel case to a noiseless main channel case with information
interaction over a noiseless but insecure channel (i.e., public
discussion). For authentication over binary erasure channel and
binary-input wiretapper’s channel, it can be generalized from
the method for the case above by using stochastically degraded
channel technique (please refer to Sec. VI).

For implementation of the proposed schemes, a lightweight
ε-AU2 class of hash functions algorithm is proposed by using
fast multiplication algorithm in finite field G(2θ). Moreover,
the construction of the sequence of large-girth LDPC codes
is also discussed to meet the requirement of the proposed
schemes. The theoretical analysis shows that, if Alice au-
thenticates a polynomial number of messages and Eve attacks
polynomial times in terms of n, then the presented schemes are
perfect secure. Furthermore, the simulation results show that
the proposed schemes can achieve a low time cost and high
authentication rate. To the best of our knowledge, this work is
the first to realize message authentication with perfect security
by leveraging lightweight ε-AU2 class of hash functions and
large-girth LDPC codes.

The remainder of the paper is organized as follows. The
related work is reviewed in Sec. II. Sec. III introduces basic
concepts and preliminaries that will be used in this paper. Sec.
IV introduces the authentication model and adversary model.

In Sec. V, we propose the authentication scheme for noiseless
main channel case. We present the authentication scheme for
noisy main channel case in Sec. VI. In Sec. VII, we discuss
the ε-AU2 hashing construction and the large-girth LDPC
codes design. Sec. VIII provides the experimental results. The
concluding remarks are provided in Sec. IX.

II. RELATED WORK

A. LDPC Codes for PHY-layer Security

PHY-layer security [5]–[8] has become an emerging tech-
nique to improve the security of wireless communication
by leveraging the characteristics of the wireless channel,
secure channel coding, etc. The related works can be traced
back to Wyner’s work on wiretap channel model [6], which
demonstrates that perfect security can be achieved when
wiretap channel was a degraded version of the main channel.
Later, Csiszár and Köner [7] generalized Wyner’s result using
random coding techniques, in which the wiretap channel is not
necessary to be a degraded version of the main channel. Since
then, a large number of theoretical research on secrecy capac-
ity under different wiretap channel models were conducted
[14], [15].

Based on aforementioned results, coding methods to achieve
secure transmission over wiretap channel were proposed [18]–
[23]. In [18], Ozarow and Wyner presented the condition for
constructing codes for the modified wiretap channel. As a
pioneering work, Thangaraj et al. in [19] proposed a coset
coding scheme by using the dual of low-density parity-check
(LDPC) code to achieve weak secrecy over a binary erasure
wiretap channel (BEWC). In [20], Suresh et al. leveraged
the dual of short-cycle-free LDPC code to achieve the strong
secrecy over a BEWC. A coding scheme with strongly secure
for binary erasure wiretap channel models by using large-
girth LDPC codes was presented in [21]. A linear pre-coder
to maximize the average secrecy sum rate was proposed
for a multiple-input-multiple-output (MIMO) fading cogni-
tive multiple-access wiretap channel in [22]. Moreover, low-
complexity MIMO precoding for finite-alphabet signals was
discussed in [23] Polar code methods for wiretap channel were
studied in [24], [25]. A secrecy capacity achievable polar code
method for general degraded and symmetric wiretap channels
was proposed in [24]. In [25], another channel coding scheme
with polar codes was presented for binary symmetric wiretap
channel models.

Different from the above works on security capacity, in this
work, we consider coding method for message authentication
over wiretap channel with perfect security. Message authen-
tication with secure polar code has been discussed in [31].
However, as mentioned in [21], the threshold phenomenon
of LDPC codes is observed at shorter block-lengths than
polarization. Accordingly, there is enough interest in studying
message authentication with LDPC codes.

B. PHY-Layer Message Authentication

Even though PHY-layer secure transmission has been exten-
sively investigated [14]–[17], the attention to its sibling PHY-
layer message authentication is far from enough. Simmons’
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work in [4] introduced an authentication model over noiseless
channels. Message authentication over noise channel models
was studied in [26]–[30]. In [26], Korzhik et al. discussed
authentication over noise source model with a (noiseless)
public discussion channel. Recently, Baracca et al. in [27]
and Ferrante et al. in [28] studied authentication over MIMO
fading wiretap channels. More recently, the keyless authenti-
cation problem over noise channel model was considered by
Jiang [29], [30]. Lai et al. in [10] studied multiple message
authentication to achieve perfect security over wiretap channel.
The authentication rate of Lai’s method can be bounded by the
capacity of the channel from Alice to the adversary. However,
these works are based on random coding techniques and
have low authentication efficiency. As a result, such kind of
works cannot be efficiently implementable in practice. More
recently, Liu et al. in [32] and Ren et al. in [33] presented
a physical layer authentication mechanism by using channel
state information. However, the proposed schemes cannot
provide perfect security.

Different from existing works, this work focuses on de-
signing a practical multi-message authentication scheme over
wiretap channels with LDPC codes to achieve perfect security
Specifically, we integrate lightweight ε-AU2 class of hash
functions and large-girth LDPC codes in the authentication
scheme to achieve perfect security.

III. PRELIMINARIES

A. Notions

Random variables (RVs) are denoted by X ,Y, · · · , their
realizations are denoted by x,y, · · · , and their domain are
denoted by X ,Y , · · · . Distance between RVs X and X ′ over
X is SD(X ;X ′) = ∑x∈X |PX (x)−PX ′(x)|. Conditional distance
between X and X given Y is defined as

SD(X |Y ;X) = ∑
y∈Y

P(y) ∑
x∈X

|P(x|y)−P(x)|. (1)

Function negl(n) is negligible in n if for any polynomial
poly(n), limn→∞negl(n)poly(n) = 0. For any postive integer
n, [n] denotes the set {1,2, · · · ,n}. | · | is the cardinality of the
set, and ⌊·⌋ is the floor function. ⊕ and ⊙ are addition and
multiplication operations between two matrices over finite field
GF(2), respectively. For any matrices An×r and Bm×r, matric
AT

n×r denotes the transposition of An×r, and

[An×r;Bm×r] =

[
An×r
Bm×r

]
. (2)

Definition 1: Given two finite sets M = {0,1}u and T =
{0,1}v, a family of functions {ϕk : M → T }k∈K is ε-almost
strongly universal (ε-ASU2 for short) if: (1) PrK(ϕk(m) =
t) = 1

|T | , for any m ∈ M and t ∈ T ; and (2) PrK(ϕk(m1) =

t1,ϕk(m2) = t2) ≤ ε
|T | , for any distinct m1,m2 ∈ M , and any

t1, t2 ∈ T . {ϕk}k is ε-almost universal (ε-AU2 for short) if the
second condition is replaced by: (3) PrK(ϕ(m1) = ϕ(m2)) ≤
ε for any distinct m1,m2 ∈ M .

A discrete memoryless binary-input channel (i.e, BIC) is
defined as a stochastic matrix W = {W (y|x) : x∈{0,1},y∈Y }.
The channel W is called binary erasure channel with erasure

probability ε, denoted by BEC(ε) for short. The channel W is
called binary symmetric channel with cross-over probability
ε, denoted by BSC(ε) for short. A Gaussian channel with
binary input {−1,+1} and noise variance σ2 is called binary
input Gaussian channel, denoted by BIGC(0,δ2). A discrete
memoryless binary-input wiretap channel, denoted by BIWC,
is defined by two BICs W1 : X → Y and W2 : X → Z, where
X = {0,1} is the input alphabet from the sender Alice, Y is
the output alphabet at the legitimate receiver Bob, and Z is
the output alphabet at the wiretapper Eve.

B. LDPC Codes

Low-density parity-check (LDPC) codes are linear codes
which have at least one spare parity-check matrix [34]. Let
C (λ(x),ρ(x)) be an LDPC ensemble, and C n(λ(x),ρ(x)) be an
LDPC ensemble with n variable nodes, where λ(x) =∑i≥1 λixi

is the left degree distribution, and ρ(x) = ∑i≥1 ρixi is the right
degree distribution. The degree distributions λ(x) and ρ(x) are
from an edge perspective, that is, λi (ρi) is the fraction of
edges that connect to variable (check) nodes of degree i. In
other words, λi (resp. ρi) is the probability that an edge chosen
uniformly at random from the graph is connected to a variable
node (resp. check node) of degree i.

If each variable node and check nodes have the same degree
dv and dc, respectively, i.e., λ(x) = xdv−1 and ρ(x) = xdc−1,
the code in ensemble C n(xdv−1,xdc−1) (denoted by C (n,dv,dc)
for short) is called regular LDPC code. Each LDPC code
can correspond to a bipartite graph, named Tanner graph [34,
Sec. 2.4], as follows. Let C be an LDPC code and H be a
parity-check matrix of C with dimensions m× n. The tanner
graph of C is graph G(P,E) with node set P = {c1, · · · ,cm}∪
{v1, · · · ,vn} and edge set E = {(ci,v j)|if Hi j = 1}, where ci is
the check node and v j is variable node for any i∈ {1,2, · · · ,m}
and j ∈ {1,2, · · · ,n}. The tanner graph with n variable nodes
is denoted by G(n,P,E). The girth of a graph is the length of
a shortest cycle contained in the graph.

Definition 2: A sequence of Tanner graphs {G(n,P,E)}n is
large-girth if its girth increases as logn. A sequence of LDPC
codes is called large-girth LDPC codes if the sequence of their
corresponding Tanner graphs is large-girth.

IV. MESSAGE AUTHENTICATION OVER WIRETAP
CHANNEL

In this section, the authentication model is presented, fol-
lowed by the adversary model and the definition of secure
authentication scheme.

A. Authentication Model

Assume that a sender Alice aims to transmit and authenti-
cates multiple messages to a receiver Bob in the presence of an
adversary Eve. As shown in Fig. 1, there is a BEC W1 : X →Y
with erasure probability ξm, denoted as BEC(ξm), from Alice
to Bob, and a BIC W2 : X → Z from Alice to Eve.

To prevent the attacks from Eve, a secret key K in K is
shared between Alice and Bob before message authentication.
Note that, key generation problem over noisy channel has been
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Fig. 1. The authentication channel model.
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Fig. 2. The authentication model.

extensively studied from both theoretical and implementation
perspectives, such as [35], [36]. The authentication key can be
obtained with these key generation schemes.

As shown is Fig. 2, if Alice wishes to authenticate a message
M in M , Alice first generates a message authentication code
(MAC) Xn with input K, M, and a randomness R, i.e.,
Xn = f (M,K,R) for an encoding function f ; and then, Alice
sends M with a error-correcting code over wiretap channel
(W1,W2); finally, Alice transmits Xn to Bob over (W1,W2).
After receiving (M,Y n), Bob computes Ver = g(M,K,Y n) with
a verify function g, where Ver ∈ {⊥,⊤}. If Ver = ⊤, Bob
accepts M and sends a decision bit 1 to Alice; otherwise, he
rejects it and sends a decision bit 0 to Alice. It is assumed
that Eve can decode M, and can view the output Zn of W2.

B. Adversary Model

In this work, the adversary model is given as follows.
(1) Eve’s computing power is considered to be infinite. Eve
knows the whole authentication scheme and the values of
the parameters, except the secret key shared by Alice and
Bob; (2) Eve is allowed to view the output of the channel
W2 : X → Z, to know the messages authenticated by Alice,
and to learn the decision bit for each authentication; and (3)
There is a noiseless channel from Eve to Bob, and Eve can
send any information to Bob noiselessly. Such an assumption
gives more advantages to the adversary. Eve’s goal is to forge
a message M̂ and a MAC Ŷ n such that, Bob accepts M̂ as
a legal message when he receives (M̂,Ŷ n) over the noiseless
channel from Eve to Bob.

We desire to ensure that even if Eve has adaptively attacked
for polynomial times in terms of n, he still cannot cheat
Bob to accept a false authentication. The formal attack model
(including Type I and Type II attacks) is as follows. Let Mi
(i = 1,2, · · ·) be the sequence of messages authenticated by
Alice, and Xn

i be the codeword of Mi. From the adversary
model, Eve can receive the message Mi and the output of W2,
i.e., Zn

i ; Eve also can learn the decision bit bi.
Type I: Eve can launch an attack by substituting M′

i for Mi
when Alice sends (Mi,Xn

i ) to Bob. Here, the forged message
M′

i is based on Mi, Eve’s local random source R and the

information collected previously: {(M j,Zn
j )}

i−1
j=1 and decision

bits {b j}i−1
j=1 in stage I; as well as {(M̂t , Ẑn

t )}t and decision
bits {b̂t}t in stage II below.

Type II: Eve can adaptively send (M̂t , X̂n
t ) to Bob noiseless-

ly. Eve will learn Bob’s decision bit b̂t . Here (M̂t , X̂n
t ) is sent

according to R and the information is collected previously:
{(M j,Zn

j ,b j)} j in stage I; and {(M̂ j, Ẑn
j ), b̂ j}t−1

j=1 in stage II.
In this model, we allow that Eve can arbitrarily interleave

Type I attacks and Type II attacks. We use succ to denote
the event that Eve succeeds in a Type I or Type II attack.
The model to allow Eve to learn the verification result has
been considered in [41]. It is practical as the receiver’s action
following rejecting or accepting could be visible.

C. Secure Authentication Scheme

A cryptographic scheme is perfect secure if it cannot be
broken even if the adversary had unlimited computing power.
For the remainder of this article, unless otherwise specified,
“secure” means “perfect secure”.

Definition 3: A cryptographic scheme Πn for a wiretap
channel W1 : X → Y ,W2 : X → Z is a secure authentication
scheme if the following holds (keep notions in the model).

1. Completeness. When the wiretapper Eve does not
present, there exists α > 0 such that Pr(D = ⊥) ≤
exp(−nα), where n is the number of use of the wiretap
channel (W1,W2).

2. Authentication. For any wiretapper Eve, the probability
of success Pr(Succ(Eve)) is negligible in n after attacking
polynomial times in terms of n.

In addition to the security requirement, we also define
authentication rate as the efficiency metric. The authentication
rate ρauth is the ratio of the source message length to the
codeword length, i.e., ρauth = 1

n log|M |, where |M | is the
cardinality of message space M .

V. AUTHENTICATION FOR NOISELESS MAIN CHANNEL
CASE

In this section, we study authentication over wiretap channel
model where the main channel is noiseless. A novel authen-
tication scheme for binary erasure wiretapper’s channel is
presented. Then, the requirements for the proposed scheme
achieving perfect security are discussed.

A. Authentication for Noiseless Main Channel Case

We consider message authentication over binary erasure
wiretap channel in which the main channel is noiseless and the
wiretap channel is a binary erasure channel BEC(ζ), where ζ
is the probability of erasure in the wiretapper’s channel.

Setup: Let Φ = {ϕk}k∈K be a collection of ε-AU2 hashing
functions from M = {0,1}u to T = {0,1}v. Let C be a (n, l)
linear code with v ≤ n− l, and G be a generator matrix for
C with rows g1,g2, · · · ,gl . Out of the 2n−l cosets of code C ,
Alice chooses v linearly independent vectors r1,r2, · · · ,rv from
{0,1}n/C , and announces them to Bob.

Authentication: Assume that Alice and Bob share a secret
key k ∈ K . If Alice desires to authenticate a messages m ∈ M
to Bob, they interact as follows.
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1. Alice first computes t = ϕk(m) = [t1, t2, · · · , tv] (which is
called the message tag), and then, encodes t to xn using
the following steps:
– selects a vector s = [s1,s2, · · · ,sl ] uniformly at random

in vector space {0,1}l ;
– computes xn by

xn = t⊙ [r1;r2; · · · ;rv]⊕ s⊙ [g1;g2; · · · ;gl ]. (3)

Finally, Alice sends m and xn over wiretap channel
W1,W2).

2. Assume Bob receives m′ and yn and Eve receives m and
zn, respectively, where the value of m′ and yn depends
on whether the attack happens or not (i.e, if the attack
does not happen, m′ = m and yn is the output of channel
W1; otherwise, m′(̸= m) is the forged message that Eve
wants to send to Bob, and yn can be equal or unequal to
the output of channel W1, which depends on the strategy
of the adversary). Upon m′ and yn, Bob first computes
t′ = ϕk(m′), and then, verifies if

an △
= t′⊙ [r1;r2; · · · ;rv]⊕ yn ∈ C . (4)

If an ∈ C , Bob accepts it; otherwise, he rejects it.
Note that, if H is the parity check matrix of C , then an ∈ C
if and only if H · [an]T = [0n]T , where [an] = [a1,a2, · · · ,an].
For details of the proposed scheme for noiseless main channel
case with binary erasure wiretapper’s channel (NL-BE case),
please refer to Alg. 1.

Algorithm 1: Authentication for NL-BE case
Encoding: If Alice wants to authenticate a message m, she

1: computes message tag t = ϕk(m) = [t1, t2, · · · , tv];
2: selects a vector s = [s1,s2, · · · ,sl ] uniformly at random in

{0,1}l ;
3: computes message authentication code xn by

xn = t⊙ [r1;r2; · · · ;rv]⊕ s⊙ [g1;g2; · · · ;gl ];
4: sends (m,xn) to Bob over wiretap channel (W1,W2).

Verifying: After received (m′,yn), Bob
1: computes an = [a1, · · · ,an]=ϕk(m′)⊙ [r1;r2; · · · ;rv]⊕ yn;
2: calculates H · [an]T , and verifies if H · [an]T = [0n]T ;
3: if H · [an]T = [0n]T , he accepts m′ and sends the decision bit 1

to Alice; otherwise, he rejects it, and sends 0 to Alice.

B. The Conditions for Perfect Security

In what follows, we give the authentication theorem regard-
ing the conditions for Alg. 1 to be perfect secure.

Theorem 1: Given a wiretap channel (W1,W2) with noise-
less main channel W1 and noise wiretapper’s channel W2 =

BEC(ζ), let P(n)
e (ξ) be the probability of block error for code

from C n(λ,ρ) over BEC(ξ). If the following conditions hold:
(1) the family of ε-AU2 hashing functions {ϕk : M 7→ T }k∈K

satisfies the requirements that ε and |T |
|K | are negligible in

n;
(2) there exists η ∈ [0,1] such that, for any ξ < η,

P(n)
e (ξ)< exp−αn (for some constant α > 0),

Alice Bob
X Y

Z
BIC

BEC( )

Eve

Public Channel

Fig. 3. The authentication channel model for noisy main channel case.

the ε-AU2 hashing functions and the dual of a code from
C n(λ,ρ) used in Alg.1 can achieve perfect secrecy over
(W1,W2) for ζ > 1−η.

The detailed proof of this theorem will be provided in
Appendix B. With this theorem, we only have to construct
a family of hashing function satisfying condition (1) and an
LDPC code satisfying condition (2) to ensure the security
of the proposed authentication scheme. We will discuss how
to design the computationally efficient ε-AU2 class of hash
functions and an LDPC code to meet these requirements in
Sec. VII.

VI. AUTHENTICATION FOR NOISY MAIN CHANNEL CASE

In this section, we study message authentication for noisy
main channel case. Firstly, a novel authentication scheme
over BEWC is proposed with public discussion. Then, an
authentication scheme over binary erasure main channel and
binary-input wiretapper’s channel is presented by leveraging
stochastically degraded channel technique.

A. The Proposed Authentication Scheme over BEWC

We first consider message authentication over BEWC
(W1,W2), where W1 =BEC(ξm) and W2 =BEC(ξw). In this case,
an intuitive method to achieve perfect secure authentication
is to design an LDPC code C with generator matrix G, and
then select a set of vectors r1,r2, · · · ,rv in {0,1}n/C with
the following properties: (1) Security: the probability of block
error of the dual of C over BEC(ξw) decreases exponentially
with n; and (2) Reliability: G = [G;D] is a generator matrix of
an LDPC code C such that the probability of block error over
BEC(ξm) is small enough, where D= [r1;r2; · · · ;rv]. However,
as mentioned in [19], it is difficult to construct this code.

One promising solution is to authenticate message with
public discussion. As shown is Fig. 3, the authentication chan-
nel model includes a wiretap channel (BEC(ξm),BEC(ξw)).
Moreover, to simplify the explanation, we assume that there
is an insecure and noise-free channel between Alice and Bob,
named public channel, which is fully controlled by Eve. Note
that, 1) the public channel can be considered as a noise channel
with an error-correcting code; and 2) as the information
transmitted over public channel has been encoded with some
error-correcting code, we cannot guarantee that Eve cannot
decode it. Therefore, the assumption that the public channel
is fully controlled by Eve is reasonable and even strengthens
Eve’s capability.

We then present a novel authentication scheme for binary
erasure main channel case. The main idea is to reduce the
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noisy main channel case to a noiseless main channel case
through public discussion, which is shown as follows. When
Bob receives the output yn of BEC(ξm) with input xn from
Alice, he sends the index set EPB of the the erased posi-
tions (i.e., EPB = {i : yi =?}) to Alice over noiseless public
channel. After obtaining the index set EPB, Alice transmits
xn(EPB) = {xi : i ∈ EPB} to Bob over the public channel.
Accordingly, Bob can obtain xn when he received xn(EPB).

For security, we need to determine which wiretapper’s
channel is considered in Alg. 1 to generate xn. Based on
the assumption, Eve can observe the output zn from BEC(ξw)
and obtain xn(EPB) from public channel. We denote EPE =
{i : zi =?}). From the law of large number, if n is large
enough, the cardinality of EPB is less than n(ξm + 1

2 σ), and
that of EPE is larger than n(ξw − 1

2 σ), where σ = σ(n), and
σ(n)→ 0 when n → ∞. The worse case for legitimate users is
EPB ⊆EPE , which means Eve can learn the maximum number
of xi (i = 1, · · · ,n) from zn and xn(EPB). Thus, we have

|EPE |− |EPB| ≥ n(ξw −ξm −σ) (5)

for large n. In the worse case, i.e., |EPE |−|EPB|= n(ξw−ξm−
σ), it can provide the security if Alg. 1 is used to generate xn

by taking wiretapper’s channel as BEC(ξw − ξm −σ), where
0 < σ < min{ξw −ξm,

1
2 ξw}.

It is worth pointing out that |EPB| < n(ξw + 1
2 σ) in the

general case. Let b = ⌊(ξm + 1
2 σ)n − |EPB|⌋. We have that

b > 0 in the general case. Based on the discussion above,
we improve our method during public discussion stage to
further prevent Eve from tampering with the response xn(EPB).
Specifically, Bob first chooses an index set RPB = { j1, · · · , jb}
from [n]/EPB randomly, and sends EPB∪RPB (instead of EPB)
to Alice over the public channel. After receiving EPB ∪RPB,
Alice responses Bob by transmitting xn(EPB ∪RPB) over the
public channel. As Bob know xn(RPB), he can check if
the response xn(EPB ∪ RPB) is tampered. Since Eve cannot
distinguish RPB from EPB ∪ RPB, it is difficult to forge a
response x̂n(EPB∪RPB) such that the response can pass Bob’s
check (i.e., x̂n(RPB) = xn(RPB)).

For details of the proposed authentication scheme for binary
erasure main channel case with binary erasure wiretapper’s
channel (BE-BE case), please refer to Alg. 2.

B. The Conditions for Perfect Security
Based the discussion above, we have the following result

regarding the conditions for Alg. 2 to be perfect secure.
Theorem 2: Let (W1,W2) be a wiretap channel, where

W1 =BEC(ξm) and W2 =BEC(ξw) with ξm < ξw. If hashing
functions and the dual of a LDPC code satisfying Condi-
tion (1) and (2) in Theorem 1 with (W ′

1,W
′
2), respectively,

used in Alg. 2 over (W1,W2), where σ a constant satisfying
0 < σ < min{ξw − ξm,

1
2 ξw}, W ′

1 is a noiseless channel, and
W ′

2 =BEC(ξw −ξm −σ). Then, when n is large enough, it can
provide the perfect security of Alg. 2 for ζ > 1−η.

The detailed proof of this theorem will be given in Appendix
C. This theorem shows that perfect secure authentication
over the binary erasure wiretap channel can be achieved
by leveraging public discussion method. To further illus-
trate the proposed scheme, we have the following example.

Algorithm 2: Authentication for BE-BE case
1. Let BEWC (W1,W2) be a wiretap channel with main channel

W1 =BEC(ξm) and wiretapper’s channel W2 =BEC(ξw).
2. Alice executes Step 1-3 of encoding process in Alg.1 with

BEWC(W ′
1,W

′
2), in which, W ′

1 is a noiseless channel, and
W ′

2 =BEC(ξw −ξm −σ) for some constant σ satisfying
0 < σ < min{ξw −ξm,

1
2 ξw}.

3. Alice sends m with an error-correcting code and xn to Bob
over wiretap channel (W1,W2).

4. Let (m,yn) be the received information by Bob, and
EPB = {i : yi =?}= {i1, · · · , ia} be the erased positions. Bob
first computes b = ⌊(ξm + 1

2 σ)n−|EPB|⌋. And then, Bob
chooses an index set RPB = { j1, · · · , jb} from {1, · · · ,n}/EPB
randomly. Finally, Bob transmits EPB ∪RPB to Alice over the
public channel.

5. Alice checks if |EPB ∪RPB| ≤ n(ξw + 1
2 σ). If so, Alice sends

xn(EPB ∪RPB) to Bob over the public channel; if not, Alice
returns to step 2. Here xn(EPB ∪RPB) is the elements of xn

corresponding to the index set EPB ∪RPB;
6. Bob first checks if xn(RPB) = yn(PRB). If so, Bob executes

the verifying process in Alg.1 with BEWC(W ′
1,W

′
2); if not,

Bob rejects m.

Fig. 4. A simple example of encoding process.

Consider a BIWC(W1,W2) in which W1 is BEC(0.1) and
W2 =BEC(0.617). Taking δ = 0.017, Alice can execute Alg.
1 with BEWC(W ′

1,W
′
2) to generate a code word, where W ′

1
is a noiseless main channel, and W ′

2 =BEC(0.5) is a noise
wiretapper’s channel. Then, Alice and Bob follow steps 3-6
of Alg. 2 for perfect secure authentication.

To further illustrate the main idea of Alg. 2, we use a
simple example to show how it works without considering
the security and authentication efficiency. In this example,
Hamming (15,4) code with generation matrix G is used,
and the linearly independent vectors [r1; · · · ;r4] is randomly
chosen from {0,1}n/G. As shown in Fig. 4, Alice first
computes t = ϕk(m) (details will be provided in Section VII-
B); and then, computes x15 = t⊙ [r1; · · · ;r4]⊕ s⊙G, where s
is randomly selected from {0,1}11.

As shown in Fig. 5, when Alice transmits x15 over
(BEC(ξm),BEC(ξw)) and m over noiseless channel, Bob and
Eve receive (m′,yn) and (m,zn), respectively, where m′ de-
pends on Eve’s attack. Then, Bob checks the erased positions
EPB = {3,4,13} of y15, and sends it to Alice though the public
channel. The next, Alice responses Bob by sending x15(EPB)=
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Fig. 5. A simple example of public discussion.

{0,0,1} to Bob over the public channel. After obtaining
x15(EPB), Bob recovers x15 and computes H⊙ [y15⊕ϕk(m′)]T ,
where H is the parity check matrix of Hamming (15,4) code.
If the result is [0n]T , Bob accepts m; otherwise, Bob rejects
it. At the same time, Eve can recovers the erased bits which
are in index set EPE .

C. Authentication for Binary-input Wiretapper’s Channel

Now we consider message authentication over binary era-
sure main channel and binary-input wiretapper’s channel. First
of all, the basic relationship between two memoryless noisy
channel is introduced as follows.

Definition 4: A channel W1 : X → Z is stochastically de-
graded with respect to channel W2 : X → Y if there exists a
channel W3 : Y → Z such that W1(z|x) = ∑y∈Y W2(z|y)W3(y|x)
for any (x,z) ∈ X ×Z.

From [37, Prop. 6.4], any binary-input channel is stochas-
tically degraded with respect to a binary erasure channel.
Specifically, if W : {0,1} → Z is a binary-input channel,
channel W is stochastically degraded with respect to BEC(ξw),
where

ξw =
∫

z
minu∈{0,1}W (z|u)dz. (6)

The authentication scheme for binary erasure main channel
case with binary-input wiretapper’s channel (BE-BI case) can
be obtained as following algorithm (e.g., Alg. 3).

Algorithm 3: Authentication for BE-BI case
1. Given a BIWC (W1,W3) with a binary erasure main channel

W1 = BEC(ξm) and a binary-input wiretapper’s channel W3.
2. Create a binary erasure channel W2 =BEC(ξw) by computing

ζ with Eq. (6), where W in Eq. (6) is W3.
3. Execute Alg. 2 with BEWC (W1,W2).

We generalize the theoretical result of proposed authenti-
cation scheme over BEWC (i.e. Theorem 2) to binary-input
wiretapper’s channel case.

Theorem 3: Let (W1,W3) be a wiretap channel, where
W1 =BEC(ξm), and W3 is binary-input wiretapper’s channel.
Suppose that W3 is stochastically degraded with respect to an
erasure channel W2 = BEC(ξw). If the hashing functions and

the dual of an LDPC code satisfying Condition (1) and (2) in
Theorem 2 with wiretap channel (W1,W2), respectively, used
in Alg. 3 over (W1,W3), it can provide the perfect security of
Alg. 3 for ζ > 1−η.

The detailed proof will be provided in Appendix D. With
this theorem, we can achieve perfect secure authentication by
using stochastically degraded channel technique even when the
wiretapper’s channel is BIC.

We illustrate the scheme with the following example.
Consider the a BIWC(W1,W3) in which W1 =BEC(ξm) with
ξm = 0.1, and W3 is binary-input Gaussian channel with input
{−1,+1} and noise variance 1. By Eq. 6, we can create a
binary erasure channel W2 =BEC(ξw), where

ξw =
∫

z
minu∈{−1,1}W (z|u)dz (7)

= 2
∫ +∞

1

1√
2π

e−
x2
2 dx = 0.317 (8)

Thus, Alice and Bob can execute Alg. 2 with
BEWC(W1,W2) to achieve secure authentication.

VII. IMPLEMENTATION OF THE PROPOSED SCHEMES

In this section, we discuss the implementation of the pro-
posed authentication schemes. The key step is to design a
computationally efficient ε-AU2 class of Hash functions and
a sequence of large-girth regular LDPC codes to meet the
security requirements of the secrecy theorems (i.e., Theorem
1, 2 and 3).

A. Finite Field GF(2θ) Generation

For implementation, it is necessary to propose a ε-AU2
hashing scheme such that the requirements of Theorem 1
is satisfied with high computing efficiency. The first step of
which is to generate a finite field GF(2θ). Let θ be the degree
of a polynomial

Ψ(x) = xθ + xθ−1 + · · ·+ x+1 (9)

with the following properties: (1) θ+ 1 is prime; and (2) 2
is a primitive root modulo θ+ 1, i.e., 2θ/p ̸≡ 1 mod (θ+ 1)
for any prime p dividing θ. As mentioned in [40], there are
many positive integers that satisfy these properties, and some
of them is given in Table.1.

TABLE I
SOME INTEGER θ WITH Φ(x) IRREDUCIBLE IN GF(2)[x]

100 148 180 210 268 292
660 700 786 820 1018 1186

From the basic knowledge of finite theory, Ψ(x) is a
irreducible in GF(2)[x], and the quotient GF(2)[x]/(Ψ(x)) can
be used to describe GF(2θ), where GF(2)[x] is the polynomial
rings over GF(2), and (Ψ(x)) is the idea of GF(2)[x] generated
by Ψ(x). In this case, any element (α0, ...,αs−1) in GF(2θ) can
be expressed as α(x), α0 +α1x+ · · ·+αθ−1xθ−1.
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B. Lightweight ε-AU2 Scheme

In [39], a family of hash functions is proposed by den Boer,
which is given as follows.

Definition 5: Let q be a prime power, τ be a positive
integer, and GF(q) be a finite feild. Set M = (GF(q))τ,
K = (GF(q))2, and T = GF(q). For any key k = (k0,k1)∈ K
such that k0,k1 ∈ GF(q), define ϕk : M → T as

ϕk(a1, · · · ,aτ) = k0 +a1k1 + · · ·+aτkτ
1, (10)

for each (a1, · · · ,aτ) ∈ M .
From [39], the hashing family {ϕk}k is ε-AU2 with |M |=

qτ, |K |= q2, |T |= q and ε = τ/q. Clearly, by taking q = 2θ

and τ = ploy(θ), the ploy(θ)/2θ-AU2 (and also ploy(θ)/2θ-
AU2) class of hash functions constructed from Definition 5
satisfies the requirements of Theorem 1.

To make our hashing computation efficiently, we need to
consider a lightweight algorithm for multiplication in GF(2θ).
Fortunately, Silverman proposed an algorithm for multiplica-
tion in GF(2θ) with complexity θ+1 [40]. For convenience,
the operation performed by Silverman’s multiplication algo-
rithm is denoted by Mul(·).

Based on the discussion above, we propose a lightweight
hashing algorithm as follows. (1) We select a positive integer
θ, and generate a finite field GF(2θ) using the method in
Sec.VII-A; and select two positive integers τ0 and τ such
that, τ = ploy(θ) for a polynomial function poly(·) and τ
is divisible by τ0 (denoting π = τ/τ0). (2) If (k0,k1) be
the secure key, we pre-compute τ0-vector [k1

1,k
2
1, · · · ,k

τ0
1 ], π-

vector [kτ0
1 ,k2τ0

1 , · · · ,kπτ0
1 ], and then save them. (3) For any

m = (a1, · · · ,aτ), we can compute ϕk(m) by

ϕk(m) = k0 +
π−1

∑
i=0

kiτ0
1

τ0

∑
j=1

aiτ0+ jk
j
1. (11)

It is worth pointing out that the value of π is the tradeoff
between the time complexity and storage space cost. Actually,
the time complexity of Alg. 5 is (τ+π)θ, and the storage cost
is (τ0 +π)θ bits, where πτ0 = τ. Fig. 6 shows the computing
steps and storage costs for different values of π. For instance,
if θ = 268, τ = 300, and τ0 = 15, the message length is about
80KB, the key length is 536 bits, the tag length is 268 bits,
ε ≈ 2−260, the number of computing steps is about 8.4×104,
and the storage costs are about 9 KB. However, if θ = 268,
τ = 300, and τ0 = 50, the number of computing steps is about
7.3×104, and the storage costs are about 15 KB.

C. Large-girth Regular LDPC Codes Construction

We show how to find a large-girth regular LDPC code to
meet the security requirements of the proposed authentication
scheme.

From [34, Sec. 2.5], the design rate of C (n,dv,dc) can be
expressed by

r(n,dv,dc) = 1−
∫ 1

0 ρ(x)∫ 1
0 λ(x)

= 1− dc

dv
. (12)

Since any real number r in [0,1] can be approximated
infinitely by 1 − dc

dv
, where dc and dv can be any positive
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Fig. 6. Computing steps versus storage costs under different values of π.

integer. We only need to realize the proposed scheme by
leveraging regular LDPC codes to satisfy the requirement of
code rate in different wiretapper’s channels. Here, we adopt
the coding scheme with large-girth regular LDPC codes which
can achieve block error probability with double exponential
decrease on binary erasure channel [21]. For details of the
coding scheme, please refer to [21]. From [21, Theorem 9],
we have the following result.

Theorem 4: Let {Cn}n be the sequence of large-girth
(dv,dc)-regular LDPC codes by using [21, Alg. 4]. If ε < εth,
we have

Pe(Cn,ε)≤ O(exp−βnα log(dv−1)
) (13)

for some postive constants α and β.
Proof: Let PMP

B (Cn,ε) be the block-error probability un-
der MAP decoding of code Cn over channel BEC(ε). Then,
we have

Pe(Cn,ε) ≤ PMP
B (Cn,ε)≤ nPMP

b (Cn,ε) (14)

≤ O(exp−βnα log(dv−1)
). (15)

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
schemes by MATLAB R2012a using a desktop computer with
a 2.50 GHz Intel CPU, 8GB RAM, and windows 10 OS.

A. Overhead of the Proposed Schemes

We consider the time cost of ε-AU2 hash functions, encod-
ing at Alice, and verifying at Bob. Following the method men-
tioned in Sec. VII-C, we generate three LDPC codes in ensem-
ble C (x3,x6): C (504,252), C (1008,504), and C (10080,5040).
Fig.7 shows the sparsity pattern of the parity check matrix for
code C (1008,504). In our experiments, their dual codes will
be used in the proposed authentication schemes. It is worth
noting that Alg. 2 and Alg. 3 are based on Alg. 1, and the
time complexity of the first two algorithms depends crucially
on that of the last one. Thus, it is only necessary to consider
the overhead of Alg. 1.
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Taking τ0 = 50, Fig. 8 shows the time cost for hashing,
encoding and verifying against τ under different values of θ,
where the dual code of C (10080,5040) is leveraged Alg. 1.
It can be seen that (1) the time cost for both of them exhibits
a near-liner dependence on the value of τ; (2) The larger the
value of θ, the greater the slope of the corresponding line; and
(3) The time cost for hashing occupies almost 99.5% of the
whole cost for encoding and verifying.

To further decrease the time cost, one possible solution is
to use a parallel approach for hash computation. Note that
a parallel algorithm using π processors with time complexity
(τ0 +1)θ+1 can be revised from the proposed hash function
scheme (in Sec. VII-B) directly. Another possible solution is
to use the existing lightweight keying hash functions, such as
MD5, SHA1, SHA2 and SHA3. The negative impact of the
method is that it would weaken the security of the proposed
schemes.

B. Efficiency of the Proposed Schemes

Table II shows the authentication rate of Alg. 1 under
different parameter settings, where τ0 = 50. Since the density
evolution threshold of C (x3,x6) is 0.429, i.e., εth = 0.429.
According to Theorem 4, the probability of block error for
the sequence of large-girth (3,6)-regular LDPC codes, which
is generated by using [21, Alg. 4], over BEC(ε) can be
exponentially small (in terms of n) when ε < 0.429. From
Theorem 3, if the wiretapper’s channel (i.e., the channel from

TABLE II
PERFORMANCE UNDER DIFFERENT PARAMETER SETTINGS.

θ τ LDPC code log|M | Rate

100 300 C (504,252) 30 KB 60
180 400 C (504,252) 72 KB 143
268 500 C (504,252) 143 KB 266
100 300 C (1008,504) 30 KB 30
180 400 C (1008,504) 72 KB 72
268 500 C (1008,504) 143 KB 133
100 300 C (10080,5040) 30 KB 3
180 400 C (10080,5040) 72 KB 7
268 500 C (10080,5040) 143 KB 13

TABLE III
PERFORMANCE OF THE REVISED SCHEME

θ τ v LDPC code log|M | Rate

100 300 2 C (504,252) 60 KB 119
180 400 1 C (504,252) 72 KB 143
268 500 1 C (504,252) 143 KB 266
100 300 5 C (1008,504) 150 KB 149
180 400 3 C (1008,504) 216 KB 212
268 500 1 C (1008,504) 143 KB 133
100 300 30 C (10080,5040) 0.9GB 90
180 400 28 C (10080,5040) 2 GB 202
268 500 15 C (10080,5040) 2.2 GB 213

Alice to Carol) can be stochastically degraded with respect to
an erasure channel W2 = BEC(ζ), where ζ > 1− εth = 0.571,
the proposed authentication scheme is secure with authentica-
tion rate in Table II under different parameter settings, where
log|M | is the length of the message.

From Table II, we find that the authentication rate decreases
with the length of LDPC code increases. To further improve
the authentication rate, it just needs to make minor changes to
our schemes. Let the LDPC code be C (n,r). The maximum
value of v (in Alg.1) is n− r, i.e., there are at most n− r
linearly independent vectors from {0,1}n/C (n,r). Let ṽ be
a positive integer satisfying ṽ ≤ ⌊ n−r

θ ⌋. Denote v = ṽθ, and
let r1,r2, · · · ,rv be the linearly independent vectors from
{0,1}n/C (n,r). A new hashing family is defined as

ϕ̃k̃ = ϕk1 ×·· ·×ϕkṽ (16)

for any k̃ = (k1, · · · ,kṽ) ∈ K ṽ, where M = {0,1}τθ, T =
{0,1}θ, K = {0,1}2θ, and ϕk : M → T . For any m̃ =
(m1, · · · ,mṽ) ∈ M ṽ, the tag can be calculated t̃ by

t̃ = (t1, · · · , tv) = k̃(m̃). (17)

It is clear that {ϕk̃}k̃ is ε-AU2 if {ϕk}k is ε-AU2. The
revised scheme follows the same steps of encoding process and
verifying process of Alg.1 by replacing m with m̃, k with k̃,
and {ϕk}k with {ϕk̃}k̃. The performance of the revised scheme
is given in Table III. The result shows that the authentication
rate of the revised scheme increases dramatically, especially
for large code length scenarios, compared with that of the old
one.
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IX. CONCLUSION

In this paper, we have proposed efficient and practical
multiple messages authentication scheme for wireless com-
munication to provision data integrity and identification. The
proposed scheme can achieve perfect security with the same
key, by leveraging the lightweight ε-AU2 hash functions and
the dual of the large-girth LDPC codes. Theoretical analysis
has verified that the proposed scheme is perfectly secure given
that Eve can obtain the information through reviewing a poly-
nomial number of messages authenticated by Alice, and launch
a polynomial number of attacks adaptively. Simulation results
have also been provided to demonstrate that the proposed
schemes can achieve high authentication rate with low time
latency. For the future work, we will develop a computationally
efficient scheme for Gaussian binary-input wiretap channel
model.
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APPENDIX

In this Appendix, we will prove the authentication theorems,
i.e., Theorem 1, 2 and 3. Before that, we will introduce the
result proved by Ozarow and Wyner [18], which connects the
equivocation of the eavesdropper to algebraic properties of the
generator matrix.

Theorem 5 ( [18]): Let C (n, l) be an LDPC code with
generator matric G = [g1, · · · ,gn], where gi represents the i-
th column of G. Let T is an uniformly distributed RV in
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T = {0,1}v. If Zn is the eavesdropper’s observation with µ
unerased positions given by {i : zi ̸=?}= {i1, · · · , iµ} when the
codeword Xn of T is transmitted over BEC(ξ), where Xn is
obtained by following Step 2 and 3 of encoding process in Alg.
1. Then, H(T |Zn) = H(T ) iff Gµ(

△
= [gii , · · · ,giµ ]) has rank µ.

A. Useful Lemmas

Now we present some lemmas that will be used to prove
Theorem 1. Lemma 1 shows that Eve obtains no significant
amount of information about secret key K and tag T , after
eavesdropping 1 time of authentication that gives Eve infor-
mation Zn and M. Let K be uniformly distributed over K ,
M be arbitrary message in M authenticated by Alice, and
T = ϕK(M) be the message tag generated from an ε-AU2
hashing functions with key K and input M. Let Gµ be the
sub-matrix of G corresponding to the unerased positions in
Zn, and E be a RV in {0,1} such that E = 0 if Gµ is not full
rank; otherwise, E = 1. Then, we have the Lemma as follows.

Lemma 1: If the probability Pr(E = 0)< exp−αn for some
α > 0, there exists β1 > 0 such that, when n is sufficiently
large, the following inequalities hold

I(T ;Zn,M)≤ exp−β1n (18)

I(K;Zn,M)≤ exp−β1n. (19)

Proof: Since T = ΦK(M), K is an uniformly distributed
RV, and {Φk}k is ε-AU2 hashing functions. We obtain that T
is an uniformly distributed RV, and I(T ;M) = 0. Then, by the
fact that M → T → Zn forms a Markov chain, we can upper
bound I(T ;Zn,M) as

I(T ;Zn,M)

= I(T ;Zn|M)+ I(T ;M) (20)
= H(Zn|M)−H(Zn|T,M) (as I(T ;M) = 0) (21)
= H(Zn|M)−H(Zn|T ) = I(T ;Zn)− I(M;Zn) (22)
≤ I(T ;Zn) = H(T )−H(T |Zn). (23)

Moreover, from Theorem 5, we can lower bound H(T |Zn) as

H(T |Zn) ≥ H(T |Zn,E) (24)
≥ H(T |Zn,E = 1)Pr(E = 1) (25)
= H(T )(1− exp−αn). (26)

So, from the above two bounds, we have

I(T ;Zn,M)≤ H(T )(exp−αn)≤ n · exp−αn. (27)

By the fact that RVs K and M are independent, and hence,
I(M;K) = 0; and MK → T → Zn forms a Markov chain, we
can upper bound I(K;Zn,M) as

I(K;Zn,M) = I(K;Zn|M)+ I(K;M) (28)
= I(K,M;Zn)− I(M;Zn) (29)
≤ I(T ;Zn)− I(M;Zn) (30)
≤ I(T ;Zn)≤ n · exp−αn. (31)

The second Lemma is a generalization of Lemma 1, which
shows that Eve also obtains no significant amount of in-
formation about key K and tags T1, · · · ,TJ after eavesdrop-
ping J times of authentication that gives Eve information
M1Zn

1 , · · · ,MJZn
J .

Lemma 2: Let M1, · · · ,MJ be J arbitrary messages in M
authenticated by Alice, and Tj = ϕK(M j) be the tags generated
from an ε-AU2 hashing functions with key K and input M j,
where j = 1, · · · ,J. If the probability Pr(E = 0)< exp−αn for
some α > 0, there exists β1 > 0 such that, when n is large
enough, the following inequalities hold:

I(Tj;M1Zn
1 · · ·MJZn

J )≤ 2−β1n ( for j = 1, · · · ,J); (32)

I(K;M1Zn
1 · · ·MJZn

J )≤ J ·2−β1n. (33)

Proof: For any i < j, define M j
i = Mi · · ·M j, and T j

i =
Ti · · ·Tj. Given MJ = mJ , for any j ∈ {1, · · · ,J}, as T is
determined by (K, mJ), Xn

j is determined by Tj and the
randomness of sampling Xn

j , and Zn
j is determined by Xn

j and
the noise in channel W2, the following Markov chain holds:

Zn
j → Tj → K → T j−1

1 T J
j+1 → (Zn

1 , · · · ,Zn
j−1Zn

j+1, · · · ,Zn
J ).
(34)

Thus, Zn
j → Tj → (Zn

1 , · · · ,Zn
j−1, Zn

j+1, · · · ,Zn
J ) forms a Markov

chain under condition that MJ =mJ . Hence, by data processing
inequality, we have I(Tj;Zn

1 , · · · ,Zn
J |mJ) ≤ I(Tj,Zn

j |mJ). Aver-
aging over mJ ,

I(Tj;Zn
1 , · · · ,Zn

J |MJ)≤ I(Tj,Zn
j |MJ) = I(Tj,Zn

j |M j). (35)

So, by Lemma 1, we have

I(Tj;Zn
1 , · · · ,Zn

J MJ)

= I(Tj;Zn
1 , · · · ,Zn

J |MJ)+ I(Tj,MJ) (36)
≤ I(TjM j;Zn

j |M j)+ I(Tj,M j) (37)

= I(Tj;Zn
j M j)≤ 2−β1n (38)

for any j in {1, · · · ,J}.
Further, for any j ∈ {1, · · · ,J} and when MJ = mJ ,

Zn
1 · · ·Zn

j−1 → K → Zn
j forms a Markov chain as Xn

j is deter-
mined by (K, mJ) and the randomness of sampling Xn

j , and
Zn

j is determined by Xn
j and the noise in channel W2. Hence,

I(K;Zn
j |Zn

1 · · ·Zn
j−1,M

J = mJ)≤ I(K;Zn
j |MJ = mJ). (39)

Averaging over mJ , we have

I(K;Zn
j |Zn

1 · · ·Zn
j−1MJ)≤ I(K;Zn

j |MJ) = I(K;Zn
j |M j). (40)

Therefore, by chain rule of mutual information,

I(K;Zn
1 · · ·Zn

J MJ)

= I(K;MJ)+ I(K;Zn
1 · · ·Zn

J |MJ) (41)
= I(K;Zn

1 · · ·Zn
J |MJ), (K is independent of MJ) (42)

≤ ∑
j

I(K;Zn
j |M j)≤ J2−nβ1 . (By Lemma 1) (43)

Lemma 3: If the probability of block error P(n)
e (ξ) for code

from C n(λ,ρ) over BEC(ξ) is exponential, i.e., P(n)
e (ξ) <

exp−αn for some constant α > 0, when ζ < η for some
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η∈ [0,1]. Then, when the dual of a code from Cn(λ,ρ) used in
the proposed scheme over wiretap channel (BEC(0),BEC(ζ))
with ζ > 1−η, there exists β1 > 0 such that the inequalities
(32) and (33) hold with sufficiently large n.

Proof: From the important interpretation of P(n)
e (ξ) in

[20]: for a parity check matrix H with degree distribution
(λ,ρ), the probability that erased columns of H over a
BEC(ξ) from a full-rank submatrix can be lower bounded by
1−P(n)

e (ξ). Thus, if the dual of a code from C n(λ,ρ) used in
the proposed scheme over (BEC(0),BEC(ζ)) with ζ > 1−η,
we have Pr(E = 0)< exp−αn for some α > 0. By Lemma 2,
the lemma follows.

B. Proof of Theorem 1

Proof: When the wiretapper does not present, if Alice
wants to authenticate m, she first generates xn by following the
proposed scheme, and then sends (m,xn) to Bob. At Bob side,
he receives (m,xn) as the channel between them is noiseless.
Clearly, Bob will accept m since an = t⊙ [r1;r2; · · · ;rv]⊕xn =
s ⊙ [g1;g2; · · · ;gl ] ∈ C . The completeness of the proposed
scheme holds. Next, we focus on the authentication property.

Let MJ = M1 · · ·MJ be the sequence of messages authenti-
cated by Alice, and Xn

j ,Z
n
j be the input and output over channel

W2 when Alice authenticates M j. Let RE be Eve’s random tape.
Because MJ is chosen by Alice according to distribution

PMJ , which is independent of RE . In addition, Xn
j is deter-

mined by (K,M j) together with the randomness of sampling
Xn

j (i.e., RV S corresponding to the random bits s in the
proposed scheme), and Zn

j is determined by Xn
j together

with the noise in channel W2. Hence, for any j ∈ {1, · · · ,J},
(MJ ,K,Xn

1 Zn
1 · · ·Xn

j Zn
j ) is independent of RE . By Lemma 2, we

have

I(K;REM jZn
1 · · ·Zn

j ) = I(K;M jZn
1 · · ·Zn

j )≤ j2−nβ1 (44)

for a constant β1 > 0 and any j ≤ J. Let Vj=RM jZn
1 · · ·Zn

j .
Lemma 1 in [38] shows the relationship between condi-
tional distance and mutual information, i.e., SD(X |Y ;X) ≤√

2ln2 I(X ;Y ) for any RVs X and Y . By [38, Lemma 1],
we obtain that

SD(K|Vj;K)≤
√

2 j ln2 ·2−nβ1/2. (45)

According to the adversary model, Eve can adaptively
launch the following attacks. (1) Type I attack: when Alice
Authenticates M j and sends out (M j,Xn

j ), Eve can revise M j
to M′

j (̸= M j). He succeeds if Bob accepts (M′
j,X

n
j ). (2) Type

II attack: at any time, Eve can send a pair (M̂, X̂n) to Bob over
a noiseless channel. He succeeds if Bob accepts (M̂, X̂n).

Let bℓ be the result of the ℓth attack, where bℓ= 1 if Eve suc-
ceeds in this attack, and M jℓ−1 be the authenticated messages
before Eve launches the ℓth attack. Then, Eve’s view before
the ℓth attack can be denoted by Uℓ := (Vjℓ−1,b1, · · · ,bℓ−1).

If the ℓth attack is Type I, bℓ = 1 iff T′
jℓ ⊙

[r1;r2; · · · ;rv]⊕ Xn
jℓ ∈ C , where Xn

jℓ = T jℓ ⊙ [r1;r2; · · · ;rv]⊕
S jℓ ⊙ [g1;g2; · · · ;gl ], T jℓ = ϕK(M jℓ), and T′

jℓ = ϕK(M′
jℓ). Thus,

bℓ = 1 iff T′
jℓ = T jℓ . In other words, bℓ = 1 iff Eve chooses a

M′
jℓ such that ϕK(M′

jℓ) = ϕK(M jℓ).

If the ℓth attack is Type II, bℓ = 1 iff T̂ jℓ ⊙ [r1;r2; · · · ;rv]⊕
X̂n

jℓ ∈ C , where (M̂ jℓ , X̂
n
jℓ) is Eve’s output in this attack, T jℓ =

ϕK(M jℓ), and T̂ jℓ = ϕK(M̂ jℓ). X̂n
jℓ can be uniquely rewritten as

X̂n
jℓ = T0 ⊙ [r1;r2; · · · ;rv]⊕S0 ⊙ [g1;g2; · · · ;gl ]. (46)

So, bℓ = 1 iff T̂ jℓ = T0, i.e., bℓ = 1 iff Eve chooses a pair of
< M̂ jℓ ,T0 > such that ϕK(M̂ jℓ) = T0.

Let L = poly(n) be the upper bound on the number of
attacks, where poly(·) is any polynomial function. Then, Eve’s
success probability can be expressed as Pr

(
∨L
ℓ=1bℓ = 1

)
. As

every successful attacker must experience the first successful
attack, without loss of generality, we consider the scenario
that an attacker who will stop after the first successful attack.
In this case, bℓ = 1 implies b1 = · · · = bℓ−1 = 0. Defining
Ūℓ = (Vjℓ ,b1, · · · ,bℓ−1), and Ū0

ℓ = {Ūℓ : b1, · · · ,bℓ−1 = 0ℓ−1},
we have,

P(bℓ = 1) = ∑
uℓ∈Ū0

ℓ

P(bℓ = 1,Ūℓ = uℓ) (47)

= ∑
uℓ∈Ū0

ℓ

P(Ūℓ = uℓ)P(bℓ = 1|Ūℓ = uℓ). (48)

For given V = v, let uℓ = v|0ℓ−1 for each ℓ ∈ {1, · · · ,L}. In
Type I attack, denoting Euℓ={k ∈ K : Φk(M′

jℓ) ̸= Φk0(M jℓ)},
since M′

jℓ ,M jℓ are deterministic in Eve’s view Ūℓ, the set Euℓ
is completely determined by Ūℓ = uℓ. So, by [11, Lemma 5],

Pr(bℓ = 1|Ūℓ = uℓ) = PK|Ūℓ=uℓ(E
c
uℓ)

≤ PK(E
c
uℓ)+

1
2

SD(PK|Ūℓ=uℓ ;PK) (49)

≤ ε+
1
2

SD(PK|Ūℓ=uℓ ;PK). (50)

Averaging over Ūℓ, we have

Pr(bℓ = 1)≤ ε+
1
2

SD(PK|Uℓ
;PK). (51)

In Type II attack, given Ūℓ = uℓ, since Eve’s view Uℓ is part
of Ūℓ, it follows that (M̂ jℓ , X̂

n
jℓ) is deterministic in uℓ. Thus,

(M̂ jℓ ,T0) is deterministic in uℓ. Let

Euℓ = {k ∈ K : Φk(M̂ jℓ) ̸= T0}. (52)

Then, by [11, Lemma 5],

Pr(bℓ = 1|Ūℓ = uℓ) = PK|Ūℓ=uℓ(Euℓ
c)

≤ PK(E
c
uℓ)+

1
2

SD(PK|Ūℓ=uℓ ;PK) (53)

≤ |T |
|K |

+
1
2

SD(PK|Ūℓ=uℓ ;PK) (by the def. of ε-AU2)(54)

Averaging over Ūℓ, we have

Pr(bℓ = 1)≤ |T |
|K |

+
1
2

SD(PK|Ūℓ
;PK). (55)

Now we bound SD(PK|Ūℓ
;PK). We first show that

(b1, · · · ,bℓ) is deterministic in (K,V ). In Type I attack,
bℓ is determined by (K0,M′

jℓ ,M jℓ), which is further de-
termined by (K0,Vjℓ ,b1, · · · ,bℓ−1). In Type II attack, bℓ is
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determined by (K,M̂ℓ, X̂n
jℓ), which is further determined by

(K,Vjℓ ,b1, · · · ,bℓ−1). Likewise, in both two attacks, bℓ−1 is
determined by (K,Vjℓ ,b1, · · · ,bℓ−2). So, (bℓ−1,bℓ) is deter-
mined by (K,Vjℓ ,b1, · · · ,bℓ−2). Following the same discuss as
above, we have (b1, · · · ,bℓ) is deterministic in (K,V ). Here,
we denote Vjℓ by V for simplicity.

Given Ūℓ = uℓ = v0ℓ−1, let K ℓ
v

de f
= ∩ℓ−1

i=1 Eui . Since Ūℓ =
(V,b1, · · · ,bℓ−1). From rule PAB = PAPB|A, we obtain that

PKŪℓ
(k,uℓ) = PKV (k,v)P(b1, · · · ,bℓ|k,v) = PKV (k,v) (56)

if (b1, · · · ,bℓ−1) is determined by (k,v); 0 otherwise. Note
that K ℓ

v is the set of all possible k such that (b1, · · · ,bℓ−1) is
determined by (k,v). Thus,

PŪℓ
(uℓ) = ∑

k∈K ℓ
v

PKV (k,v) = PKV (K
ℓ

v ,v). (57)

Hence, from the two equations above, we have the bound of
SD(PK|Ūℓ

;PK) as follows.

SD(PK|Ūℓ
;PK)

=∑
uℓ

∑
k∈K

PŪℓ
(uℓ)|PKV (k|uℓ)−PK(k)| (58)

=∑
v

∑
k∈K ℓ

v

|PKV (k,v)−PKV (K
ℓ

v ,v)PK(k)|

+∑
v

∑
k ̸∈K ℓ

v

|PKV (K
ℓ

v ,v)PK(k)| (59)

≤SD(K|V ;K)+2∑
v

PKV (K \K ℓ
v ,v) (60)

≤2SD(K|V ;K)+2∑
v

PK(K \K ℓ
v )PV (v) (by [11, Lemma 5])

(61)
≤2SD(K|V ;K)+2(ℓ−1)ε′, (62)

where ε′ = max(ε, |T |
|K | ).

Since Eve’s success probability Pr(Succ(Eve)) can be ex-
pressed as Pr

(
∨L
ℓ=1bℓ = 1

)
. So,

Pr(Succ(Eve))
= Pr

(
∨L
ℓ=1bℓ = 1

)
≤ ∑

ℓ

P(bℓ = 1) (63)

≤ ∑
ℓ

[
ε′+

1
2

SD(PK|Ūℓ
;PK)

]
(by Eq. (51), (55)) (64)

≤ ∑
ℓ

[
ε′+SD(K|V ;K)+(ℓ−1)ε′

]
(65)

≤ ∑
ℓ

[
SD(K|V ;K)+ ℓε′

]
(where V =Vjℓ) (66)

≤ ∑
ℓ

[√
2 jℓ ln2 ·2−nβ1/2 + ℓε′

]
(by Eq. (45)) (67)

≤
L

∑
ℓ=1

[√
2L ln2 ·2−nβ1/2 + ℓε′

]
(68)

≤ L
√

2L ln2 ·2−nβ1/2 +L2ε′ (69)

This is negligible as L is polynomial in n and ε′ is negligible.
This completes our theorem.

C. Proof of Theorem 2

Proof: Bob can view xn([n]/EPB) from the output yn of
channel W1, and he also can obtain xn(EPB) from Alice’s
response xn(EPB ∪RPB) over the public channel. Thus, Bob
can obtain xn as xn = xn(EPB) ∪ xn({1, · · · ,n}/EPB). The
completeness of the presented scheme holds. Now we prove
the authentication property.

We denote the authentication game with Alg. 2 as Γ.
Consider a new authentication game Γ′ that Alice authenticates
m to Bob with Alg. 1 over wiretap channel (W ′

1,W
′
2) in the

presence of the adversary Oscar. We now claim that, Eve’s
view in game Γ can be considered as Oscar’s view in game
Γ′. In fact, by the law of large number, |EPB| ≤ n(ξm + 1

2 σ),
and |EPE | ≥ n(ξw − 1

2 σ) for a large n, where σ = σ(n),
and σ(n) → 0 when n → ∞. Eve can observe xn([n]/EPE)
from the wiretapper’s channel W2 and xn(EPB ∪ERB) from
the public channel. Hence, the erasure positions at Eve are
EPE − (EPB ∪ ERB). By the definition of ERB, we have
|EPB ∪ ERB| ≤ n(ξm + 1

2 σ). So, for large n, the number of
the erasure positions can be bounded by

|EPE −(EPB∪ERB)| ≥ |EPE |−|EPB∪ERB| ≥ n(ξw−ξm−σ).
(70)

Thus, we have Pr(Succ(Eve)) ≤ Pr(Succ(Oscar)). From
Theorem 1, Pr(Succ(Oscar)) is negligible in terms of n.
Namely, Pr(Succ(Eve)) is negligible in terms of n.

D. Proof of Theorem 3

Proof: Assume that there is an adversary Oscar who
can observe the output of channel W2. From Theorem 2,
Pr(Succ(Oscar) is negligible in terms of n. Since the output
of channel W3 is the degraded version of the output of
channel W2, we have Pr(Succ(Eve))≤ Pr(Succ(Oscar)). Thus,
Pr(Succ(Eve) is negligible. The rigorous mathematical proof
can be obtained by combining the data-processing inequality
and the proof of Theorem 2. We omit it due to the space
limitation.
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