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Abstract—The deployment of cloud storage services has significant benefits in managing data for users. However, it also causes
many security concerns, and one of them is data integrity. Public verification techniques can enable a user to employ a third-party
auditor to verify the data integrity on behalf of her/him, whereas existing public verification schemes are vulnerable to procrastinating
auditors who may not perform verifications on time. Furthermore, most of public verification schemes are constructed on the public key
infrastructure (PKI), and thereby suffer from certificate management problem. In this paper, we propose the first certificateless public
verification scheme against procrastinating auditors (CPVPA) by using blockchain technology. The key idea is to require auditors to
record each verification result into a blockchain as a transaction. Since transactions on the blockchain are time-sensitive, the
verification can be time-stamped after the corresponding transaction is recorded into the blockchain, which enables users to check
whether auditors perform the verifications at the prescribed time. Moreover, CPVPA is built on certificateless cryptography, and is free
from the certificate management problem. We present rigorous security proofs to demonstrate the security of CPVPA, and conduct a
comprehensive performance evaluation to show that CPVPA is efficient.
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1 INTRODUCTION this lays a heavy communication burden on users to retrieve

ITH cloud storage services, users outsource their data
Wto cloud servers and access that data remotely over
the Internet [1], [2]. These services provide users an efficient
and flexible way to manage their data, while users are free
from heavy local storage costs [3], [4], [5]. Although users
enjoy great benefits from these services, data outsourcing
has also incurred critical security issues [6], [7], [8]. One of
the most important security concerns is data integrity [9],
[10]. Unlike traditional data management paradigm, where
users store their data locally, users would not physically
own their data once having outsourced the data to cloud
servers. Therefore, users are always worried about the data
integrity, i.e., whether the outsourced data is well main-
tained on cloud servers.

The integrity of outsourced data is being put at risk
in practice [11], [12]. For example, the cloud servers may
always conceal incidents of data corruption for good repu-
tation, or may delete a part of data that is never accessed
to reduce the storage costs [13], [14]. Furthermore, an ex-
ternal adversary may tamper with the outsourced data for
financial or political reasons [15]. Therefore, the integrity of
outsourced data should be verified periodically. The verifi-
cation can be performed by the users themselves. However,
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and verify the data.

Public verification techniques enable users to outsource
the data integrity verification to a dedicated third-party
auditor. The auditor periodically checks the data integrity,
and informs the users that the data may be corrupted
once the checking fails [16]. In most of public verification
schemes, the auditor is assumed to be honest and reliable.
If the auditor is compromised, these schemes would be
invalidated. For example, an irresponsible auditor may al-
ways generate a good integrity report without performing
the verification to avoid the verification costs. In such a
way, the auditor is virtually non-existent. Furthermore, a
malicious auditor may collude with the cloud servers to
generate a bias verification result to deceive the users for
profits. To ensure the security in the case that the auditor is
compromised, the users are required to audit the auditor’s
behaviors [17], [18], [19]: After each verification, the auditor
records the information used to verify the data integrity,
which enables the user to audit the validity of the auditor’s
behavior.

Existing public verification schemes require the auditor
to perform the verification periodically so that the data
corruption can be detected as soon as possible. Actually,
periodical verification can reflect the state of integrity of the
outsourced data in each period, which enables the user to
find the data corruption within the period. For example,
for a cloud-assisted electronic health system, the outsourced
electronic health records (EHRs) are sensitive [20], [21],
[22], and should be verified periodically to guarantee their
correctness. Any time the EHRs are corrupted, the health-
care provider can find it within the period, stops to use
the corrupted EHRs, and attempts to recover the EHRs at
once. This can protect the healthcare provider against losses
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caused by the EHR corruption as far as possible. However,
an irresponsible auditor may procrastinate on the sched-
uled verification, due to network failures, system errors,
or request from the cloud server!. We call this auditor a
procrastinating auditor, it deviates from the original objective
of public verification schemes, i.e., detecting data corruption
as soon as possible. It might be too late to recover the
data loss or damage if the auditor procrastinates on the
verification. In fact, the procrastinating auditor also cannot
be detected in the public verification schemes, even though
malicious auditors can be detected there [17], [18], [19].

Furthermore, most public verification schemes are built
on the public key infrastructure (PKI), where the auditor
needs to manage the user’s certificate to choose the correct
public key for verification. Consequently, these schemes
suffer from the certificate management problem including
certificate revocation, storage, distribution, and verification,
which is very costly and cumbersome in practice [23], [24].

In this paper, we propose the first certificateless public
data integrity verification scheme that resists malicious and
procrastinating auditors, dubbed CPVPA. The key idea be-
hind CPVPA is to use blockchain-based currencies (i.e., on-
chain currencies), such as Bitcoin and Ethereum [25], [26],
[27], which provide a tamper-proofing and distributed way
to conduct transactions without a central authority (ie.,
bank). In CPVPA, the auditor is required to create a new
transaction after each verification, where the information
corresponding to the verification is integrated into the trans-
action, and the auditor conducts the transaction. After the
transaction is recorded into the blockchain, the user is able
to verify the time when the auditor performs the verification
by checking the generation time of the transaction. We stress
that for a blockchain system, the more participants in it,
the stronger security guarantee it can provide. Therefore,
we construct CPVPA on a well-established and widely-used
blockchain system (e.g., Ethereum), rather than a newly
created one. Moreover, CPVPA is built on the certificateless
cryptography [28] and avoids the certificate management
problem. Specifically, the contributions of this work are
summarized as follows.

o We analyze existing public verification schemes, and
demonstrate that existing schemes cannot resist a
procrastinating auditor who may not perform the da-
ta integrity verification on schedule and deviate from
the original objective of public verification schemes,
i.e., detecting the data corruption as soon as possible.

e We propose a certificateless public verification of
data integrity scheme, namely CPVPA, which resists
malicious auditors and procrastinating ones without
introducing any trusted entity, where each verifica-
tion performed by the auditor is time-stamped by
integrating it into a transaction of blockchain-based
currencies, e.g., Ethereum. Such mechanism enables
the user to check the time when the auditor perform-
s the verification. CPVPA addresses the certificate

1. When the data corruption occurs, the cloud server may collude
with the auditor, where it asks the auditor for halting the scheduled
verification, and gains much more time to retrieval the outsoucrced
data for good reputation.
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management problem existing in most of existing
public verification schemes.

e We present rigorous security proofs to prove that
CPVPA is secure against the procrastinating auditor
defined in this paper, the semi-trusted server and
the malicious auditor in the strongest model [14],
[17], [18]. We also conduct a comprehensive perfor-
mance analysis, and show that CPVPA has constant
communication overhead, and is efficient in terms of
computational overhead on both the server side and
the user side.

The remainder of this paper is organized as follows.
We motivate CPVPA in Section 2, and define the system
model, adversary model, and design goals and present
preliminaries in Section 3. We propose CPVPA in Section
4 and analyze its security in Section 5. We provide the
performance evaluation in Section 6, review the related
work in Section 7, and draw the conclusions and present
some open problems in Section 8.

2 PROBLEM STATEMENT
2.1 Public Verification of Data Integrity

The key idea of the public verification technique [13], [14],
[15] is that the user (i.e., data owner) splits the data into
multiple blocks, computes a signature for each one, and
outsources the data blocks as well as corresponding signa-
tures to the cloud server. When the auditor verifies the data
integrity, it chooses a random subset of all data blocks (e.g.,
sample 300 blocks from 10000 ones) and sends the sampled
blocks” indexes (as a challenging message) to the cloud
server. The cloud server responses with the corresponding
proof, the auditor checks the integrity of challenged blocks
by verifying the validity of the proof. If the verification
passes, the integrity of entire data set is ensured. The key
technique used here is aggregated signature [29], which
enables the auditor to verify multiple blocks simultaneously
without downloading the data.

In public verification schemes, after data outsourcing,
the user sets a verification period (i.e., the frequency at
which the auditor performs the verification). Then the audi-
tor verifies the outsourced data integrity at the correspond-
ing time. In practice, the auditor generates a verification
report containing multiple verification results (correspond-
ing to multiple periods, we call these periods an epoch).
If in any period the verification result is “Reject”, it means
that the data may be corrupted and the auditor needs to
inform the user at once. Otherwise, the auditor generates
a verification log and provides the user with the log at the
end of each epoch. Since the auditor is able to verify the
data integrity without the user’s participation, the user can
assign the auditor to perform the verification with any pe-
riod as needed. In other words, from the user’s perspective,
if the outsourced data is corrupted, the longest delay within
which she/he needs to find the data corruption should be
the verification period.

We stress that the frequency at which the auditor checks
the data integrity would not be very high in practice, due
to the following reasons. First, the auditor serves multiple
users simultaneously. If users require the auditor to perform
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the data integrity verification with a high frequency, e.g.,
performing the verification every hour, the auditor would
bear a heavy communication and computation burden. Fur-
thermore, the higher frequency to perform the data integrity
verification, the more costs to employ the auditor. From a
pragmatic standpoint, users would not require the auditor
to perform data integrity verification with a high frequency
in existing scenarios. Second, performing the data integrity
verification with a high frequency would also cause heavy
verification burden on the cloud server. As pointed out by
Armknecht et al. [17], if integrating security mechanisms
into existing cloud systems incurs considerable costs on the
cloud service providers, most of the providers would not
accept liability for the corresponding security guarantees in
their Service Level Agreements (SLAs) and only ensure the
service availability.

2.2 On the vulnerability of existing public verification
schemes against procrastinating auditors

In most of existing public verification schemes [14], [16],
[30], auditors are assumed to be honest and reliable. This
means that the auditor would honestly follow the prescribed
schemes, and performs the verification reliablyz.

These schemes cannot resist malicious auditors. The
most trivial attack a malicious auditor can perform is that it
always generates a good integrity report without verifying
the data integrity to avoid the verification burden. To thwart
such attacks, the user is able to audit the auditor’s behavior
at the end of each epoch. However, a more tricky attack still
exists in the mechanism: the auditor colludes with the cloud
server, and always generates bias challenging messages
such that only the data blocks which are well maintained
are verified, this avoids revealing the data corruption. To
resist this attack, the challenging messages should not be
predetermined by any participant. Existing schemes [17],
[18], [19] utilize Bitcoin to generate the challenging messages
to ensure the randomness of challenged data blocks, where
the auditor extracts the hash value of the latest block from
the Bitcoin blockchain, and generates the challenging mes-
sage according to the security parameter and the extracted
hash value. Since in the Bitcoin blockchain the hash value
of a block generated at a future time is unpredictable, this
ensures that the auditor cannot generate a bias challenging
message to deceive the user, and enables the user to effi-
ciently audit the auditor’s behavior.

However, such mechanism is vulnerable to a procrasti-
nating auditor. Assuming the agreed verification period is
1 day, and an epoch is 1 month (i.e., 30 days), this means
that the auditor checks the outsourced data integrity one
time per day, and the user audits the auditor’s behaviors
one time per month. Normally, the auditor would perform
the verification every day and generate a verification report
every 30 days. For a procrastinating auditor, it would not
perform the verification on the first 29 days, and would
perform the verification 30 times on the last day, where the
challenging messages in each verification of the first 29 days

2. Some works [15], [31], [32] assume that auditors are honest but
curious, however, from the perspective of data integrity verification,
there is no difference between these two assumptions, since the auditors
would not deviate from the prescribed schemes.
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can be regenerated in the 30th day. As such, the verification
report only reflects the most recent (the 30th day’s) state
of integrity for the outsourced data. This deviates from the
public verification’s original target: if the outsourced data is
corrupted, the data owner is able to find it within 1 day (i.e.,
one verification period).

To resist the procrastinating auditor, a straightforward
solution is to require the user to audit the auditor’s be-
haviours in a random time interval. However, before the
user audits the correctness of auditor’s behaviours, she/he
needs to interact with the auditor to obtain the data that
records the auditor’s behaviours for the auditing, this suf-
ficiently gives rise to forge the data for the auditor and
cloud server. As such, a procrastinating auditor can pass
the user’s auditing by colluding with the cloud server.
Another straightforward solution is to introduce a trusted
service provider who provides a time-stamping service [33].
After each verification, the auditor is required to query the
time-stamping on the information, which is used to check
the data integrity, and is used to be audited by the user
to prove the correctness of its behavior. This enables the
information to be time-sensitive, and therefore can resist the
procrastinating auditor. Nevertheless, the security of such
mechanisms rely on the security and reliability of the time-
stamping service provider, and the provider here becomes
a single point of failure. Furthermore, the provider has to
bear heavy communication and computation burden in the
case of multiple users and auditors. As such, how to resist
the procrastinating auditor without introducing any trusted
entity is a very challenging problem.

2.3 On the (in)efficiency of PKI-based public verifica-
tion schemes

Most of existing public verification schemes are built on
the public key infrastructure (PKI), where a fully trusted
certificate authority issues the participants’ certificates, and
the auditor has to manage users’ certificates to choose the
correct public keys for the verification. However, certifi-
cate management, which includes revocation, storage, dis-
tribution, and verification, is very costly and cumbersome
in practice [18], [28]. Therefore, removing the certificate
management problem could be economic and favorable in
practice.

3 DEFINITIONS AND PRELIMINARIES
3.1 System model

The system model is shown in Fig. 1. There are four different
entities in CPVPA: cloud user (data owner), cloud server,
third-party auditor (TPA), and key generation center (KGC).

e User: The user is the data owner, who outsources
her/his data to the cloud server and accesses the
outsourced data as needed. After data outsourcing,
the user employs a TPA, agrees a verification period
with TPA, and let TPA periodically verify the data
integrity.

e Cloud server: The cloud server is subject to the
cloud service provider, and provides cloud storage
services. It has not only significant storage space, but
also a massive amount of computing power.
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o TPA: TPA works for the user. It feeds back the
verification results to the user and the cloud server,
and detects the data corruption as soon as possible.
The communication between TPA and other entities
is authenticated.

e KGC: The KGC is controlled by an authority. It
generates a partial private key for the user by using
the user’s identity.

User/Data owner Cloud server

GJO' Data outsourcing
—_——
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Key generation

%Ofel’o“ Data integrity verification
Ve, e
0»& O

X Third-party auditor
Key generation center

6

K)
Pi s

Fig. 1. System model

A formal definition of CPVPA is given in the following:

Definition 1. CPVPA consists of five algorithms, Setup,
Store, Audit, LogGen, and CheckLog.

e Setup. This algorithm generates the necessary pa-
rameters used in the following algorithm.

e Store. This algorithm enables a user to outsource the
data to a cloud server. The user needs to generate
verification tags (i.e., signatures) that enable a TPA
to check the data integrity. Furthermore, the cloud
server needs to confirm that the data is uploaded
correctly.

e Audit. This algorithm enables TPA to check the data
integrity, and allows the cloud server to prove that
the outsourced data is well maintained.

o LogGen. This algorithm enables TPA to generate a
log file, which records the TPA’s verification infor-
mation.

e CheckLog. This algorithm enables the user to audit
the TPA’s behavior by checking the validity and
correctness of the log file.

3.2 Adversary model

In the adversary model, we will consider threats from three
different angles: semi-trusted servers, misbehaved auditors,
and malicious users.

Semi-trusted servers. The cloud server is a semi-trusted
(rational) entity. We follow the existing threat model of
cloud servers [14] with the integration of the threat model
of certificateless cryptography [28], [34]. It may hide the
incident of data corruption by forging a proof information
to deceive TPA. The cloud server may become two types of
adversaries:

1) Type I adversary Aj: He is able to replace the public

key of the user with a value of his choice, but he cannot
access to the KGC’s master key.
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2) Type II adversary Ajp: He is able to access the KGC’s
master key but cannot perform public key replacement.

Misbehaved auditors. We extend the existing threat
models of malicious auditors [17], [18]. TPA may be com-
promised, which means that TPA may hide an incident of
data corruption from the user by colluding with the cloud
server. Furthermore, TPA may deviate from the prescribed
verification period, and may not perform the verification on
schedule.

Malicious users. We follow the existing threat model
of malicious users [17], [18]. The only attack the user may
perform is that he uploads incorrect verification tags (signa-
tures) to circumvent the cloud server.

3.3 Design goals

In this paper, we target the secure public verification of out-
sourced data integrity for cloud storage systems, in which
there exist two challenges:

1) How to resist the procrastinating TPA without intro-
ducing any trusted participant. Existing public schemes
assume that TPA would perform the data integrity ver-
ification at the prescribed time. However, the procrasti-
nating auditor would not detect the data corruption as
soon as possible, and it might be too late to recover the
data loss or damage. Such procrastination is hardly to
be detected by the user without a trusted participant’s
help.

2) How to avoid the certificate management. As discussed
before, certificate management is cumbersome and cost-
ly in practice. Enabling TPA to verify the data integrity
without managing users’ certificates could be economic
and favorable in practice.

To enable secure verification of outsourced data integri-
ty in cloud storage under the aforementioned model, the
following objects should be achieved.

o Efficiency: The communication and computation
overhead should be as efficient as possible; TPA is
able to verify the data integrity without managing
the users’ certificates and bearing a priori bound on
the number of verification interactions; TPA should
be stateless, and is not required to maintain and
update state during verification.

e Security: When a cloud server passes the TPA’s ver-
ification, it must possess the specified data intact;
A malicious TPA and a procrastinating TPA cannot
deceive the user; Collusion between any two par-
ticipants cannot break the security of the proposed
scheme.

3.4 Notation

For two integers i,n € N, (i < n), where N is natural
number set, we denote by [1,n] the set {1,2,...,n}. For
a finite set T, |T| denotes the number of components in
T. For two bit-strings = and y we denote by z||y their
concatenation.
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Fig. 2. A simplified Ethereum blockchain

3.5 Bilinear maps

Let G be an additive group and Gr be a multiplicative
group, G and G'r have the same prime order p. A bilinear
map e: G x G — G has the following properties:

1. Bilinearity: e(¢9%,¢°) = e(g,q)% for all g,q €
Gi1, a,b e Z.

2. Non-degeneracy: for g,q € G and g # q, e(g,q) # 1.

3. There exists an efficient computable algorithm for
computing e.

Computation Diffe-Hellman (CDH) problem in G: given
G and one of its generator g, for any unknown a,b € Z;,
given g and g% compute q°b.

3.6 Public blockchain and on-chain currencies

A blockchain is a linear collection of data elements, where
each data element is called block. All blocks are linked
to form a chain and secured using cryptographic hash
function. Each block typically contains a hash pointer as
a link to a previous block, a timestamp, and transaction
data [25]. Only if a transaction’s validity is verified, it
can be recorded into the block. Generally, the blockchain
technique can be classified into two types: private blockchain
and public blockchain. For a private blockchain (including
the consortium blockchain), the verifications are performed
by authorized participants, who may be employed by the
blockchain managers or the managers themselves. For a
public blockchain, the verifications can be performed by any
participant in the network: a transaction can be recorded
into a block, only if it has been verified and accepted by a
considerable majority [35], [36], [37].

The most prominent manifestation of public blockchain
is on-chain currencies, such as Bitcoin [25] and Ethereum
[26]. In such currencies, the public blockchain is used to
serve as an open and distributed ledger that efficiently
records transactions between two participants. Furthermore,

Some state information
corresponding to the data

Transaction After the transaction

From State*
Payer's address Payer’s balance
To b'payer
Payee’s address Payee’s balance
Value b ayee
N Transaction value N
Data Some state information
Attached data corresponding to the data
Signature

A signature on this transaction
under the payer’s key

such ledger is verifiable and inherently resistant to mod-
ification of chained blocks, the participants who perform
the transaction verifications are called miner. Actually, the
more miners that participate in a blockchain system, the
stronger security guarantee the blockchain system has. In
this work, we utilize the Ethereum blockchain to construct
CPVPA, since Ethereum is more expressive than other on-
chain currencies and Ethereum is the one of most popular
blockchain systems.

We show a simplified Ethereum blockchain in Fig. 2,
where Tx denotes the transaction, BlockHash denotes the
hash value of current block, PrevBlockHash denotes the hash
value of the last block, Time denotes the timestamp, and
MerkleRoot denotes the root value of a Merkle hash tree [38]
formed by all transactions recorded in current block. The
ledger of Ethereum can be thought of as a state transition
system, where there is a “state” consisting of the ownership
status of all existing Ethers (which are the value token of
the Ethereum blockchain) and a “state transition function”
that takes a state and a transaction as input, and outputs a
new state which is the result. When a new block is added
into the chain, all transactions recorded in the block should
be verified first, and then miners compute a valid nonce
such that the hash value of the block is less than or equal
to a value provided by the Ethereum system. This process
is a proof of work (PoW) and is well known as “Mining”.
The first miner who finds the nonce broadcasts the block of
transactions together with this nonce. Other participants can
verify that the nonce is a valid solution, and hence add the
new block to their blockchain. Once the block is added to
the chain, all the corresponding state information has been
updated. More technique details can be found in [26].

In Ethereum, the state is made up of objects called
“account”. In general, there are two types of accounts
in Ethereum: externally owned accounts and contract ac-
counts. Externally owned accounts are controlled by private
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keys and can conduct a transaction. Contract accounts are
controlled by their contract code. Each smart contract corre-
sponds to a contract account, after the contract is deployed
and contained by the Ethereum blockchain, one can send
message to the contract account (i.e., transferring Ethers
from an account to the contract account) to trigger the
execution of the smart contract, where the data included in
the “data field” can be set as the input of the contract. For the
transaction between two external owned accounts, i.e., the
payer transfers Ethers from her/his account to the payee’s
account, if the transaction is recorded into the blockchain,
the balances of these two accounts are updated. Note that
the transactions between two external accounts in Ethereum
also include a “data” field. The user who conducts the
transaction (i.e., the payer shown in Fig. 2) can set the data
field to be any binary data she/he chooses.

There are three fundamental properties in secure
blockchain systems [39], [40], [41]:

1) p-chain consistency. Blockchains of any two honest
miners at any point in time during the mining execution
can differ only in the last ¢ blocks.

2) (¢, ¢)-chain quality. For an honest miner’s blockchain,
the fraction of blocks mined by honest miners in any
sequence of ¢ or more successive blocks is at least ¢.
In other words, the probability that any ¢ successive
blocks in blockchain are generated by an adversarial
miner whose hashrate is less than 51% of the network’s
mining hashrate can be negligible. In Ethereum, ¢ > 12.

3) Chain growth. The number of blocks that are added
to the blockchain during any given time interval is
deterministic. In other words, the blockchain height can
be trusted to steadily increase with respect of either
short or long term.

With the above fundamental properties as well as the
inherent characteristics of PoW-based consensus algorithm,
we derive two properties from the Ethereum blockchain and
adopt them to construct CPVPA.

« Unpredicted hash value®. The hash value (denoted
by BlockHash in Fig. 2) of each block on the chain
only can be determined after a valid nonce is com-
puted and verified by all miners. Once the block is
added to the chain, its hash value is deterministic
and would never be changed. This means that given
a time time, if time is a past time, the hash value
of the latest block that has appeared since time in
the blockchain is deterministic, and can be extracted
efficiently; if time is a future time, the hash value
is computationally unpredictable. We stress that the
fact that the hash value of blocks generated in the future
cannot be predicted does not means that the hash value
cannot be biased by an adversary who has infinite budget.
Since the adversary can incentivize a miner who first
mine a block to throw the newly mined block away
and continue to mine if the hash value of the block
does not meet the adversary’s requirement [42].

o Time-sensitive data state. For a transaction with a
string T'% as its Data value, if a block including
this transaction is accepted by a majority of miners

3. Other PoW-based on-chain currencies, such as Bitcoin, also have
this feature [17].
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and is chained to the blockchain, the string 7% is
then time-stamped. It means that 7% is generated no
later than the time that the block is chained to the
blockchain. Thus 77 is time-sensitive. Furthermore,
since the average time that a block is mined is de-
terministic, one can easily derive the time when the
block is chained to the blockchain from the height
of the block. Specifically, if a transaction with 7% is
recorded in the blockchain, anyone is able to extract
the corresponding block’s height (which is denoted
by t1) to determine whether 7% is generated no lat-
er than BlockTime;,, where BlockTime;, denotes
the height-derived time. By doing so, an Ethereum
blockchain provides an efficient and secure service
for time-stamping a digital document but without
introducing any trusted authority [33].

4 THE PROPOSED CPVPA
4.1 Overview

1. Delegate the auditor
Cloud server

o, 2. Data outsourcing
—_—

5. Response with a
Partial key proof 4.Send C
message

Third-party auditor

Key generation center

fe—

0 6. Log file generation ,*\L )

3. Extract the hash
value of the block

7. Audit the auditor's behavior

Public blockchain

Fig. 3. The proposed CPVPA

We utilize the Ethereum blockchain as the underlying
public blockchain. Fig. 3 shows the proposed CPVPA.

CPVPA consists of two phases. In the first phase, the
auditor verifies the integrity of outsourced data. In the
second phase, the user audits the auditor’s behavior.

In the first phase, the verification period is determined
by the user. For a point in time when the data integri-
ty should be verified, TPA first extracts the hash values
of ¢ successive blocks that are the latest ones confirmed
on the Ethereum blockchain, where ¢ denotes the num-
ber of blocks deep used to confirm a transaction (in the
Ethereum, ¢ = 12), and these hash values are denoted
by {Blt,wl, Bli_p42, ..., Bl;}. Then TPA generates a chal-
lenging message on {Bl;_ 41, Bli—412, ..., Bl }, and sends
the challenging message to the cloud server. Upon receiving
the challenging message, the cloud server computes the
corresponding proof. TPA checks the validity of the proof to
verify the data integrity. If the checking fails, TPA informs
the user that the data may be corrupted; Otherwise, TPA sets
{Bli—p41, Bli_pt2, ..., Bl;} and the proof as a log entry,
stores the entry to a log file, and creates a transaction that
transfers 0 deposit from its account to the user’s account?,

4. The Ethereum blockchain allows a payer to conduct a transaction,
wherein the transaction value is 0.
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wherein the data field is set to the hash value of the entry.
In this paper, for the sake of simplicity, we assume the
transaction is recorded to the block whose height is t 4 ¢ +1
and PrevBlockHash = Bl , as shown in Fig. 4.

In the second phase, the user audits the TPA’s behav-
ior in a much longer period compared with the verifica-
tion period. We first show how is a single entry (with-
out loss of generality, {Bl;_o 1, Bly_y42, ..., Bl;} and the
corresponding proof) in the log file audited by the user.
The user first determines the verification time that TPA
should perform data integrity verification. Then she/he
obtains {Bli_yy1,Bli—yy2,..., Bl;} from the Ethereum
blockchain according to the agreed verification time, and
extracts the hash value of the entry from the transac-
tion. Next she/he regenerates the challenging message on
{Bli—p+41, Bli— 42, ..., Bl }, and checks the validity of the
corresponding proof by using the challenging message gen-
erated by herself/himself. If the checking passes, it means
that TPA performs the verification correctly. Multiple entries
can be audited simultaneously, and the auditing costs can be
amortized over these entries, which we show in Section 6.

4.2 Construction of CPVPA

A user U, a TPA, a cloud server C, and a KGC are involved
in CPVPA. The user U/ has an identity I D;,.

Phase 1. TPA verifies the data integrity.

Setup. With a security parameter ¢, KGC determines the
system parameters as follows:

e Determine the bilinear map e : G x G — G, where
G and G are multiplicative groups with the same
order p, g is the generator of G.

e Choose a random A € Z, as the master key and
computes Py; = AP as its public key.

o Choose five hash functions H(-), H(-), Ha(-), H3(-),
Hy(-), where H(-) : {0,1}* — Z,, Hi(-) ~ H4(") :
{0,1}* — G are cryptographic hash functions.

o Choose a pseudorandom permutation mye,(-) and a
pseudorandom function fe,(-) [43].

The system parameters are {e, G,Gr,g,p, H(:), Hi(-) ~
H5('); '/Tkey(')a fkey()}

The KGC generates the partial private key for i/ using
1Dy, as follows:

e Compute Quo =
Hy(IDy,1).
« Compute Dy o = Qz)),o and Dy = Qz’,\{,r

Hy(IDy,0) and Qua =

U chooses a random xz;; € Z; and computes pky = g*¥.
U’s signing key is ssky = {zu,Du,0,Du}, and the
corresponding public key is spky = {pku, IDy}.

Store.
e U transfers his/her data M into n blocks: M =
{mi}1§i§n~

e U randomly chooses an element name € Z, for file
naming, randomly chooses a one-time number A &
Z,, and computes 7 = H (name||n||A||spky).

e U randomly chooses r € Z, and computes R = ¢",
V = H3(A), W = Hy(A).

o Foreachi € [1,n], U computes T; = Hg( [|7||R), and
S; = (Dyo - VZ)™ - (Dyyq - Wo)HGITIR) e,

e U outsources M = {M,{Si}i=12,.n, R, A} to C.

o After receiving M, C first computes 7 =
H (namel|n||Al||spky), and then it verifies the cor-
rectness of the data by checking

6(H5i7g) = ( (Quo u1) Pur)

n

(le Whi)?pku)e(n Ti7 R)7

i=1

H(i|]|T||R). If the checking passes, C

’:]3 u’:]:

s
Il
_

x e

where h; =
accepts M.

Audit. To check the integrity of outsourced data, TPA
first generates a challenging message as follows:

o Extract {Bl;_y41,Bli—yy2,...,Bl;} from the
Ethereum blockchain based on the current time,
where ¢ denotes the number of blocks deep used
to confirm a transaction, ¢ denotes the height of the
block that is latest confirmed at the current time.

o Set ({Bli—p+t1, Bli—pt2, ..., Bl;},t) as the challeng-
ing message and send it to C.

After receiving ({Bli—p+1,Bli—p42, ..., Bli}, t)
from TPA, C first checks the validity, i.e., whether
{Bli—p41,Bli—y12,..., Bl;} are the correct ones in the
blockchain. If the checking fails, C rejects; Otherwise, C
generates the proof information as follows:

. Compute ki = hl(Blt_Lp_H‘|Blt_¢+2”...”Blt) and
k‘g = hg(Blt_Lp_i_l'|Blt_¥,+2||...”Blt), where hl() is
a secure hash function and maps {0,1}* to the key
space of Tgey(-), and hs(-) is a secure hash function
and maps {0, 1}* to the key space of frey(-).

o Compute ig = 7, (§),vie = fr,(£), & = 1,2,...,¢,
where c is the number of data blocks that should be
checked, and is determmed by L.

« Compute S = H S, 15, W= Z Vi My .
=
e Send {S, R, u, A} to TPA.

Upon receiving the proof information from C, TPA
checks the integrity of the data as follows:

o Compute 7 = H(name||n||A||spky).

o Compute k; = hi(Bli—pt1||Bli—pt2||--
kg = ho(Bli—g41||Bli—pi2||...[| Bly).

o Compute ig = 7y, (§), vie = [, (), =1,2,...,c

o Check wether

|| Bl;) and

e(Svg) = QL{O HQU% 15a-F)]W HTIL,L:&;R
X e(VH- H W@iehe phy), (1)
e=1

where h;, = H(i¢||T||R), Ts, = Ha(i¢||T||R).

e If the equation 1 does not hold, TPA takes the
checking result as Reject; Otherwise, TPA takes the
checking result as Accept.

Phase 2. The user checks the TPA’s behavior.
LogGen. TPA generates a log file as follows:
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e For each verification task, generate an entry as e U checks

{Blt_@+1,Blt_@+2,...,Blt,t,s,ﬂ}. c (1) (1)
o Store the entry to a log file A in chronological order, e(S W, g) = H Q Pur)

as shown in Table 1.
o Compute the hash value (hereinafter, we take the first NN COEN

verification task as an example): X V“ H W e phy)

£=1
c (1)
0 = H(BIY 1| B, ol 1BV 1Ol |u) < (LT R, @

e=1

where 1\ = H(il"||7||R), T" = Hy(i{"||7||R).
If the checking fails, U sets the auditing result as
Reject; Otherwise, the auditing result is Accept.

o Generate a transaction Tx; shown in Fig. 4, where
the data field is set to 0;,, and upload it to the
Ethereum blockchain. Ideally, Tx; is recorded in the

block whose height is ¢ + ¢ + 1 and hash value is In practice, a user needs to audit multiple entries to

(1) . .
Bliyoi1- ensure the correctness of the TPA’s behaviour during an
epoch. To reduce the auditing costs, multiple entries in A
can be audited simultaneously. Specifically, the user picks a
random b-element subset of the set [1,1]. Let {l1, 2, ..., I} be
TABLE 1 the picked subset. The user then audits the TPA’s behaviour
The log file A in CPVPA by checking
R b (l ) b (lr,) (Ln) 5,?)
g D B () 51 6) ([T s".9) = eIl Qb0 - H H Q s Par)
t—pt 1 Dl g0y Bly H -1 o 1em1
BI® ., Bl BI® e 5@ ®) = =1 n=1é=
t—pt 1 Bli_pyos - Bly L b ) C ) )
S S In i hy
Bl(l) Bl() Bl(l) t@) N (1) xoe H H H W : ‘ ka/{)
t—pt+1 Pl Dy H n=1 n=1¢=1
b ¢ ) L)
x e (T;,") "« ,R).
| n=1¢=1
Bliyy Blesgir Tx, .
‘ From If the check fails, U sets the auditing result as Reject;
revBlockHas| t+o 's address . oy .
‘ﬂmie r‘H T'?me Nm:" (e TOTEA “ Otherwise, the auditing result is Accept.
[eraerom Morkioron: vae Correctness. The correctness of CPVPA depends on the
0 . .
Data correctness of equation (1) and (2), and we provide the
Tx || Tx || T | TX || Txy || Tx | HBE 1B, ol | BV 0] SO . .
(el (o] [ e signature correctness proof in the following;:
Sigatpa(TX)

A

Fig. 4. The Transaction Tx; in PVPA

CheckLog. We first show that how to check the validity
of a single entry (e.g., the first row) in A:

o« U first acquires t(!) and t() + ¢ + 1, and derives
the physical time when the verification is performed
from () and t(") 4 ¢ + 1. If the time does not match
the agreed one, U sets the checking result as Reject.

e U acquires Blil) from the Ethereum blockchain, and
extracts 0:, from the block whose hash value is
Blt Yot1- If the extraction fails, U sets the checking
result as Reject.

e U checks that whether 6;, matches the entry in the
first row of A.

« U computes 7 = H(namel|n||Al||spky), iél) =

Tky (E)a 75 sz(f), where
ko= h(BLY,[|BLD, Ll IBIEY),
ke = ho(BIY,[[BIY, |l 1BLY).

e(S,9) =

e(H Si.5.9)
_ HQU75"L75

B(H Ve ,pk‘z,{)

571

X HQ“ e . Par)e HW% <, pky)
=1

X l_ITUL£ R)

= HQ e , Par)

C
x e(VH. H W™ pkye
£=1

H T% .R).

4.3 Remark and further discussion

In CPVPA, we do not set the timestamp recorded in the
block as the transaction time (i.e., when the verification is
performed), since the timestamp recorded in the Ethereum
block might suffer from up to 15 minutes error. In CPVPA,
the user derives the transaction time from the height of the
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block which includes the transaction, due to the property of
chain-growth discussed in Section 3.6.

Now, we show how to compute the height-derived phys-
ical time when a block was generated. An Ethereum block
averagely takes 15.85579752 seconds (this is counted based
on the data released by Etherscan®) to be mined from the
time of genesis block (which was generated on 2015-07-
30) to the time of block with height 5784426 (which is the
last block generated on 2018-06-15). We denote timesrga426
the height-derived physical time that transactions includ-
ed in the block with height 5784426 were generated.
times7gaane = timeg + 15.85579752 x 5784426 (seconds),
where timey is the physical time when the genesis block of
Ethereum was generated (2015-07-30, 03:26:13 PM +UTC).

In CPVPA, the main goal of utilizing blockchain-based
currencies is to resist procrastinating auditors. CPVPA also
achieves an appealing feature, which we believe might be
of independent interest. The auditor cannot pre-perform the
scheduled verifications due to the unpredictability of block’s
hash value. In other words, if the auditor is required to
verify the data integrity at a time, it has to perform the
verification at the time. Our proposed mechanism used to
resist procrastinating auditors is well compatible with most
of existing public verification of data integrity schemes.

We stress that we construct CPVPA on PoW-based
blockchain systems, such as Bitcoin and Ethereum. Theo-
retically, CPVPA can also be constructed on the blockchain
systems that are based on other consensus algorithms (e.g.,
proof of stake (PoS) [44]), since the ¢-chain consistency,
(¢, p)-chain quality, and chain growth are fundamental
properties for secure blockchain systems. However, due
to the differences on the block structure of the PoS-based
blockchains, constructing CPVPA on different PoS-based
blockchains requires different constructions. Furthermore,
as discussed before, for a public blockchain system, the
more participants in it, the stronger security guarantee it can
provide. The number of participants in existing PoS-based
blockchain systems, e.g., CARDANO [44], is much less than
that in Ethereum. Therefore, if we construct CPVPA on these
blockchains, the costs that the adversary breaks the security
of CPVPA are reduced significantly.

5 SECURITY ANALYSIS

Lemma 1. The signature o; = {S;, R} in CPVPA is existen-
tially unforgeable under adaptively chosen-message attack.

To prove this lemma, we first define two games cor-
responding to the type I adversary and type II adversary,
respectively.

Game I (for adversary Aj):

Setup: a challenger p runs the Setup algorithm and ob-
tains the public parameters. p sends the public parameters
to AI'

Query:

« Public-Key-Replacement queries PK R(I Dy, spky,):

Aj is able to choose a new public key spk, =

{Qu.,0, Qu,1,pk{;} and sets spkzl/, as the new public
key of U. p will record this replacement.

5. https:/ /etherscan.io

9

o Sign queries S(A;, m;, IDy,spky): A can request
U'’s signature on a message m,; under a state informa-
tion A;. On receiving a query S(A;, m;, I Dy, spky),
¢ generates the corresponding signature o¢;, and
sends o; to AJ.

Forgery: For the IDy, Aj outputs the corresponding
public key spké,, a messages m”*, a state information A*,
and a signature o*.

We say that Ay wins Game I if and only if:

1) o* is a valid signature on m* with state information A*
under I Dy and spky,.
2) m* is not submitted during the sign queries.

Game II (for adversary App):

Setup: a challenger @ runs the Setup algorithm and
obtains the secret and public parameters. p sends the public
parameters and the KGC’s master key to Ajy.

Query:

o Sign queries S(A;, m;, 1Dy, spky): A can request
U'’s signature on a message m,; under a state informa-
tion A;. On receiving a query S(A;, m;, I Dy, spky),
g generates the corresponding signature o;, and
sends o; to Apy.

Forgery: For the I Dy, Ay outputs a messages m”*, a state
information A*, and a signature o*.
We say that Ay wins Game II if and only if:

1) ¢o* is a valid signature on m* with state information A*
under I Dy, and spky,.
2) m* is not submitted during the sign queries.

Proof: We first prove that the advantage that Aj wins
Game I is negligible.

Let p be a CDH attacker who receives a random instance
(9,9%, g") of the CDH problem in G and needs to compute
g°*. Here, we show that if Aj is able to forge a signature
with a probability ¢, g is able to solve the CDH problem by
using Ajp’s output with the same probability. Due to space
limitation, we only show the proof sketch and omit some
interaction details. In fact, this proof follows the proof of
[34].

At the beginning of the game, p sets P,y = ¢ as an
instance of the CDH problem, and simulates H(-), Hy(-) ~

F4

H4, (+) as random oracles.,In the game, p sets Q0 = gu0 -
gau*,ob, Qu,l — ga;{,l .gau*,lb, T = ga, V = gﬁ*, and W =
g'Y*, where o7 g, o/bﬁo, gyt a;jl, ¢*, B*,v" € Z, are chosen
randomly. For any signature query on any message m under
any state information, p responses with the corresponding
signature as follows.

o gpsets HRR) = —(maéj}o)/aéj,l.
e g randomly choose r € Z,, computes R = g" and

S = geima . g(BTm g ((megioai)/egi )
g (eior m)/ (e ) s,
e response with (S, R).

Finally, Aj outputs a tuple {m*,o*, A* pk{,}, where
o* = {S* R*} is a valid signature of m* under A* and
k.
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Since ¢* is a valid signature, we have

e(S*,9) = e(Qilo- QL Pu)
e(V)™ - (W5 phfy)
e(T*, R¥), 3)
where H* = H(R*), T* = Hy(R*). Here, we discuss the

security of a single signature, hence the form H* is slightly
different from the one in CPVPA. This difference should not
reduce the security of S;. Note that

e(S*, 9) e(g™ ot . gmaiioab | gH adi a g H oy ab
X (ki)™ k)T (R g)
We have
g = (8% (g Cuor . gHTedaa  (plk ymT AT

X (ki)™ (R e )

By this way, g can solve the CDH problem.

For AH, let p be a CDH attacker who have received a
random instance (g, g%, g°) of the CDH problem and needs
to compute g% by using Ajr’s output.

At the beginning of Game II, p randomly selects A, xy/ €
Z, and obtains the public parameters. Then o sends A and
the public parameters to AH. In Gezme II, p sets T = gﬁ*,
V = g7 g'Y “a, W = ¢ - ¢°"% and pky = g*ub,
where %, v* 7 ,g * € Z, are chosen randomly. For
any signature query on any message m under any state
information, g responses with the corresponding signature
as follows.

. psets H(R) = —(y"m)/(s™).
e g randomly choose r € Z,,, computes R = g" and

S = Hy (U0 H(U,1)-
> g—((s‘*’v/*m)/s )qu.gﬁ’ T

'y mTy

e poutputs (S, R) as the response.

Finally, Ajp outputs a tuple {m*,o*, A*}, where 0* =
{S*, R*} is a valid signature of m* under A*.

Since o* is a valid signature, it satisfies the equation 3.
By our setting, we also have

e(S*9) =

* /
% gwu bm*y *a

6( Am”™ AH™

. Ty bm™y*
u,0 U1 9

. gxubH*g*

X grubHS T (R g)
where Qu0 = Hi(IDy,0), Qui = Hi(IDy,1), and H* =
H(R). p can solve the CDH problem:

gab = (S* ( uo' zy{ (R*)ﬁ*

! ’
% g(ajum Y taxy H*s )b)fl)(a:um*r *tayH* g *)_1‘

This concludes the proof of this lemma. O
Claim 1. CPVPA achieves the authenticity defined by
[14], that is, if the cloud server passes the TPA’s verification,
it must possess truly the specified data intact.
Proof: To prove the authenticity of CPVPA, we define
a sequence of games with interleaved analysis.

10

Game 0. This game is simply the challenge game between
TPA and the cloud server defined in Section 4.2.

Game 1. This game is the same as Game 0, with the
exception of one difference. The adversary is trained to be
able to forge a part of the proof information in Audit. Since
o; = {S;, R} in CPVPA is existential unforgeable, here, the
challenger records each proof information generated by the
adversary, and declares failure and aborts if

1) the proof information is a valid one;
2) 1 in the proof information is different from the expect-
ed u.

Analysis. As Game 1 defined, in the case that the chal-
lenger aborts, the proof information generated by the ad-
versary is {S, R, i/, A}. By the correctness, we have

vi,. h;
QZ/{O HQ § §aPM)
£=1

x eV T W™, phy)
£=1

H T, R), 4)

e(Sag) =

and for the adversary’s output we have

Vi, B
6(579) = Quo ZQ §c PM

x e(VH . H W@iehic pky)
=1
H T, R). 5)

Sincep £ p/, i=p— 75 0. We further have
Quo # Quo V" # V"

Furthermore, we also have

G(QZL{,OaPM) (V“apku) = e(Qu oa ) (VH 7pku)
Rearranging terms yields:
e( /M YR ) _ e( Iz 3 . V,u'zu’P)’
that is, (Qu,o - VEuyp Qo - V). We set w =

Qi\t,o - V*4, and for arbitrary w, we can represent it as
w = (g") - (g, where ¢*,(* € Z,, g*,g* € G are
random elements. Similarly, there exists x € Z, such that
gt = (g, )X. Here, the CDH problem is that given g'* and
g = (g7)x, computing x. By our setting, the solution of
CDH problem is y = —(¢*/¢¥).

Game 2. This game is the same as Game 1, with the
exception of one difference. The adversary is trained to be
able to forge any part of proof information in Audit. That is,
the challenger records each proof information generated by
the adversary, and declares failure and aborts if

1) the proof information {S "R, A} is a valid one;
2) the proof information {S "R, A} is different from
the expected {S, R, u, A}.

Analysis. We consider the user as the challenger. At the

beginning of the game, the challenger sets Py = ¢° as an
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instance of the CDH problem Then the challenger randomly

chooses a07a0,a1,a1 € Z, and sets H; = —mzaoal -

Qu,o = g - (¢g')*, and Qui = g (g )"‘1 For random
values r and xy, the challenger computes (.5;, R;):

Ri = gri

Si = (Duo V™)™ Dy, - W)™ - T7

’ ’
(miao—miaoalal_l)s

. Vmiil?u
,12?”)_1 T
i

= g

The challenger continues to interact with the adversary.

When the challenger aborts, the received proof information

is {S",R', /', A}, while the expected one is {S, R, 1, A}. By
the correctness, we have the equation 3 and

’ ! ¢ Vg ﬁl
e(S,9) = e(Quo- HQufl ¢, Pr)
£=1
< e(Vr T whehe phy) - e (T1 ) R).
¢=1 £=1

By our setting, (S R") # (S,R). Clearly, u # 1, and we
defme L= [ — [ Here, the CDH problem is that given

(g, g g°) computing (g )g

. Now we have (5 /S, P) = e(Q, - Voul .
I ((:r;.’g)f“ /T})"<,g). Recall that Quo = g¢*° - (g'),
we can further get §'/S = gshoo . (g/)sfw‘; - VEud
[T, (T3 ) /T’ )"i¢. Finally, the CDH solution:
(6) = (857 (gm0 L (v
c
! r/_ T\ Vi (’a/)’l
< JIUT )" T )e) e
e=1
This concludes the proof. O

Lemma 2. In a PoW-based public blockchain system,
such as Bitcoin and Ethereum, an adversary cannot pre-
determine the hash value of the block generated at a future
time.

Proof: We first introduce the preimage resistance of a
cryptographic hash function.

A hash function is preimage resistant if given a uniform
y it is infeasible for a PPT adversary to find a value = such
that H(x) = y [43].

With the preimage resistance of hash function, the proof
of this lemma is straightforward.

Assuming the block of wunderlying blockchain
has the form shown in Fig. 4, where Bl, =
H(Bl;_1||Nonce|| Time||MerkleRoot), and H(-) is a secure
hash function with preimage resistance. If the adversary
can pre-determine Bl;, the preimage resistance of H(-) is
broken.

This concludes this lemma. O

Claim 2. CPVPA is able to thwart malicious auditors who
can perform two attacks to break the security:

1) Forging an entry in the log file A to pass the user’s
audit;

2) Sampling bias challenging messages to generate bias
verification results.
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Proof: For the first case, we will discuss it in two
aspects.

First, TPA forges an entry {Bl;_y41,- -, Bly, Sl, R/, ,u,}
that can pass the user’s auditing. However, due to the
authenticity of CPVPA, it is computationally infeasible to
generate the entry. Specifically, since we have proved that if
the data loss occurs, the cloud server can pass the auditor’s
verification with negligible probability. If TPA is able to
forge the entry that passes the user’s auditing, the cloud
server is able to break the authenticity of CPVPA by follow-
ing the TPA’s method.

Second (for the procrastinating auditor), at the time
BlockTime; + timey,time; > 0, TPA forges an entry to
convince the user that the entry is generated at the time
BlockTime;. In this attack, TPA needs to generate a trans-
action and record it to a block that has been chained in
the Ethereum blockchain. However, due to the security of
Ethereum, this attack is computationally infeasible.

For the second case, we will analyze it in three aspects.

First, the hash values of blocks used to compute the chal-
lenging messages cannot be pre-determined and specified
by any entity, due to Lemma 2.

Second, the blocks used to compute the challenging
messages would not be generated by the adversary, due to
(¢, p)-chain quality of the Ethereum blockchain [39], [45].

Third, the only attack the malicious auditor can perform
is to bias the hash value of the blocks by incentivizing the
miners who mine a new block to throw the newly mined
block away and continue to mine if the hash value of the
block does not meet the adversarys requirement. Here, the
adversary’s requirement to the biased hash value is that the
indexes of challenged blocks that generated on the hash
value of the blocks exclude the corrupted ones, i.e., for
§=12,--+,¢ 4 = Ty (Bl,_,1||Bli_p sl Bl)(§) would
not include the indexes of corrupted blocks. Note that the
adversary can bias {i¢}(§ = {1,2,---,¢}) only by biasing
Bl;. Now, we compute the probability that the adversary
successfully biases Bl;. The adversary model and game
model follow the ones proposed by Pierrot et al. [42].

For illustration, we assume an adversary A who aims
at biasing Bl; to break the security of CPVPA. In our
setting, the indexes of corrupted data blocks form a set ¢,
A wins whenever anyone of indexes of challenged blocks
generated by Bl; donot falline. Let T : ¢ — {0, 1} be the
characteristic function that predicates whether a given value
meets A’s requirement.

We denote by P the probability for a extracted hash
value of a block Bl to satisfy Y(Bl) = 1. We stress that
P is essentially a probability that the corrupted data set can
pass the auditor’s verification in CPVPA. As evaluated by [9],
[16], [31], if p fraction of data is corrupted, then randomly
(uniformly) sampling ¢ blocks would reach the detection
probability Pyetec = 1 — (1 — p)©. Therefore,

P =1~ Pyetec = (1—0)0 (6)

A’s strategy here is straightforward: he will focus all
his computational power on mining the next block and
incentivize the miners to throw the newly mined blocks
away and continue to mine if T(BI) = 0, where Bl denotes
the hash value of the newly mined block.
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Fig. 5. Probability that the adversary wins

We denote by P4 the probability that A wins. According
to [42], we know that:

P
1— 91— P)

where ¥ denotes the proportion of .A’s mining hashrate. In

our security analysis, we assume ¥ < 51%, otherwise, the

security of underlying blockchain would be broken.
According to Equation 6 and 7, we have

_ (1-p)*
01— (—p))
We show the probability that .4 wins in Fig. 5, where

p = 1%. For instance, when ¥ = 1/4, p = 1%, ¢ = 460, the

probability that A wins is 0.01305; When ¢ is set to 1/2

and others parameters remain the same, P4 is increased

from 0.01305 to 0.01983. Note that 4 = 1/2 denotes that

the adversary is very powerful, but the probability that .4

wins is still very small.

The above analysis demonstrates that CPVPA is able to
thwart malicious auditors.

This concludes the proof of this claim. O

In CPVPA, it is easy to prove that the security holds
under the cases that the user colludes with TPA to circum-
vent the cloud server, and the user colludes with the server
to circumvent TPA. Here we would not elaborate on it in
details.

Py= @)

Py (8)

6 PERFORMANCE EVALUATION

We evaluate the performance of the proposed scheme in
terms of communication overhead and computation over-
head. All the experiments are conducted on a computer,
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it is equipped with Window 10 system, an Intel Core 2 i5
CPU, and 8GB DDR 3 of RAM. We utilize C language and
MIRACL Library version 5.6.1. We select 80 bits security
level for analysis, the corresponding elliptic curve is a MNT
curve, its base field size is 159 bits and its embedding degree
is 6.

The difference for choices on the sector number s has
been discussed in [14], and we only give the atomic op-
eration analysis for the case s = 1 for simplicity in the
following. Furthermore, we also assume the total number
of data blocks is less than 10000.

6.1 Communication overhead

We first show the communication overhead between TPA
and the cloud server in Fig. 6, and also give a comparison
with SWP [14]. In CPVPA, the communication overhead
between TPA and the cloud server is constant, while it
in SWP is proportional to the number of challenged data
blocks.

6.2 Computation overhead

We first estimate the computational costs in terms of basic
cryptographic operations, which is shown in Table 2.

TABLE 2
Notation of operations

Symbol Operation

Hashg hash a value into G

Ezxpa exponent operation in G

Mulg group operation in G

Mulg, multiplication in Z,,

Pairg,, computing pairing e(x, ¢) where x,s € G
Cy computing a PRF f(-)

Add Z, addition in Z),

Hashz, hash a value into Z,,

We show the computation costs on the server side of
CPVPA, SWP [14], SCLPV [18], and CLPA [24] in Table 3,
where c denotes the total number of challenged data blocks.
Since the challenging messages in CPVPA are computed on
the hash value of the Ethereum blockchain, this requires
additional computation costs. However, such additional
costs ensure that the communication overhead between the
server and TPA is constant, and also protects CPVPA from
malicious or/and procrastinating auditors.

TABLE 3
Computation costs on the server side
Computation costs on the server
SWP [14] c-E:rpG+c-MulG+c-MulZp+c-Adde
CLPA [24] ¢ Expg +c- Mulg +c- Mulg, +c-Addg,
SCLPV [18] 2c- Expg +2c- Mulg +c¢- Mulz, +c- Addz,
CPVPA c~EmpG+c~MulG+c~MulZp+c-Adde+20~Cf

We show a comparison of computation costs on the
auditor side in Table 4, and show the computation delay
on the TPA of CPVPA in Fig. 7.
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TABLE 4
Computation costs on the TPA side

Compared with existing schemes, CPVPA requires the
user to audit the TPA’s behavior at the end of each epoch.
The costs of user’s auditing are the same as the TPA’s
verification costs, when the user checks a single entry. How-
ever, when the user checks multiple entries simultaneously,
the auditing costs can be amortized over these entries and
reduced significantly. We show the user’s auditing delay in
Fig. 8.

According to the analysis, we can see that the user is able
to audit the TPA’s behavior within 1 minute in the case of
50 entries. Furthermore, as discussed before, the period that
the user audits the TPA’s behavior is much longer than the
one that TPA verifies the data integrity, and these additional
costs ensure that CPVPA can resist procrastinating auditors.
Therefore, these computation costs on the user side can be,
to a large extent, tolerated in practice.

From the system perspective, CPVPA does not require
the user, the auditor, and the cloud server to be a full
node of Ethereum network, since a light client protocol
of Ethereum has been released® which enables a user to
conduct Ethereum transactions without maintaining and
storing the Ethereum blockchain. The block information of
the Ethereum blockchain is released by multiple sites and
systems in real time, such as Etherscan’ and Etherchain®,
which allow the user, the auditor, and the cloud server to
securely extract the block information from the Ethereum
blockchain. Therefore, the user, the auditor, and the cloud
server in CPVPA would not incur heavy burden in terms of
communication and computation costs.

T
300

The number of challenged data blocks

Fig. 7. The verification delay on the TPA side

T T
400 500 600 2

The number of audited entries

T
10 15 25 30

Fig. 8. The auditing delay on the user side

7 RELATED WORK

To ensure the integrity of data stored on an untrusted

Computation costs on TPA server, Juels et al. [30] proposed the “proofs of retrievability”
SWP [14] 2- Pairg, +(c+1)- Expg +¢- Mulg +¢- Hashg (POR) technique. However, in [30], public verification is not
CLPA [24] 2. Pairg, + (c+3) - Expa + (¢ + 3) - Mulg + considered, and hence the data owner needs to verify the
(c+1)- Hashg +2- Hashg, data integrity periodically. This requires the data owner
SCLPV [18] | 4- Pairg, + (2c+4) - Expg + (2c+2) - Mulg + to keep online for verification. As such, the data owner
5-Hashg + 2c- Hashz, +2c- Mulz, has to bear heavy communication and verification burden
CPVPA 4-Pairgy +(3c+2) - Expg +3c- Mulg +(c+4)- to retrieve and use the data. At the same time, Ateniese
Hashg +(2¢+3) - Hashz, +2¢- Mulz, +2c:Cy et al. [16] proposed the “provable data possession” (PDP)

technique, which is the first scheme that considers the public
verification, where the data owner is able to employ a
third-party auditor to check the data integrity on behalf
of her/him. Later, Shacham et al. [14] proposed the first
compact POR scheme with full proofs of security against
arbitrary adversaries in the strongest model proposed by
Juels et al. [30]. Following the Shacham et al.’s work, several
public verification schemes have been proposed [9], [13],
[15], [32], [46]. These schemes are built upon a homomorphic
signature technique.

Privacy preserving public verification has also attract-
ed attentions in the recent literature. A privacy-preserving
public verification scheme enables the auditor to verify the
integrity of oursourced data without learning the content
of the data. Most of existing privacy-preserving schemes,
such as [9], [15], [31], [32], require the cloud server to utilize
a random mask to blind the proof information such that
the auditor can check the validity of the proof information
without extracting the data content. For our scheme, to
protect users” data against the auditor, we encrypt the data
before generating the tags. Since in CPVPA, we consider that
the auditor may collude with the cloud server, the cloud
server would straightforward send the data to the auditor
to violate the data privacy of users.

The above schemes are built on certificate-based cryp-
tography and thereby are confronted with the certificate
management problem. To avoid managing certificates in
a public verification scheme, some schemes [10], [47] con-
structed on the identity-based signature schemes were pro-
posed. However, these schemes are subject to an inherent
drawback: the key escrow problem [28]. Wang et al. [23]

proposed the first certificateless public verification scheme.
Then some certificateless public verification schemes with
enhanced security were proposed [18], [24]. These schemes
are constructed on the homomorphic certificateless signa-
ture schemes. Therefore, the auditor in these schemes does

6. https:/ / github.com/ethereum /mist/releases
7. https:/ /etherscan.io/blocks
8. https:/ /www.etherchain.org/
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not need to manage the users’ certificates without con-
fronting with the key escrow problem.

Furthermore, for the existing schemes, the auditor is
assumed to be honest and reliable. However, this is a very
strong assumption as corruption of auditors could happen
in practice. Recently, Armknecht et al. [17] proposed the first
PoR scheme that thwarts malicious auditors, and Zhang et
al. [18] proposed the first public verification scheme with
resistance against malicious auditors. These schemes cannot
resist procrastinating auditors who may not perform the
data integrity verification on schedule. A procrastinating
auditor can deviate from the primary objective of public ver-
ification that detect the data corruption as soon as possible.
It is worth clarifying that resistance against procrastinating
auditors is vitally important for public verification schemes
in practice. More detailed survey on public verification of
data integrity can be found in [48].

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a certificateless public ver-
ification scheme against the procrastinating auditor, namely
CPVPA. CPVPA utilizes the on-chain currencies, where each
verification performed by the auditor is integrated into a
transaction on the blockchain of on-chain currencies. Fur-
thermore, CPVPA is free from the certificate management
problem. The security analysis demonstrates that CPVPA
provides the strongest security guarantee compared with
existing schemes. We have also conducted a comprehensive
performance analysis, which demonstrates that CPVPA has
constant communication overhead and is efficient in terms
of computation overhead.

For the future work, we will investigate how to con-
struct CPVPA on other blockchain systems. Since the main
drawback of proofs of work (PoW) is the energy consump-
tion, constructing CPVPA on other blockchain systems (e.g.,
proofs-of-stake-based blockchain systems) can save energy.
However, it requires an elaborated design to achieve the
same security guarantee while ensuring the high efficiency.
This remains an open research issue that should be further
explored. We will also investigate how to utilize blockchain
technology to enhance cloud storage systems in terms of
security, performance, and functionality. As the outsourced
data processing (e.g., outsourced computation and search-
ing over encrypted data) has also played an important role
in current information age, we will explore the integration
of blockchain into existing schemes which should have a
deep impact on outsourced data processing.
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