
ar
X

iv
:1

80
9.

00
23

2v
1

 [
cs

.N
I]

 1
 S

ep
 2

01
8

1

Content Popularity Prediction Towards

Location-Aware Mobile Edge Caching

Peng Yang, Ning Zhang, Shan Zhang,

Li Yu, Junshan Zhang, and Xuemin (Sherman) Shen

Abstract

Mobile edge caching enables content delivery within the radio access network, which effectively

alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources,

the most popular contents should be identified and cached. Observing that user demands on certain

contents vary greatly at different locations, this paper devises location-customized caching schemes to

maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit

rate. For the case where the model noise is zero-mean, a ridge regression based online algorithm with

positive perturbation is proposed. Regret analysis indicates that the proposed algorithm asymptotically

approaches the optimal caching strategy in the long run. When the noise structure is unknown, an

H∞ filter based online algorithm is further proposed by taking a prescribed threshold as input, which

guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require

no training phases, and hence are robust to the time-varying user demands. The underlying causes of

estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments on real

world dataset are conducted to validate the applicability of the proposed algorithms. It is demonstrated

that those algorithms can be applied to scenarios with different noise features, and are able to make

P. Yang and L. Yu are with the School of Electronic Information and Communications, Huazhong University of Science and

Technology, Wuhan, Hubei 430074, China (e-mail: yangpeng@hust.edu.cn; hustlyu@hust.edu.cn).

N. Zhang is with the Department of Computing Sciences, Texas A & M University-Corpus Christi, Corpus Christi, TX 78412,

USA (e-mail: ning.zhang@tamucc.edu).

S. Zhang is with Beijing Key Laboratory of Computer Networks, School of Computer Science and Engineering, Beihang

University, Beijing 100191, China (e-mail: zhangshan18@buaa.edu.cn).

J. Zhang is with the School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287,

USA (e-mail: junshan.zhang@asu.edu).

X. Shen is with the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1,

Canada (e-mail: sshen@uwaterloo.ca).

This paper was accepted in part by IEEE GLOBECOM 2017 [23].

http://arxiv.org/abs/1809.00232v1

2

adaptive caching decisions, achieving content hit rate that is comparable to that via the hindsight optimal

strategy.

Index Terms

Mobile edge computing, dynamic content caching, popularity prediction, location awareness.

I. INTRODUCTION

The past decade has witnessed a significant growth of mobile traffic. Such growth puts

tremendous pressure on the paradigm of Cloud-based service provisioning, since moving a large

volume of data into and out of the cloud wirelessly requires substantial spectrum resources,

and meanwhile may incur large latency. Mobile Edge Computing (MEC) emerges as a new

paradigm to alleviate the capacity concern of mobile networks [1]. Residing on the network

edge, MEC makes abundant storage and computing resources available to mobile users through

low-latency wireless connections, facilitating a number of mobile services like local content

caching, augmented reality, and cognitive assistance [2].

Among these services, content caching at the network edge is garnering much attention [3]-

[17]. In particular, with the prevalence of social media, multimedia contents are spreading among

mobile users in a viral fashion, putting high pressure on the network backhaul [9], [11]. It is

pointed out that, by caching contents on network edge, up to 35% traffic on the backhaul can

be reduced [2]. Unfortunately, compared with the increasing content volume, the storage size

at edge node (EN) is always limited. It is impossible to cache all the contents locally. Hence,

identifying the optimal set of contents that maximizes cache utilization becomes crucial.

Content popularity is an effective measure for making caching decisions. Extensive works

have been devoted to popularity-based content caching. According to the features of content

popularity profile, those works on content caching can be classified into three categories: 1)

known popularity profile [11]-[13]; 2) fixed but unknown popularity profile [16], [17]; and 3)

time-varying and unknown popularity profile [19], [20]. In case of fixed and unknown popularity

profile, learning algorithms have been proposed under different network settings. In case of time-

varying and unknown popularity profile, context information of the request, including system

states and user characteristics, is exploited to make content hit rate predictions. To improve the

accuracy of popularity prediction, the context space needs to be subtly designed since there is

endless context information that could be taken into consideration. It is often difficult to directly

3

identify the factors that influence content popularity. More importantly, using user information

for context differentiation is subject to privacy regulations and may not be applicable in practice.

In this paper, we investigate mobile edge caching with time-varying and unknown popularity

profile. Instead of relying on user information for context differentiation, we explore location

features of each EN to improve the accuracy of popularity prediction, with the rationale outlined

as follows. First, locations can be divided into categories with distinct social functions, such as

residential area and business district. Meanwhile, users in different places have diverse interests

[22]. As indicated by real-world measurement studies [35], the distribution of content popularity

for even adjacent Wi-Fi APs and cellular base stations are different, and existing content caching

schemes do not take such fine-grained popularity difference into consideration [36]. To further

improve the content distribution in mobile context, it is crucial to investigate content popularity

with location awareness. Given that there is no established model to characterize location features

and user demands, we take some initial steps to devise a model where user demand of a certain

content is treated as a linear combination of content features and location characteristics with

unknown noise. It follows that, the popularity prediction problem boils down to the estimation

of location feature vector of each EN in the presence of noise. In practice, the noise process

is affected by various factors. Firstly, it is affected by location-dependent factors, such as user

interests, the number of users and the social function of the coverage area of each EN. Secondly,

it is also affected by content-dependent factors, which include genre, length, and frame quality

for video contents. Unfortunately, it is often difficult for content providers and edge servers to

understand the statistical nature of the underlying noise process in such complicated context

space. To solve the location feature estimation problem, two online prediction algorithms are

proposed for different scenarios.

To start with, we consider the tractable zero-mean noise scenario as the first step. A ridge

regression based prediction algorithm (RPUC) is proposed to estimate the location feature vector.

To account for the impact of noise, a positive perturbation is added to the result as the correction

of the prediction. By comparing to the hindsight optimal caching policy, theoretical analysis

shows that the RPUC algorithm achieves sublinear regret, i.e., it asymptotically approaches the

optimal strategy in the long-term.

Furthermore, we consider practical cases where noise structure is unknown a priori. To ensure

robust prediction, we resort to the H∞ filter technique, which enables us to obtain guaranteed

accuracy even in the worst-case scenario. In particular, taking a prescribed accuracy threshold

4

as an input, we propose an H∞ based prediction algorithm (HPDT), which is robust as long as

the noise amplitude is finite.

Both RPUC and HPDT require no training phases, and hence are adaptive to the time-varying

user demand. Numerical analysis indicates that, the regret of RPUC originates from the bias and

variance of ridge regression, as well as the artificial perturbation. Note that the HPDT algorithm

is conservative in that it makes no assumption on the noise. Yet, it is still able to make unbiased

estimation on the location feature vector. Extensive simulations on real world traces demonstrate

that those two algorithms can be applied to scenarios with different noise features, and both of

them are able to make adaptive caching decisions, achieving content hit rate that is comparable to

that using the hindsight optimal strategy. The contributions of this work on mobile edge caching

are three-fold:

• We propose to exploit the diversity of content popularity over different locations. We

establish a linear model for content popularity prediction, taking into account both content

and location features.

• We develop two popularity prediction algorithms that deal with different noise models. Both

algorithms are able to make location-aware caching decisions. Moreover, they require no

training phases, and hence can adapt to dynamic user demand.

• We demonstrate the effectiveness of the proposed algorithms through theoretical analysis. It

is proved that performance of the RPUC algorithm asymptotically approaches that using the

hindsight optimal strategy, while performance of the HPDT algorithm hinges upon noises.

Experiments on real dataset crawled from YouTube show that, the long-term content hit

rates of the proposed algorithms are comparable to that via the hindsight optimal strategy.

The remainder of the paper is organized as follows. Section II reviews related works on content

caching in wireless networks. Section III describes the system model, including the mobile edge

caching architecture and the formal problem formulation. In Section IV, we propose the RPUC

caching algorithm for the case of zero-mean noise, and give the detailed performance analysis.

For the case of unknown noise model, we present the HPDT algorithm as well as detailed regret

analysis in Section V. Numerical analysis and experimental results of the two algorithms are

provided in Section VI, followed by concluding remarks in Section VII.

5

II. RELATED WORK

Mobile user’s capacity is greatly augmented in the era of MEC. As a result, mobile service

provisioning is expected to have further improved quality of experience (QoE) [2]. To this end,

various mobile edge architectures have been proposed. Tandom et al. proposed to deploy edge

resources within radio access networks. They characterized the relationship between latency and

caching size, as well as latency and fronthaul capacity, from an information-theoretic perspective

[3]. Yang et al. introduced an edge resource provisioning architecture based on cloud radio

access network (C-RAN), and devised a cloud-edge interoperation scheme via software defined

networking techniques [4]. Tong et al. designed a hierarchical edge architecture, aiming at making

efficient use of edge resources when serving the peak loads from mobile users [5]. As the

5G wireless network is expected to incorporate diverse access technologies, in this paper, we

consider edge caching in the context of heterogeneous networks. Potential EN deployment can

be capacity-augmented base stations, WiFi access points and other devices with excess resources.

As an effective approach to improving QoE in 5G systems, edge caching has received extensive

attention [6]. Specifically, various works have been done on video content caching, since video

contents are forecast to be dominant in 5G systems [7]-[10]. A vast amount of other works simply

focus on generalized content caching. Zhang et al. investigated the cache-enabled vehicular

networks with energy harvesting, aiming at minimizing network deployment costs with QoE

guarantees [12]. Ao et al. explored distributed content caching and small cell cooperation to

accelerate content delivery [13]. Device-to-device (D2D) communication is another promising

solution to improve the QoE of mobile content dissemination [14]. Different from conventional

content unicast from cellular base stations, D2D communication has the potential to significantly

boost system throughput by multicasting. Ji et al. provided a comprehensive summary on D2D

caching networks, incorporating throughput scaling law and coded caching in D2D networks [15].

In the above works, content popularity profile was assumed to be completely known. However,

in practice, content popularity may be unknown a priori. To address this issue, various learning-

based approaches have been proposed to predict content popularity. Bharath et al. proposed a

learning method that achieves desired popularity accuracy in finite training time [16]. Blasco et

al. modeled content caching with unknown popularity as a multi-armed bandit problem [17].

By carefully balancing exploration and exploitation in the learning phase, they proposed three

algorithms that quickly learn content popularity under various system settings.

6

Unfortunately, often times content popularity profile can not only be unknown a priori, but also

time-varying. This is because user’s interests change constantly, and meanwhile new contents

are being created [22]. As a result, learning-based caching algorithms should be designed in

an online fashion, i.e., requiring no training phase, and adaptive to popularity fluctuations. To

this end, Roy et al. proposed to predict video popularity by utilizing knowledge from the social

streams [18]. Müller et al. introduced context-aware proactive caching [19]. By constructing

context space based on user information, they proposed an online algorithm that first learns

context-specific user demands, and then updates cached contents accordingly. Other information

has also been used for context differentiation, such as content features and system states [20]. The

prediction accuracy of those solutions is highly dependent on the information used for context

differentiation. To content service providers, however, user information is extremely sensitive and

often unavailable. In addition, it is also impossible for them to get detailed system or network

information when making caching decisions.

In this paper, we exploit locational features for context differentiation. Locational information

can be easily obtained, for example, users attached to different ENs are naturally divided

into geographical groups. Based on which we investigate the location-aware caching problem

with unknown and time-varying content popularity profile. By modeling user demand as linear

combination of location features and content attributes, our previous work has addressed the

content popularity prediction problem with the assumption that the model noise is zero-mean

[23]. As an extension, this paper additionally considers the practical scenario, where noise

structure is unknown a priori. Specifically, a robust prediction algorithm is proposed with detailed

theoretical caching performance analysis. The proposed algorithm is robust and practical as it

guarantees prediction accuracy regardless of the noise statistics. Additionally, numerical analysis

and comparison on the root causes of estimation errors of both algorithms are presented. Much

extensive experiments are conducted to validate the performance of the proposed algorithms.

It is worth noting that, in the mobile context, fetching content from the edge cache significantly

reduces the delay, compared with that from conventional content distribution network (CDN).

Moreover, existing content pushing strategies in CDN do not consider the fine-grained popularity

differentiation in neighbouring Wi-Fi APs and cellular base stations [35]. With the consideration

of location awareness, this paper further models and predicts the dynamics of content popularity,

which is constantly varying with time.

7

Internet and

mobile core

edge node
mobile users

Content server

Fig. 1. Network model of mobile edge caching.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate the caching problem in mobile

edge networks.

A. Network Model

Mobile edge computing can enhance mobile user’s capacity by provisioning storage, comput-

ing and networking resources in their proximity. Capacity-augmented base stations, WiFi access

points and other devices with excess capacity can be exploited for edge node deployment [1].

In this paper, the storage resources at edge nodes are harnessed for content caching services.

Specifically, as shown in Fig. 1, a set of edge nodes N = {1, 2, . . . , N} is deployed with

separated backhaul links connecting to the mobile core network. Online contents are dynamically

pushed to edge nodes so that user’s content requests can be processed with reduced latency. Each

edge node serves a disjoint set of mobile users.

B. Content Popularity and Location Diversity

A simple yet effective caching strategy is to push the most popular contents to the network

edge. Hence, local content hit rate is maximized and user’s requests are served with reduced

latency and improved QoE. Extensive works have been done on the popularity of contents,

especially video files [9], [22], [25]. According to the statistics we crawled from YouTube,

as illustrated in Fig. 2, the popularity profile of a video file varies in two-fold. 1) The daily

8

0 200 400 600 800 1000 1200 1400 1600
Time span (days)

0

2000

4000

6000

8000

10000

12000

Vi
ew

 a
m

ou
nt

view amount
popularity

0.5

0.6

0.7

0.8

0.9

1.0

Po
pu

la
rit

y

Fig. 2. The daily view amount and popularity trends of a YouTube video since uploaded. The popularity score equals to the

ratio of the video’s daily view amount to the total daily view amount of all the videos. Note the statistics are based on a set of

randomly crawled videos.

view amount is time-varying. 2) As other videos’ daily view amounts are also varying and

new videos are uploaded, the popularity of a video file is constantly fluctuating [21]. Moreover,

location diversity also affects the content popularity. As a result, general caching strategies based

on fixed popularity profile are not optimal in practice.

Let xf,n ∈ R
d be a d-dimensional attribute vector of file f associated with EN n. For example,

the attributes of video contents may include video quality, genre, length, and historical view

statistics. Then, the hit rate1 of file f at EN n, denoted by df,n, can be expressed as the following

noisy linear combination

df,n = x⊤
f,nθ

∗
n + wn, (1)

where θ∗
n ∈ R

d is the unknown location feature vector associated with EN n. Further, it also

represents the location characteristics of EN n, which is time-invariant. wn is the random noise

associated with EN n, which may be affected by various locational features, including social

function of the area around EN n, the number of users served by EN n, the frequency of content

update (e.g., hourly or daily). As a result, contents with the same attribute vector are expected

to have different view amounts at different ENs. This linear prediction model is widely used in

other areas, such as signal processing and financial engineering [26]. It provides a method to

1We define hit rate as the number of content requests rather than a ratio.

9

predict future hit rate and it is essential when exploiting location diversity for popular-unknown

content caching. Without loss of generality, let ||θ∗
n|| ≤ ζ , ||xf,n|| ≤ η and df,n ≤ γ for all

f ∈ F and n ∈ N , where ||x|| =
√
x⊤x denotes the Euclidean norm of x, ζ , η and γ are

positive constants. Also, for notational simplicity, define ||x||V ,
√
x⊤V x as the weighted (by

a matrix V ∈ R
d×d) Euclidean norm of x.

C. Problem Formulation

Consider a set of files F = {1, 2, . . . , F} that can be cached at ENs, and let c < F be

the caching size of each EN. We assume that all the contents are of equal size2 and the size

is normalized to 1, i.e., each EN can cache up to c contents. As indicated by Fig. 2, content

popularity is time-varying. Therefore, contents with higher popularity should be proactively

identified and cached at the ENs, and the less popular ones should be evicted so as to improve

the local content hit rate. Considering a sequence of time slots T = {1, 2, . . . , T}, and let Fn,t

denote the set of contents cached at EN n during time slot t ∈ T , and df,n,t be the amount of user

demand on file f at EN n during time slot t. The objective of a caching policy is to maximize

the time-averaged hit rate. Formally, it can be formulated as the following time-averaged hit rate

maximization (THRM) problem3:

(THRM):max 1
T

∑

t∈T

∑

n∈N

∑

f∈Fn,t
df,n,t

Subject to: |Fn,t| ≤ c, ∀n ∈ N , t ∈ T .
(2)

As the amount of user demand, i.e., the hit rate of contents at each EN, is unknown a priori,

the decision variables Fn,t in problem (2) is intractable directly. For convenience, denoting the

optimal caching strategy F∗
n,t for EN n at time t, we have

F∗
n,t = argmax

|Fn,t|≤c

∑

f∈Fn,t

df,n,t, ∀n ∈ N , t ∈ T . (3)

Define the time-averaged caching regret of a solution respect to the optimal caching strategy as

R(T) ,
1

T
E





∑

t∈T

∑

n∈N





∑

f∈F∗

n,t

df,n,t −
∑

f∈Fn,t

df,n,t







 . (4)

2In case contents are of different sizes, they are split into smaller ones of equal size. For example, the widely used DASH

(Dynamic Adaptive Streaming over HTTP) protocol breaks contents into small segments before transmission. This assumption

is used to simplify the theoretical analysis, and a similar assumption has been made in [20], [24]. Location-aware edge caching

with different content sizes deserves further investigation.

3Without loss of generality, we assume that the underlying process is ergodic.

10

Then, the THRM problem can be reformulate as a time-averaged regret minimization (TRM)

problem:

(TRM):min R(T)

Subject to: |Fn,t| ≤ c, ∀n ∈ N , t ∈ T .
(5)

Given that the optimal set F∗
n,t is unknown a priori, our goal is to develop a caching policy

that constantly makes good estimation of the optimal set F∗
n,t, and therefore minimizes the time-

averaged caching regret. As indicated by Eq. (3), the LRM problem boils down to estimating

user demands of different contents at each EN. Given the linear model in Eq. (1), if the location

feature vector θ∗
n can be found in the presence of noise, we can make an accurate prediction

on user demand. Unfortunately, there is no established statistical model on the noise processes

that impinges the prediction of user demand. In what follows, we propose two online content

popularity prediction algorithms by making dynamic estimations on the location feature vectors

for different noise processes. In particular, the first algorithm achieves near-optimal performance

with the assumption that the model noise is zero-mean, while the second algorithm is designed

to provide robust performance guarantees in the case of unknown noise statistics.

IV. RIDGE REGRESSION BASED CONTENT POPULARITY PREDICTION AND EDGE CACHING

In this section, as the first attack on the TRM problem, we present a caching algorithm when

noise is zero-mean.

A. Location Feature Vector Estimation

When the noise is zero-mean, according to Eq. (1), we have

E[df,n|xf,n] = x⊤
f,nθ

∗
n. (6)

It can be interpreted that, at time slot t, given the attribute vector xf,n,t, the hit rate of file f at

EN n is predicted to be the linear combination of its attributes, which provides a feasible way

to predict the content hit rate. Since the location feature vector θ∗
n of EN n is time-invariant, a

good estimation of θ∗
n will lead to accurate prediction of the content hit rate.

Let the attribute matrix Φf,n ∈ R
m×d be the historical data up to time slot t, where m is

the frequency of file f being cached at EN n up to time slot t, and the m-th row of Φf,n

is the corresponding attribute vector xf,n,m. Denote by yf,n ∈ R
m the m-time empirical hit

rate of file f at EN n. By applying the standard ordinary least square linear regression, i.e.,

11

θ∗
n = argminθn

||yf,n−Φf,nθn||2, we can obtain the unique solution θ∗
n = (Φ⊤

f,nΦf,n)
−1
Φ

⊤
f,nyf,n,

which is unbiased. However, when there are correlated variables in the attribute vector, the matrix

Φ
⊤
f,nΦf,n may not be invertible. As a result, the estimated θn can be poorly determined and will

exhibit high variance.

In contrast to the unbiased estimation, ridge regression makes biased estimation by adding

a control parameter that “penalizes” the magnitude of estimated θn, which helps to improve

estimation stability. Specifically, ridge regression aims at minimizing a penalized sum

θ∗
n = argmin

θn

(

||yf,n −Φf,nθn||2 + µ||θn||2
)

, (7)

where µ > 0 controls the size of θn: the larger the value of µ, the greater the shrinkage of the

magnitude of θn [27]. Consequently, the estimation of θ∗
n can be explicitly given as

θ̃n = (Φ⊤
f,nΦf,n + µId)

−1
Φ

⊤
f,nyf,n , (8)

where Id ∈ R
d×d is the identity matrix. The accuracy of the estimation depends on the amount

of data and the selection of µ. For convenience, let V f,n = Φ
⊤
f,nΦf,n + µId for all f ∈ F and

n ∈ N . The following lemma, which is slightly manipulated from [31], gives an upper bound

on the estimation error of ridge regression.

Lemma 1. If ||θ∗
n|| ≤ ζ for all n ∈ N , then ∀δ > 0, the estimation error of ridge regression

can be upper bounded as

|x⊤
f,nθ̃n − x⊤

f,nθ
∗
n| ≤ (δ + ζµ)||xf,n||V −1

f,n
(9)

with probability at least 1− 2e−2δ2 .

Please refer to Appendix A for the proof. The probabilistic upper bound of estimation error

provided in Lemma 1 indicates that, the true hit rate x⊤
f,nθ

∗
n falls into the confidence interval

around the estimation x⊤
f,nθ̃n with high probability. The righthand side of Eq. (9) gives the

length of the confidence interval, which is crucial to the following content popularity prediction

and caching algorithm.

B. RPUC Caching Algorithm

The location-aware edge caching algorithm is sketched in Algorithm 1. After initialization,

the algorithm iteratively performs the following three phases.

12

Algorithm 1 RPUC: Ridge Regression Prediction with Upper Confidence for Location-Aware

Edge Caching

Input: µ > 0.

Output: Set of files to be cached in each EN.

1: Initialization: Cache files in every EN and get the initial attribute vectors xf,n,0 of all file-EN

pairs.

2: V n ← µId, hn ← 0d, ∀n ∈ N
3: for t = 1, 2, . . . , T do

4: for each EN n ∈ N do

5: θ̃n,t ← V −1
n hn

6: for each file f ∈ F do

7: Obtain attribute vector xf,n,t

8: d̃f,n,t ← x⊤
f,n,tθ̃n,t

9: Compute the perturbation pf,n,t in Eq. (11)

10: d̂f,n,t ← d̃f,n,t + pf,n,t

11: end for

12: Fn,t = argmaxFn⊆F , |Fn|≤c

∑

f∈Fn
d̂f,n,t

13: Cache all the files in set Fn,t on EN n

14: Observe empirical demands df,n,t of cached files

15: Update V n and hn based on xf,n,t and df,n,t of all cached files:

V n ← V n + xf,n,tx
⊤
f,n,t

hn ← hn + xf,n,tdf,n,t

16: end for

17: end for

1. Predict: During each time slot t, the location feature vector θ̃n,t is firstly updated according

to the demand information observed in time slot t− 1. Then, based on the linear prediction

model, the estimated demand d̃f,n,t is obtained. Considering the impact of random noises, a

perturbation is added to the estimation, i.e., the ultimate hit rate is predicted to be

d̂f,n,t = x⊤
f,n,tθ̃n,t + pf,n,t , (10)

13

where the perturbation pf,n,t is given by

pf,n,t = αt||xf,n,t||V −1

f,n
, (11)

and αt =
[

ln(tF
1

2)
]

1

2 + µζ .

2. Optimize and cache: Based on the predicted hit rate d̂f,n,t of each content, a set of contents

Fn,t that maximizes the content hit rate at EN n during time slot t is identified and cached

respectively. Note that, certain contents may be cached in multiple ENs simultaneously.

3. Observe and update: At the end of time slot t, the empirical hit rate information of cached

files Fn,t on each EN is recorded, which is then used to update the parameter matrices for

subsequent estimation and prediction.

The rationale of the perturbation is that Eq. (6) only gives a mean value of the hit rate which

omits the potential random fluctuation, while Lemma 1 provides a probabilistic upper bound

of the demand estimation error. The perturbation given in Eq. (11) is inline with the righthand

side of Eq. (9) and can be regarded as the optimism in face of uncertainty, or equivalently, the

upper confidence of the demand estimation. By adding a perturbation according to Eq. (11), we

have δ =
[

ln(tF
1

2)
]

1

2 . According to Lemma 1, the upper bound holds with probability at least

1− 2F−1t−2, which approximates to 1 rapidly as t increases.

C. Regret Analysis

The content hit rate of the RPUC algorithm highly depends on the accuracy of prediction.

This subsection gives a theoretical upper bound on its time-averaged caching regret R(T).

In mobile edge caching, let c be the caching size of each EN, and F be the size of ground

file set. Note that content hit rate satisfies the linear model, and content attribute vectors and

user demands are bounded by ||xf,n,t|| ≤ η and df,n,t ≤ γ for all f ∈ F , n ∈ N and t ∈ T , we

have the following theorem.

Theorem 1. If the noise is zero-mean, the RPUC algorithm achieves near-optimal performance,

i.e., the time-averaged regret R(T) is of order O
(

cN
√

d(ln T) ln(µ+Tη2/d)
T

)

, and R(T)→ 0 when

T →∞.

The proof has been relegated to Appendix B. Basically, the root-cause of regret is two-fold:

the estimation error and the perturbation. Particularly, the estimation error consists of the linear

model error and the intended bias incurred by µ > 0 in ridge regression. The perturbation term is

14

well managed by the time-varying control parameter αt. Theorem 1 indicates that under RPUC

algorithm, the content hit rate asymptotically approaches the optimal caching policy in the long

term.

V. ROBUST CONTENT POPULARITY PREDICTION AND EDGE CACHING

In the previous section, we proposed the online caching algorithm RPUC based on the linear

prediction model given in Eq. (6). A biased estimation of the location feature vector θ∗
n for

each EN is obtained by ridge regression. Further, a perturbation is added to the estimation of

content hit rate to account for uncertainty. However, this caching algorithm would not work well

when the noise is not zero-mean. Even worse, it is likely that we are unable to get detailed noise

statistics, as it is affected by various location features, such as population, social function or even

weather condition. Therefore, robust prediction algorithm that could handle noise uncertainty is

desirable. In this section, by resorting to the H∞ filter technique, we propose a popularity

prediction algorithm that provides guaranteed accuracy in the case of unknown noise structures.

A. Noisy Model for Content Popularity

Denoted by wn,t the additive noise added to the linear model. The linear model is rewritten

as

df,n,t = x⊤
f,n,tθ

∗
n + wn,t. (12)

If the noise process wn,t follows white Gaussian distribution and its mean and correlation are

always known, Kalman filtering technique can be applied to estimate θ∗
n, which achieves the

smallest possible standard deviation of the estimation error [28]-[30]. Since there is no established

model on the statistics of the noise structure, robust estimators on the location feature vector that

can tolerate noise uncertainty are needed. Next, we will introduce the H∞ filtering technique for

location feature vector estimation, which requires no a priori information on the noise process.

The only assumption is that, the magnitude of the noise process is finite, which is true since the

total demand df,n,t is always finite in reality.

B. An H∞ Filter Approach

When locational features are time-invariant, the true location feature vector θ∗
n remains the

same across the time span. For notational simplicity, in this subsection, we focus on a specific

15

content on a certain EN and neglect indices f and n. Based on Eq. (12), the location feature

vector estimation problem is reformulated as

{

θt+1 = θt

dt = x⊤
t θt + wt.

(13)

Different from Kalman filter, we aim at providing a uniformly small estimation error, et =

|dt− d̃t|, for any form of noise process. Notice that estimation of the location feature vector θ∗

is crucial to minimizing the estimation error et. Then, we define the following cost function of

estimation [28]:

J0 ,

∑T
t=0 ||θ∗ − θ̃t||2

||θ0 − θ̃0||2P 0
+
∑T

t=0 |wt|2
, (14)

where P 0 is a symmetric positive definite matrix reflecting the confidence of the a priori

knowledge of the initial state. A ’smaller’ choice of P 0 indicates larger uncertainty of the

initial condition and vice versa. The objective is to make a sequence of estimation on θ̃t such

that the above cost is minimized. The denominator of the cost function can be regarded as a

combined norm of all possible initial states and noises affecting the system. Given that there is

no established stochastic model for wt, the cost function in Eq. (14) allows us to make robust

estimation of content popularity from game-theoretical perspective. Suppose that there is an

unrestricted adversary, who can control the initial state θ0 and the magnitude of wt to maximize

the error of our estimation. While we focus on minimizing the numerator of Eq. (14), the

adversary may incur infinite magnitude of disturbances. The form of J0 prevents the adversary

from using brute force to maximize ||θ∗− θ̃t||. Instead, the adversary needs to carefully choose

θ0 and wt as it tries to maximize ||θ∗− θ̃t||. Formally, this game can be generalized as a minmax

problem, and the optimal estimation on θ̃t achieves the minimal cost J ∗
0 as

J ∗
0 = min

θ̃t

max
θ0, wt

J0. (15)

Given the cost function in Eq. (14), directly minimizing J0 is challenging. In practice, a better

approach for H∞ filtering is to seek a sub-optimal estimation that meets a given threshold.

Specifically, one can try to find θ̃t such that the optimal estimate of θt among all possible θ̃t

(even including the worst-case performance measure) should satisfy

sup J0 < ψ2, (16)

16

where ψ > 0 is the prescribed performance bound. Eq. (16) indicates that H∞ filter guarantees

the smallest estimation error over all possible finite disturbances of the noise magnitude [28].

Rearranging Eq. (16) gives the following equivalent minmax problem

min
θ̃t

max
θ0, wt

J , − 1

2
ψ2||θ0 − θ̃0||2P 0

+
1

2

T
∑

t=0

[

||θ∗ − θ̃t||2 − ψ2|wt|2
]

. (17)

This minmax problem can be interpreted as a zero-sum game against the adversary. With a given

ψ, our goal is to find an estimation that wins the game (i.e., achieve a negative cost J < 0). By

resorting to the Lagrange multiplier method for the dynamic constrained optimization problem

(17), the H∞ filter approach results in the following iterative algorithm to find the optimal

estimates θ̃t for all t ∈ T :

θ̃t+1 = θ̃t +Rt(dt − x⊤
t θ̃t), (18)

where θ̃t is initialized as θ̃0 = 0d, Rt is the H∞ filter gain, given by

Rt = M txt(1 + ||xt||2Mt
)−1, (19)

and

M−1
t+1 = M−1

t + xtx
⊤
t − ψ−2Id, (20)

with M−1
t initialized by M−1

0 = P 0−ψ−2Id. The detailed proof of this solution can be found

in [30]. With the aid of H∞ filter, we are able to make performance-guaranteed estimation on

the location feature vector θ∗, regardless of the detailed noise structure. Based on the estimation

of location feature vector, content popularity prediction and caching algorithm can be further

devised.

C. From Determining ψ to the HPDT Caching Algorithm

The performance of H∞ filter highly depends on the prescribed threshold ψ. A smaller ψ

results in a smaller estimation error. However, if ψ is too small, M−1
t + xtx

⊤
t − ψ−2Id in

Eq. (20) may be singular, which renders the iterative solution infeasible. Hence, the value of ψ

should be carefully selected. An adaptive scheme for threshold selection was proposed in [28],

which makes online iterative prediction possible. Denote by ψt+1 the threshold on the (t+1)-th

iteration, it should be properly chosen to guarantee M−1
t+1 is positive definite, i.e.,

M−1
t + xtx

⊤
t − ψ−2

t+1Id ≻ 0. (21)

17

Algorithm 2 HPDT : H∞ filter Prediction with Dynamic Threshold for Location-aware Edge

Caching

Input: ξ close to but larger than 1.

Output: Set of files to be cached in each EN.

1: Initialization: Cache files in every EN and get the initial attribute vectors xf,n,0 of all file-EN

pairs;

Choose symmetric positive definite P n,0 ≻ 0 for all n ∈ N ;

Choose the smallest possible value of ψn,0, so that P n,0 − ψ−2
n,0Id is nonsingular;

M−1
n,0 ← P n,0 − ψ−2

n,0Id, θ̃n,0 ← 0d for all n ∈ N .

2: for t = 1, 2, . . . , T do

3: for each EN n ∈ N do

4: for each file f ∈ F do

5: Obtain the attribute vector xf,n,t

6: Compute the estimated user demand:

d̃f,n,t ← x⊤
f,n,tθ̃n,t

7: end for

8: Fn,t ← argmaxFn⊆F , |Fn|≤c

∑

f∈Fn
d̃f,n,t

9: Cache the set of files Fn,t in EN n

10: Observe user demand df,n,t of cached files

11: Update θ̃n,t based on xf,n,t and df,n,t of all cached files: θ̃n,t ← θ̃n,t−1 +Rn,t(df,n,t −
x⊤
f,n,t−1θ̃n,t−1), where

Rn,t = Mn,txf,n,t(1 + ||xf,n,t||2Mn,t
)−1

M−1
n,t+1 = M−1

n,t + xf,n,tx
⊤
f,n,t − ψ−2

n,t+1Id

ψ−2
n,t+1 = ξ−2λmin(M

−1
n,t + xf,n,tx

⊤
f,n,t)

12: end for

13: end for

Denote by λmax(A) = λ1(A) ≥ · · · ≥ λk(A) · · · ≥ λd(A) = λmin(A) the eigenvalues of d × d
matrix A, and λk(A) is the k-th largest eigenvalue. According to the min-max theorem on matrix

eigenvalues, the adaptive threshold ψt+1 should satisfy

λk(M
−1
t + xtx

⊤
t) > λk(ψ

−2
t+1Id) , (22)

18

for all k ∈ {1, 2, · · · , d}. Since λk(ψ
−2
t+1Id) = ψ−2

t+1 holds for all k, equivalently, we have

λmin(M
−1
t + xtx

⊤
t) > ψ−2

t+1. We may let

ψ−2
t+1 = ξ−2λmin(M

−1
t + xtx

⊤
t), (23)

where ξ is a constant very close to but larger than one, so that λmin(M
−1
t + xtx

⊤
t − ψ−2

t+1Id) is

guaranteed to be positive and hence M−1
t+1 is nonsingular. Meanwhile, the magnitude of ψt is

also suppressed.

With the aid of H∞ filter technique, we are able to make performance-guaranteed estimation

on the location feature vectors. Therefore, more precise prediction on content popularity can be

made, and hence differentiated caching policies can be devised on each EN. The corresponding

prediction and caching algorithm is sketched in Algorithm 2. Similar to Algorithm 1, the iteration

of the HPDT algorithm can be generalized into the following three steps after initialization.

1. Predict: During time slot t, estimation of the location feature vector θ∗
n of each EN is predicted

based on the updated location feature vector by the end of time slot t− 1.

2. Optimize and cache: Based on the predicted content hit rate profile, the set of contents with

maximized predicted content hit rate are cached on each EN respectively. Certain contents

may be cached in multiple ENs simultaneously.

3. Observe and update: At the end of time slot t, the empirical hit rate of the cached files on

each EN is observed, which is then used to update the input of the H∞ filtering process,

yielding the updated location feature vector.

The adaptive adjustment of ψ in Eq. (23) is crucial to the online HPDT algorithm. It is tuned

to its minimum at each iteration, so that M t is guaranteed to be positive definite, and meanwhile

the upper bound of the cost function J0 is minimized.

D. Regret Analysis

The H∞ filter technique provides a robust estimation of the location feature vector regardless

of the statistical model of the noise process. However, this approach is also conservative since

it needs to accommodate the disturbances of all kinds of noise processes. In this subsection, the

performance bound of H∞ filter based prediction and caching algorithm is given.

Note that the prescribed performance threshold is crucial to the prediction accuracy, the

adaptive threshold ψt in HPDT algorithm is firstly characterized in this subsection. Note that

P 0 is initialized as a d× d symmetric and positive definite matrix, and M−1
t is also guaranteed

19

to be symmetric and positive definite with the help of ψt. According to Weyl’s monotonicity

theorem [33], the smallest eigenvalue of M−1
t + xtx

⊤
t can be bounded as:

λd(M
−1
t) ≤ λd(M

−1
t + xtx

⊤
t) ≤ λd(M

−1
t) + λ1(xtx

⊤
t), (24)

where λ1(xtx
⊤
t) is the largest eigenvalue of xtx

⊤
t , and can be simple bounded by matrix trace

as λ1(xtx
⊤
t) ≤ tr(xtx

⊤
t) = ||xt||2 ≤ η2. As M−1

t+1 is positive definite, we have

ξ−2λd(M
−1
t) ≤ ψ−2

t+1 ≤ ξ−2(λd(M
−1
t) + η2) , (25)

where ξ−2 is very close to but smaller than one. According to Eq. (20), the smallest eigenvalue

of M−1
t+1 equals to (1 − ξ−2)λd(M

−1
t + xtx

⊤
t), which is suppressed to be small but positive.

Hence, M−1
t+1 is guaranteed to be nonsingular. Iteratively, M−1

t is positive definite for all t ∈ T .

In the following, a theorem is given to provide a bound on the caching regret of the HPDT

algorithm. Let c be the caching size of each EN, and F be the cardinality of the ground file set.

Suppose content hit rate satisfies the linear model given by Eq. (13), and note that the attribute

vectors are bounded as ||xf,n,t|| ≤ η for all f ∈ F , n ∈ N and t ∈ T . Let Θ and w be the upper

bound of ||θn,0 − θ̃n,0||2P n,0
and wn,t for all n ∈ N and t ∈ T , respectively. Then, we have the

following theorem.

Theorem 2. The time-averaged regret R(T) of the HPDT algorithm is of order O
(

cηψN
√

Θ
T
+ w2

)

.

Please refer to Appendix C for the proof. Theorem 2 indicates that, if the linear model

is free of noises, the time-averaged regret of the HPDT algorithm tends to zero as T grows

to infinity. Otherwise, the HPDT algorithm may not approach the optimal solution, and its

performance depends on the noise magnitude. This is due to the characteristics inherited from

the H∞ filter. Since H∞ filter makes no assumption on the noise feature, to minimize the

worst-case estimation error, it needs to accommodate all possible noise processes, which turns

out to be over-conservative. However, when the noise is zero-mean, the regret of exploiting

HPDT algorithm reduces to the order of O(cηψN
√

Θ
T
), which is smaller than that using the

RPUC algorithm. In the next section, we will further evaluate the proposed two algorithms by

numerically decomposing the estimation errors, and examine the algorithms by experiments on

real dataset.

20

VI. NUMERICAL ANALYSIS AND EXPERIMENTAL RESULTS

To validate performance of the proposed caching algorithms, numerical analysis is firstly

performed in this section. Afterwards, an experiment based on real-world dataset from YouTube is

conducted to further illuminate the performance of the proposed algorithms in practical scenarios.

A. Numerical Analysis

The proposed two algorithms can be used for content caching with different user demand

features. In essence, they are estimating the location feature vector θ∗
n, which specifies the

location characteristics and user preferences on each EN. Given the linear model of user demand,

the performance of the proposed algorithms highly depends on the accuracy of the estimation.

We use mean square error (MSE) to evaluate the accuracy of the proposed algorithms. For

notational simplicity, the indices n and t are omitted in this section. Let θ be the underlying

feature vector, and θ̃ be the estimation of θ by using the proposed algorithms. Denote E[θ̃] = θ̄,

then, the MSE can be defined in Euclidean norm as

MSE
θ̃
= E

[

||θ̃ − θ||2
]

= E

[

∣

∣

∣

∣θ̃ − θ̄ + θ̄ − θ
∣

∣

∣

∣

2
]

= E
[

||θ̃ − θ̄||2
]

+ ||θ̄ − θ||2 . (26)

The two terms in Eq. (26) turn out to be the variance and bias of θ̃, respectively.

Note that the RPUC algorithm is based on ridge regression. Unlike the ordinary least square

linear regression, which makes an unbiased estimation on the feature vector, ridge regression

intentionally introduces bias so as to reduce variance of the estimation. Moreover, the RPUC al-

gorithm adds a perturbation to the estimation of ridge regression to account for noise uncertainty,

which further increases the bias.

In contrast, the HPDT algorithm makes no assumption on the statistical model of the under-

lying noise process. It is able to meet the prescribed performance threshold even if the noise

process leads to the worst case. Moreover, the HPDT algorithm makes unbiased estimation on

the feature vector. This can be observed from the definition of the cost function J0 in Eq. (14).

By decomposing the numerator of J0, we have

T
∑

t=0

||θ̃t − θ∗||2 = (T + 1) ·MSE
θ̃
≥ T ||θ̄ − θ∗||2. (27)

As H∞ filter makes robust estimation over all kinds of noise structures and initial conditions,

given any ǫ > 0, there exists a combination of initial condition θ0 and noise {wt}Tt=0 such that

21

102 103

Time span (days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Es
tim

at
io

n
er

ro
r

Var(Ridge)
Bias(Ridge)
MSE(Ridge)
Var(HPDT)
Bias(HPDT)
MSE(HPDT)

(a)

102 103
Time span (days)

0.0

0.1

0.2

0.3

0.4

0.5

Es
tim

at
io
n
er
ro
r

Var(Ridge)
Bias(Ridge)
MSE(Ridge)
Var(HPDT)
Bias(HPDT)
MSE(HPDT)

(b)

102 103

Time span (days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Es
tim

at
io

n
er

ro
r

Var(Ridge)
Bias(Ridge)
MSE(Ridge)
Var(HPDT)
Bias(HPDT)
MSE(HPDT)

(c)

Fig. 3. Comparison of estimation errors of ridge regression and HPDT algorithm under varying sample rate and noise structure.

a) Zero-mean noise; b) Non-zero-mean noise of uniform distribution (with smaller mean value); c) Non-zero-mean noise of

normal distribution (with larger mean value).

ǫ > ||θ0 − θ̃0||2P 0
+

∑T
t=0 |wt|2 6= 0. Since this is true for all ǫ > 0, according to Eq. (27), the

cost function J0 ≥ T ||θ̄ − θ∗||2/ǫ, which will grow linearly if ||θ̄ − θ∗||2 6= 0. Consequently,

any algorithm that bounds the cost function J0 must be unbiased, i.e., ||θ̄ − θ∗||2 = 0.

On the other hand, the performance of the HPDT algorithm also depends on the a priori

confidence on the estimation of the initial state, i.e., the selection of P 0. A smaller matrix

(eigenvalue) should be chosen if the estimation of initial condition is made with larger uncertainty,

and vice versa.

22

TABLE I

COMPARISON OF ESTIMATION VARIANCE AND BIAS

Time Span
Ridge Regression H∞(λmin(P 0) = 5) H∞(λmin(P 0) = 10) H∞(λmin(P 0) = 30)

Variance Bias MSE Variance Bias MSE Variance Bias MSE Variance Bias MSE

20 0.1659 0.4284 0.5943 0.2881 0.1094 0.3975 0.2687 0.1045 0.3732 0.2647 0.1036 0.3683

50 0.1364 0.1364 0.2728 0.1315 0.0126 0.1441 0.1244 0.0116 0.1360 0.1228 0.0115 0.1343

200 0.0545 0.0927 0.1472 0.0335 0.0131 0.0466 0.0318 0.0129 0.0447 0.0314 0.0129 0.0444

500 0.0347 0.0381 0.0728 0.0134 0.0155 0.0289 0.0127 0.0154 0.0282 0.0126 0.0154 0.0280

1000 0.0211 0.0207 0.0418 0.0067 0.0164 0.0231 0.0064 0.0164 0.0227 0.0063 0.0164 0.0227

2000 0.0157 0.0070 0.0227 0.0034 0.0174 0.0207 0.0032 0.0174 0.0206 0.0032 0.0174 0.0205

We conduct simulation based on synthesized time sequences, which is generated according to

a prescribed linear model with zero-mean noise and non-zero-mean noise, respectively. Since the

proposed RPUC algorithm is perturbed intentionally, we only present the comparison between

ridge regression and the HPDT algorithm. Fig. 3 shows that, under all scenarios, ridge regression

provides a more stable estimation as it achieves smaller variance than that using HPDT algorithm

when the amount of historical data is small. Such stability advantage of ridge regression benefits

from its intentional penalty. However, the HPDT algorithm performs much better in terms of

bias and MSE under varying sampling rate in all scenarios, which proves the robustness of the

HPDT algorithm. Moreover, with the increase of noise magnitude, the gain of HPDT over ridge

regression also increases.

To demonstrate the impact of P 0 on the performance of HPDT, estimation results of the HPDT

algorithm with different initialization matrices are presented. P 0 is initialized as diagonal matrix

with positive elements on the main diagonal. When the confidence on the initial state is small,

a larger P 0 with bigger eigenvalues is used. As shown in Table I, P 0 with larger eigenvalue

achieves better performance than the others, which means that the initial guess θ0 is close to the

prescribed vector. In practice, the matrix P 0 can be selected according to the prior information

regarding the initial condition.

23

0 25 50 75 100 125 150 175 200
Video popularity ranking

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d
po

pu
la

rit
y

0.0

0.2

0.4

0.6

0.8

1.0

CD
FNormalized popularity

CDF

Fig. 4. Popularity skewness of the video set in our experiment. Note that the videos are randomly crawled from YouTube,

which may not reflect the overall skewness of video popularity.

B. Real Dataset Experiment

1) Experiment Setup: To further demonstrate the advantages of the proposed algorithms

in practical scenarios, we conduct an experiment on the dataset crawled from YouTube. On

YouTube, some video owners made their video view statistics open to public. Among other in-

formation, the view amount information is recorded on a daily basis. To obtain such information,

a Python-based crawling program is written, and the request record of each video is crawled

into a .json file. Based on which we conducted the rest Python-based experiments . In total,

800 videos are randomly crawled, which were uploaded before January 2013, with full view

statistics till May 2017. The most popular video has been watched over 2.85 billion times by the

end of the timespan, while the least popular one has been rarely viewed across the time span.

Fig. 4 shows the statistics of video popularity skewness. The popularity of the most popular 25

videos is highly skewed, and the most popular 50 videos account for almost 80% of the total

view amount.

Note that the dataset only contains the global statistics of each video record (with the recent

update of YouTube webpage, even the global view statistics is inaccessible), while the view

statistics of most online video content providers in a local area is unavailable. To emulate the

video request processes on different locations, the original statistic of each video is shifted

and scaled randomly over the time span. For the record of a certain video, by shifting, the

request record of the original global data of each content is moved backward and forward on

the timespan. By scaling, each content request record is then randomly scaled up and down.

After shifting and scaling, the original global request statistics are transformed and treated as

24

0 200 400 600 800 1000 1200 1400 1600
Time span (days)

0

1

2

3

4

5

Lo
ng
-te

rm
 c
on
te
nt
 h
it
ra
te

1e10

Optimal
HPDT
RPUC
LO
Random

(a)

0 200 400 600 800 1000 1200 1400 1600
Time span (days)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ng

-te
rm

 c
on

te
nt

 h
it

ra
te

1e11

Optimal
HPDT
RPUC
LO
Random

(b)

0 200 400 600 800 1000 1200 1400 1600
Time span (days)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ng

-te
rm

 c
on

te
nt

 h
it

ra
te

1e11

Optimal
HPDT
RPUC
LO
Random

(c)

Fig. 5. The content hit rate comparison between the proposed algorithm and other benchmarks with varying caching size, where

the total number of files is 800 and the caching sizes of six figures are 5, 20, and 100 respectively.

25

the requests from different locations. The key point is that the pattern of the record remains valid

after the above transformation. In this way, we are able to characterize the location diversity

based on the emulated view statistics.

Specifically, consider the content library containing those 800 videos, each video can be

cached on 3 ENs, each with caching size c. Content refreshing is performed upon the network

traffic pattern. For example, wireless traffic presents regular peak and valley every day. Hence,

content refreshing can be performed during the off-peak period with minimal impact on normal

network activity. A video can be characterized from several aspects, including video quality,

genre, length, and historical view statistic. In this experiment, we use view amount information

in the past 7 days as the attribute vector of each content, i.e., d = 7. Based on the attribute

vectors and an initial guess on the content popularity, the algorithms gradually select contents

that are predicted to be more popular than the others, and cache them on each EN accordingly.

The long-term content hit rates of the proposed algorithms are shown by comparing with the

following benchmark algorithms. 1) Hindsight optimal. By analyzing the full view record over

the time span at each EN, the most popular videos are selected and cached respectively. Note

that this benchmark requires future information and hence cannot be implemented in practice.

2) Location oblivious (denoted by LO). During each time slot, the historical demands of all the

contents from all ENs are analyzed, afterwards the ones that are predicted (by ridge regression)

to have the highest demands in the next time slot are identified. Then, all ENs will cache the

same set of contents without location differentiation. 3) Random. A random set of videos is

selected to update the ENs during each time slot.

2) Experimental Results: As shown in Fig. 4, the popularity of YouTube video is highly

skewed, and the most popular 10% videos have attracted almost 90% of user requests. The

skewness of video popularity has also been validated in [25]. The popularity of this dataset can

be roughly divided into three levels: highly skewed (popularity of the top 15 videos); medium

skewed (popularity of videos ranking from 16 to 50); and less skewed (the rest ones).

Figure 5 shows the comparison of long-term content hit rates of different algorithms with

varying EN caching sizes. The performance of the caching algorithms is affected by the skewness

of the popularity profile. However, the proposed location-based approaches always outperform

the location-oblivious scheme in varying caching size scenarios. Specifically, when the caching

size falls into the highly skewed area and less skewed area, the proposed caching algorithms

RPUC and HPDT outperform other benchmarks considerably. In particular, the HPDT algorithm

26

performs better than the RPUC. For the highly skewed area, the top 5 videos present much

higher variance than the rest. As a result, the noise mean of those records is also significant.

Since RPUC algorithm is designed for zero-mean noises, their performance is limited when noise

amplitude is significant. In contrast, when the caching size falls into the less skewed area, the

algorithms need to corporate various noise types of different videos, which may not always be

zero-mean. RPUC and HPDT perform equally well when the caching size falls into the medium

skewed area (Fig. 5(b)). The H∞ filter is utilized to provide guaranteed performance even when

noise type lead to the worst case for estimation. As a result, the HPDT algorithm is conservative

yet robust.

Figure 4 also indicates that content popularity is long-tailed, i.e., the less popular contents

attract almost vanishing requests compared to the popular ones. As a result, the total hit rate of

different caching schemes in Fig. 5 does not increase linearly with the caching size. Note that,

both algorithms run iteratively in an online fashion. During each iteration, the most computa-

tionally intensive execution is the n times sorting of the estimated demands of F contents, which

has a typical computational complexity of O(nF logF). Complexity of the value assignments

and matrix update could be neglected compared with sorting. As a result, both algorithms are

of low time complexity.

C. Discussions

1) Another dimension of the prediction: This work focuses on the estimation of location

feature vector. Actually, the selection of video attribute vector xf,n also influences the prediction

accuracy. As mentioned before, other factors, such as video quality, length and genre, can also

be used to characterize video contents. If such labeling information is available, by reducing

the dimension as well as training the dataset, we can identify influential features that affect

content popularity. On the other hand, for the location feature vector θ∗
n, both RPUC and HPDT

algorithms are designed with the precondition that θ∗
n is time-invariant, as indicated in both Eq.

(6) and (13). Actually, the HPDT algorithm can be directly extended to time-variant scenario if

the state equation is also linear, i.e., θt+1 = Aθt + vt, where A ∈ R
d×d is the transition matrix,

and vt ∈ R
d is the state noise vector. By resorting to H∞ technique, the adaptive estimation on

θn,t can be made with guaranteed accuracy [28].

2) The applicability in practical video streaming: The proposed popularity prediction ap-

proach can be applied to the delivery of various types of contents. As video content consumes the

27

most bandwidth, it deserves to be in-depth investigated. Practical video streaming protocols (such

as HTTP-based Adaptive Streaming, HAS) divide a video content into several chunks/segments,

each with multiple bitrates and quality versions [38]. Those pull-based streaming protocols dy-

namically change the quality of the streamed video according to the observed network conditions

on a per-fragment basis. Most of the research works on adaptive video streaming (both server-

side bitrate switching [37] and client-side switching [39]) strive to predict the network condition

when transmitting the next video segment. In contrast, with the aid of edge storage resources,

our work focuses on push-based content distribution. In other words, estimating the available

bandwidth is out of the scope of this work, and content updates are scheduled to off-peak periods,

where streaming bandwidth is sufficient.

When streaming video contents based on HAS, whether to cache individual segments or the

whole quality representation depends on both the available bandwidth and the content popularity.

In particular, for the popular contents, users tend to keep requesting them regardless of the

received video quality. Hence, it is more appropriate to store the whole representation of the

video so as to fulfill users’ requirements via dynamic bandwidth. As the popularity profile of

contents are highly skewed (shown in Fig. 4), the streaming provider only needs to store the

full quality representation of the most popular videos (the amount of which really depends

on the caching size budget). For the less popular ones, the provider may choose to cache the

individual segments that are of moderate quality, so as to save bandwidth and meanwhile be

responsive to user requests. The rationale behind such decision is the content popular profile

and the available caching resources, which is the merit of our work. In this sense, the proposed

location-based popularity prediction approaches are crucial in HAS-based streaming system,

and the prediction of content popularity and network condition will collectively contribute to

improved video streaming.

VII. CONCLUSION

In this paper, we investigate popularity prediction for mobile edge caching, with special focus

on location awareness. We model the content popularity profile by a linear model and propose

online algorithms to deal with different statistical models of the noise process. The proposed

RPUC algorithm achieves content hit rate that asymptotically approaches the optimal solution

when the noise is zero-mean. Noticing that the noise may not necessarily be zero-mean, we

resort to the H∞ filter technique and propose the HPDT algorithm for popularity prediction. This

28

algorithm can achieve guaranteed prediction accuracy even when the worst-case noise occurs.

Both algorithms can be implemented without training phases. Numerical analysis shows how

the performance of the proposed algorithms is affected by different types of noises, the amount

of historical data, and the initial state. Extensive experiments on real dataset demonstrate the

advantage of the proposed algorithm, which helps to make customized caching decisions in

practical scenarios. For future works, we will exploit locational features of neighboring ENs to

make better caching decisions.

APPENDIX A

PROOF OF LEMMA 1

Let hf,n = Φ
⊤
f,nyf,n, based on Eq. (8), the estimation error can be rewritten as

|x⊤
f,nθ̃n − x⊤

f,nθ
∗
n|

= |x⊤
f,nV

−1
f,nhf,n − x⊤

f,nV
−1
f,n(Φ

⊤
f,nΦf,n + µId)θ

∗
n|

= |x⊤
f,nV

−1
f,nΦ

⊤
f,n(yf,n −Φf,nθ

∗
n)− µx⊤

f,nV
−1
f,nθ

∗
n|.

Since ||θ∗
n|| ≤ ζ , Hölder’s inequality indicates that |µx⊤

f,nV
−1
f,nθ

∗
n| ≤ ζµ||x⊤

f,nV
−1
f,n||. Then, the

estimation error is bounded as

|x⊤
f,nθ̃n − x⊤

f,nθ
∗
n| ≤ |x⊤

f,nV
−1
f,nΦ

⊤
f,n(yf,n −Φf,nθ

∗
n)|

+ ζµ||x⊤
f,nV

−1
f,n||. (28)

The right-hand side of above inequality decomposes the estimation error into two parts, where the

first (variance term) specifies the error caused by linear model, and the second (bias term) is the

bias incurred by ridge regression parameter µ. According to Eq. (6), we have E[yf,n−Φf,nθ
∗
n] =

0. The Azuma’s inequality gives a probabilistic upper bound on the variance term of Eq. (28):

P

{

∣

∣

∣x
⊤
f,nV

−1
f,nΦ

⊤
f,n(yf,n −Φf,nθ

∗
n)
∣

∣

∣ > δ||xf,n||V −1

f,n

}

≤ 2 exp
(

−
2δ2||xf,n||2

V
−1

f,n

||x⊤
f,nV

−1
f,nΦ

⊤
f,n||2

)

≤ 2e−2δ2 , (29)

where the last inequality is due to the fact that

||xf,n||2V −1

f,n

= x⊤
f,nV

−1
f,n(Φ

⊤
f,nΦf,n + µId)V

−1
f,nxf,n

≥ x⊤
f,nV

−1
f,nΦ

⊤
f,nΦf,nV

−1
f,nxf,n

= ||x⊤
f,nV

−1
f,nΦ

⊤
f,n||2. (30)

29

Hence, the variance term of Eq. (28) can be bounded by δ||xf,n||V −1

f,n
with probability at least

1− 2e−2δ2 . Further, The bias term of Eq. (28) can be bounded as

||x⊤
f,nV

−1
f,n|| =

√

x⊤
f,nV

−1
f,nIdV

−1
f,nxf,n

≤
√

x⊤
f,nV

−1
f,n(µId +Φ

⊤
f,nΦf,n)V

−1
f,nxf,n

= ||xf,n||V −1

f,n
. (31)

By substituting Eq. (29) and (31) into Eq. (28), the probabilistic bound in Eq. (9) directly follows.

APPENDIX B

PROOF OF THEOREM 1

The total regret depends on the RUPC algorithm’s accuracy of estimation on content hit rate,

which is elaborated in Lemma 1. According to this lemma, the true hit rate of file f at EN n

lies in the confidence interval around the predicted hit rate

If,n,t = [x⊤
f,n,tθ̃n,t − pf,n,t, x⊤

f,n,tθ̃n,t + pf,n,t] (32)

with high probability.

Let Xn,t = {∃f ∈ F : |df,n,t − d̃f,n,t| ≥ pf,n,t} be the event that there exists at least one file

whose true hit rate lies outside its confidence interval. Let X̄n,t be the complementary event of

Xn,t, i.e., all files’ true hit rates fall into their confidence interval. Let rn,t be the instant regret

of a caching algorithm in EN n at time slot t. According to Eq. (4), the total regret depends on

the difference between the set of files chosen by the Algorithm and the optimum set, i.e., Fn,t

and F∗
n,t, thus

rn,t =
∑

f∈F∗

n,t
df,n,t −

∑

f∈Fn,t
df,n,t, (33)

and the time-averaged regret can be rewritten as

R(T)=
1

T

∑

t∈T

∑

n∈N

rn,t

=
1

T

∑

t∈T

∑

n∈N

1{Xn,t}rn,t +
1

T

∑

t∈T

∑

n∈N

1{X̄n,t}rn,t, (34)

where 1{Xn,t} is an indicator variable that equals to 1 if event Xn,t happens, and equals to 0

otherwise. To proceed, the two terms in Eq. (34) are bounded separately.

30

Firstly, consider the case when event Xn,t happens. With the setting of αt in Eq. (11), for

a file f and EN n at time t, we have P{|df,n,t − d̃f,n,t| ≥ pf,n,t} ≤ 2F−1t−2. As a result, the

frequency of event Xn,t happens on all ENs over the time span can be bounded as:

∑

t∈T

∑

n∈N

1{Xn,t} ≤
∑

t∈T

∑

n∈N

∑

f∈F

P
{

|df,n,t − d̃f,n,t| ≥ pf,n,t
}

≤
∑

t∈T

∑

n∈N

∑

f∈F

2F−1t−2 = 2N
∑

t∈T

t−2

≤ 2N
∞
∑

t=1

t−2 ≤ π2

3
N. (35)

As content hit rate df,n,t ≤ γ, according to Eq. (33), a coarse upper bound of the instant regret

is rn,t ≤ cγ, where c = |F∗
n,t| is the caching size of each EN. Therefore, the first term of Eq.

(34) can be bound as
1

T

∑

t∈T

∑

n∈N

1{Xn,t}rn,t ≤
π2cγN

3T
. (36)

Then, consider the case when event X̄n,t happens, all files’ true hit rates falls into the confidence

interval around their estimation d̃f,n,t. Hence, |df,n,t − d̃f,n,t| ≤ pf,n,t, ∀f ∈ F . With d̂f,n,t =

d̃f,n,t + pf,n,t, we have

d̂f,n,t − df,n,t ≤ 2pf,n,t. (37)

By Eq. (33) and (37), when event X̄n,t happens, the instant regret rn,t can be bounded as

rn,t|X̄n,t
=

∑

f∈F∗

n,t\Fn,t
df,n,t −

∑

f∈Fn,t\F∗

n,t
df,n,t

≤ ∑

f∈F∗

n,t\Fn,t
d̂f,n,t −

∑

f∈Fn,t\F∗

n,t
df,n,t

≤ ∑

f∈Fn,t\F∗

n,t

(

d̂f,n,t − df,n,t
)

≤ 2
∑

f∈Fn,t\F∗

n,t
pf,n,t,

(38)

where inequality (38) is due to fact that since the algorithm selects files in Fn,t \F∗
n,t rather than

F∗
n,t \ Fn,t, hence the collective upper confidence bound hit rate satisfies

∑

f∈Fn,t\F∗

n,t
d̂f,n,t ≥

∑

f∈F∗

n,t\Fn,t
d̂f,n,t. We will need two lemmas from [32] for the subsequent analysis.

Lemma 2. (Lemma 11 of [32]). Let x1,x2, · · · ,xT ∈ R
d and V t = µId +

∑t
s=1 xsx

⊤
s . If

∀t ∈ T , ||xt|| ≤ η holds, then for some µ > 0, when µ ≥ max(1, η2), we have

t
∑

s=1

(x⊤
s V

−1
t xs) ≤ 2 ln

det(V t)

µ
. (39)

31

Lemma 3. (Determinant-Trace Inequality, Lemma 10 of [32]). Suppose x1,x2, · · · ,xT ∈ R
d,

and ∀t ∈ T it holds that ||xt|| ≤ η. Let V t = µId +
∑t

s=1 xsx
⊤
s , then for µ > 0, we have

det(V t) ≤ (µ+ tη2/d)d. (40)

Based on those two lemmas, the second term in Eq. (34) can be bounded as

∑

t∈T

∑

n∈N

rn,t|X̄n,t
≤ 2

∑

t∈T

∑

n∈N

∑

f∈Fn,t\F∗

n,t

pf,n,t

≤ 2cαT

∑

n∈N

∑

t∈T

||xf,n,t||V −1

f,n
(41)

≤ 2cαT

∑

n∈N

√

T
∑

t∈T

||xf,n,t||2
V

−1

f,n

(42)

≤ 2cαTN

√

2T ln
(µ+ Tη2/d)d

µ
, (43)

where Eq. (41) is due the fact that αt increases with t, Eq. (42) holds because the arithmetic

mean of a set of values is smaller than their root-mean square and Eq. (43) is based on the

above two lemmas.

By substituting Eq. (43) and (36) into Eq. (34), and together with αT =

√

ln(TF
1

2)+µζ , we

have

R(T) ≤ 2cαTN

√

2

T
ln

(µ+ Tη2/d)d

µ
+
π2cγN

3T

= O
(

cN

√

d(lnT) ln(µ+ Tη2/d)

T

)

. (44)

APPENDIX C

PROOF OF THEOREM 2

The typical estimation error on the demand of a certain content f on EN n during time slot

t is |df,n,t − d̃f,n,t|. Based on Hölder’s inequality, the estimation error can be bounded as

|df,n,t − d̃f,n,t| = |x⊤
f,n,tθ̃n,t − x⊤

f,n,tθ
∗
n|

≤ ||xf,n,t|| · ||θ̃n,t − θ∗
n|| ≤ η||θ̃n,t − θ∗

n||. (45)

Define the per-EN per-slot regret as

rn,t =
∑

f∈F∗

n,t
df,n,t −

∑

f∈Fn,t
df,n,t. (46)

32

Since the files in Fn,t \ F∗
n,t is selected rather than the ones in F∗

n,t \ Fn,t, the estimated user

demands of those files satisfy

∑

f∈F∗

n,t\Fn,t
d̃f,n,t ≤

∑

f∈Fn,t\F∗

n,t
d̃f,n,t. (47)

Eq. (45) indicates that d̃f,n,t ≤ df,n,t + η||θ̃n,t − θ∗
n|| and df,n,t ≤ d̃f,n,t + η||θ̃n,t − θ∗

n|| for all

f ∈ F , n ∈ N and t ∈ T . With Eq. (47), we have

rn,t =
∑

f∈F∗

n,t\Fn,t
df,n,t −

∑

f∈Fn,t\F∗

n,t
df,n,t

≤ ∑

f∈F∗

n,t\Fn,t
(d̃f,n,t + η||θ̃n,t − θ∗

n||)
−∑

f∈Fn,t\F∗

n,t
(d̃f,n,t − η||θ̃n,t − θ∗

n||)
≤ ∑

f∈F∗

n,t\Fn,t
η||θ̃n,t − θ∗

n||
+
∑

f∈Fn,t\F∗

n,t
η||θ̃n,t − θ∗

n||
≤ 2cη||θ̃n,t − θ∗

n||.
Then, the cumulative mean regret can be rewritten as

R(T) =
1

T

∑

t∈T

∑

n∈N

rn,t ≤
2cη

T

∑

n∈N

∑

t∈T

||θ̃n,t − θ∗
n||

≤ 2cη

T

∑

n∈N

√

T
∑

t∈T

||θ̃n,t − θ∗
n||2. (48)

Since the initialization error and noises are bounded as ||θn,0 − θ̃n,0||2P n,0
≤ Θ and |wn,t| ≤ w

for all t ∈ T and n ∈ N . Based on Eq. (14) and (16), for a certain EN n, we have

∑

t∈T

||θ̃n,t − θ∗
n||2 ≤ ψ2(||θn,0 − θ̃n,0||2P n,0

+
∑

t∈T

|wn,t|2)

≤ ψ2(Θ + Tw2). (49)

By substituting Eq. (49) into Eq. (48), the time-averaged caching regret is finally bounded as:

R(T) ≤ 2cηψN

√

Θ

T
+ w2, (50)

which completes the proof.

REFERENCES

[1] B. Liang, “Mobile Edge Computing,” in Key Technologies for 5G Wireless Systems, Cambridge University Press, 2017.

[2] ETSI Group Specification, “Mobile Edge Computing (MEC); Technical Requirements,” ETSI GS MEC 002 V1.1.1, Mar.

2016.

[3] R. Tandon and O. Simeone, “Harnessing Cloud and Edge Synergies: Toward an Information Theory of Fog Radio Access

Networks,” IEEE Commun. Mag., vol. 54, no. 8, pp. 44-50, Aug. 2016.

33

[4] P. Yang, N. Zhang, Y. Bi, L. Yu, and X. Shen, “Catalyzing Cloud-Fog Interoperation in 5G Wireless Networks: An SDN

Approach,” IEEE Netw., vol. 31, no. 5, pp. 14-20, Sep./Oct. 2017.

[5] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud Architecture for Mobile Computing,” in Proc. of IEEE INFOCOM,

San Francisco, CA, USA, 2016, pp. 1-9.

[6] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache in the Air: Exploiting Content Caching and Delivery

Techniques for 5G Systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 131-139, Feb. 2014.

[7] C. Li, P. Frossard, H. Xiong, and J. Zou, “Distributed Wireless Video Caching Placement for Dynamic Adaptive Streaming,”

in Proc. of ACM NOSSDAV, Klagenfurt, Austria, 2016, pp. 1-6.

[8] S. Zhang, N. Zhang, P. Yang, and X. Shen, “Cost-Effective Cache Deployment in Mobile Heterogeneous Networks,” IEEE

Trans. Veh. Technol., vol. 66, no. 12, pp. 11264-11276, Dec. 2017.

[9] A. Liu and V. K. N. Lau, “Exploiting Base Station Caching in MIMO Cellular Networks: Opportunistic Cooperation for

Video Streaming,” IEEE Trans. Signal Process., vol. 63, no. 1, pp. 57-69, Jan. 2015.

[10] T. H. Luan, L. X. Cai, and X. Shen, “Impact of Network Dynamics on User’s Video Quality: Analytical Framework and

QoS Provision,” IEEE Trans. Multimedia, vol. 12, no. 1, pp. 64-78, Jan. 2010.

[11] K. Shanmugam et al., “FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers,” IEEE

Trans. Inf. Theory, vol. 59, no. 12, pp. 8402-8413, Dec. 2013.

[12] S. Zhang, N. Zhang, X. Fang, P. Yang, and X. Shen, “Cost-Effective Vehicular Network Planning with Cache-Enabled

Green Roadside Units,” in Proc. of IEEE ICC, Paris, France, 2017, pp. 1-6.

[13] W. C. Ao and K. Psounis, “Distributed Caching and Small Cell Cooperation for Fast Content Delivery,” in Proc. of ACM

MobiHoc, Hangzhou, China, 2015, pp. 127-136.

[14] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, “Wireless Content Caching for Small Cell and D2D

Networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 5 pp. 1222-1234, May 2016.

[15] M. Ji, G. Caire, and A. F. Molisch, “Wireless Device-to-Device Caching Networks: Basic Principles and System

Performance,” IEEE J. Sel. Areas Commun., vol. 34, no. 1, pp. 176-189, Jan. 2016.

[16] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A Learning-Based Approach to Caching in Heterogeneous Small Cell

Networks,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1674-1686, Apr. 2016.

[17] P. Blasco and D. Gündüz, “Learning-Based Optimization of Cache Content in a Small Cell Base Station,” in Proc. of IEEE

ICC, Sydney, Australia, 2014, pp. 1897-1903.

[18] S. Roy, T. Mei, W. Zeng, and S. Li, “Towards Cross-Domain Learning for Social Video Popularity Prediction,” IEEE

Trans. Multimedia, vol. 15, no. 6, pp. 1255-1267, Oct. 2013.

[19] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-Aware Proactive Content Caching With Service

Differentiation in Wireless Networks,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1024-1036, Feb. 2017.

[20] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-Aware Video Caching Through Online Learning,” IEEE Trans.

Multimedia, vol. 18, no. 12, pp. 2503-2516, Dec. 2016.

[21] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, “Video Popularity Dynamics and Its Implication for Replication,” IEEE

Trans. Multimedia, vol. 17, no. 8, pp. 1273-1285, Aug. 2015.

[22] S. Dhar and U. Varshney, “Challenges and Business Models for Mobile Location-based Services and Advertising,” Commun.

ACM, vol. 54, no. 5, pp. 121-128, May 2011.

[23] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, “Dynamic Mobile Edge Caching with Location Differentiation,”

in Proc. of IEEE GLOBECOM, Singapore, 2017, pp. 1-6.

[24] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-Centric Sparse Multicast Beamforming for Cache-Enabled Cloud RAN,”

IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6118-6131, Dec. 2016.

34

[25] M. Cha et al., “I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Content Video System,”

in Proc. of ACM IMC, San Diego, CA, USA, 2007, pp. 1-14.

[26] Y. Feng and D. P. Palomar, “A Signal Processing Perspective of Financial Engineering,” Foundations and Trends in Signal

Processing, vol. 9, no. 1-2, pp. 1-231, 2015.

[27] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,”

Second Edition, Springer Series in Statistics, 2008.

[28] J. Cai, X. Shen, and J. W. Mark, “Robust Channel Estimation for OFDM Wireless Communication Systems-An H∞

Approach,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2060-2071, Nov. 2004.

[29] W. Zhuang, “Adaptive H∞ Channel Equalization for Wireless Personal Communications,” IEEE Trans. Veh. Technol., vol.

48, no. 1, pp. 126-136, Jan. 1999.

[30] D. Simon, “Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches,” Wiley-Interscience, 2006.

[31] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual Bandits with Linear Payoff Functions,” in Proc. of AISTATS,

Fort Lauderdale, FL, USA, 2011, pp. 208-214.

[32] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved Algorithms for Linear Stochastic Bandits,” in Proc. of NIPS,

Granada, Spain, 2011, pp. 2312-2320.

[33] I. C. F. Ipsen and B. Nadler. “Refined Perturbation Bounds for Eigenvalues of Hermitian and Non-Hermitian Matrices,”

SIAM J. Matrix Anal. Appl., vol. 31, no. 1, pp. 40-53, 2009.

[34] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding Performance of Edge Content Caching for

Mobile Video Streaming,” IEEE J. Sel. Areas Commun., vol. 35, no. 5, pp. 1076-1089, May 2017.

[35] W. Hu, Z. Wang, M. Ma, and L. Sun, “Edge Video CDN: A Wi-Fi Content Hotspot Solution,” Journal of Computer

Science and Technology, vol. 31, no. 6, pp. 1072-1086, Nov. 2016.

[36] G. Ma, Z. Wang, M. Chen, and W. Zhu, “APRank: Joint Mobility and Preference-Based Mobile Video Prefetching,” in

Proc. of IEEE ICME, Hong Kong, China, 2017, pp. 7-12.

[37] S. Akhshabi, L. Ananthakrishnan, A. Begen, and C. Dovrolis, “Server-Based Traffic Shaping for Stabilizing Oscillating

Adaptive Streaming Players,” in Proc. ACM SIGMM NOSSDAV, Oslo, Norway, 2013, pp. 19-24.

[38] Z. Lu, S. Ramakrishnan, and X. Zhu, “Exploiting Video Quality Information with Lightweight Network Coordination for

HTTP-based Adaptive Video Streaming,” IEEE Trans. Multimedia, to appear, DOI: 10.1109/TMM.2017.2772802.

[39] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over

HTTP,” in Proc. ACM SIGCOMM, New York, NY, USA, 2015, pp. 325-338.

	I Introduction
	II Related Work
	III System Model and Problem Formulation
	III-A Network Model
	III-B Content Popularity and Location Diversity
	III-C Problem Formulation

	IV Ridge Regression based Content Popularity Prediction and Edge Caching
	IV-A Location Feature Vector Estimation
	IV-B RPUC Caching Algorithm
	IV-C Regret Analysis

	V Robust Content Popularity Prediction and Edge Caching
	V-A Noisy Model for Content Popularity
	V-B An H Filter Approach
	V-C From Determining to the HPDT Caching Algorithm
	V-D Regret Analysis

	VI Numerical Analysis and Experimental Results
	VI-A Numerical Analysis
	VI-B Real Dataset Experiment
	VI-B1 Experiment Setup
	VI-B2 Experimental Results

	VI-C Discussions
	VI-C1 Another dimension of the prediction
	VI-C2 The applicability in practical video streaming

	VII Conclusion
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Theorem 2
	References

