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Abstract—Cognitive small cell networks have great potential
in improving spectrum efficiency and mitigating inter-cell in-
terference. Comprehensively classifying the channel states in
cognitive small cell networks is important for efficiently reusing
the spectrum bands that are licensed to macrocell. In this paper,
we investigate channel states classification in cognitive small
cell networks with multi-level of transmission powers, including
occupation detection of spectrum bands and transmission power
classification of macrocell base station (MBS). Specifically, two
scenarios including priori known signaling features and unknown
signaling features are both studied. For the former scenario, we
propose an optimal spectrum sensing and power classification
algorithm (OSC), based on coherent classification, to achieve
accurate sensing performance by fully exploiting the inherent in-
formation of the signaling features. Optimal sensing threshold as
well as decision regions are derived for detecting and classifying
the transmission power of MBS. For the scenario without signal-
ing features, a generic spectrum sensing and power classification
(GSC) algorithm is proposed based on non-coherent classification
with low implementation complexity. A new performance metric,
i.e., classification probability, is introduced to comprehensively
evaluate the classification capability of the proposed algorithms.
Finally, extensive simulations are provided to verify the proposed
algorithms.

Index Terms—Cognitive small cell, sensing based spectrum
sharing, multiple transmission powers, channel states classifica-
tion.

I. INTRODUCTION

Wireless data traffic driven by the mobile devices and

evolutionary applications is predicted to increase 1000-fold

over the next decade [1]. To effectively accommodate the
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unprecedented growth of wireless data traffic, both industry

and academia are devoting more efforts in developing next

generation (5G) mobile networks. As a promising technology

in the 5G, small cells are densely deployed to improve the net-

work capacity and increase the spectrum efficiency by sharing

spectrum resources with macrocell [2]. However, severe cross-

tier interference (i.e., between small cell and macrocell) and

co-tier interference (i.e., among small cells) can arise when

the unplanned deployed small cells share the same spectrum

resources. To address this problem, cognitive radio technology

has been integrated with small cells to automatically monitor

the channel condition and intelligently allocate the spectrum

resources [3]–[5].

In cognitive small cell networks, the macrocell is deemed

as the primary user that has the license of spectrum bands, and

the small cell embedded with cognitive capability is deemed as

the secondary user that is seeking opportunities to access the

licensed spectrum bands of the macrocell [5]. Three spectrum

access strategies exist for cognitive small cells: 1) opportunis-

tic spectrum access (also known as overlay spectrum access),

where the cognitive small cells opportunistically access the

spectrum bands that are not occupied by the primary macrocell

[6]; 2) spectrum sharing (also known as underlay spectrum

access), where the cognitive small cells can always access

the spectrum bands without causing harmful interference to

the macrocell [7]; and 3) sensing based spectrum sharing

(also known as hybrid overlay-underlay spectrum access),

where the cognitive small cells flexibly switch between overlay

and underlay models according to the sensing results about

the macrocell licensed spectrum bands [8]–[11]. When the

macrocell spectrum bands are detected to be unoccupied, the

cognitive small cell adopts overlay model to utilize spectrum

bands with a higher transmission power. Once the macrocell

spectrum bands are detected to be occupied, the cognitive

small cell switches to underlay model with a lower transmis-

sion power to limit the interference to macrocell.

With the sensing based spectrum sharing strategy, cognitive

small cell can not only significantly mitigate the interference

to both macrocell and other small cells, but also efficiently

improve spectrum utilization for a high network capacity. In

[12], a centralized hybrid overlay-underlay selection scheme

was investigated to maximize the transmission efficiency of

the cognitive small cell network. Moreover, downlink energy

consumption of small cells was also analyzed. In [13], a hybrid

underlay-overlay cognitive femtocell network was proposed,

in which the subchannel allocation problem was formulated

as a coalition formation game. In [14], by jointly considering
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the transmitter and receiver energy consumption, a time-

frequency power-resource allocation strategy was developed

in orthogonal frequency-division multiple-access (OFDMA)

networks. In [15], the interference management for hetero-

geneous networks was investigated, where cognitive radio

technique was deemed as an efficient approach in minimizing

mutual interference between cells. In these existing works,

two common assumptions are adopted: i) the macrocell base

station (MBS) is either inactive or transmitting with a constant

power; and ii) the received noise at the cognitive small cell is

white Gaussian noise to simplify analysis. However, practical

communication systems are usually with multiple transmission

powers and spatially correlated noise:

• Multiple Transmission Powers (MTP): In cognitive small

cell networks, the MBS can adaptively change the trans-

mission power to accommodate the diverse demands

of mobile users [16], [17], since the cognitive small

cell can assist to balance the traffic load of macrocell.

When the MBS works on multiple transmission powers,

i.e., the MTP scenario, the interference temperature of

macrocell associated mobile users varies under different

primary transmission powers. If the primary macrocell

base station works on a low transmission power while the

cognitive small cell adopts a constant power with under-

lay spectrum access model for concurrent transmission,

serious interference would be introduced to the macrocell.

Hence, the cognitive small cell has to capture the current

interference temperature of the macrocell so as to prevent

macrocell users from being interfered by the inappro-

priate access of cognitive small cell. To this end, two

main challenges to facilitate the sensing based spectrum

sharing in cognitive small cell networks with MTP are

1) detecting the occupation of the macrocell spectrum

bands; and 2) classifying the transmission power on the

occupied spectrum band.

• Spatially Correlated Noise: Due to the oversampling and

imperfect filtering in practical communication systems,

correlations can arise among the received noise [18]. For

example, when the received signal and ambient noise are

filtered by a narrowband filter at a receiver, the noise

embedded in the output signal is correlated. Moreover,

the small cells are densely and randomly deployed, such

that the received noise at each cell contains tremendous

unpredictable weak signals transmitted from other cells.

These weak signals can be highly directive and correlated,

which results in a spatially correlated noise [19]–[22].

The spatially correlated noise seriously degrades the

detection and classification performance of existing works

[23]–[27], e.g., lead to high false alarm probability and

low classification probability.

These factors translate into an urgent need in developing

channel states classification algorithms which are insensitive

to the spatially correlated noise.

In this paper, we investigate the channel states classification

in cognitive small cell networks with multi-level of trans-

mission powers, in which we not only detect the occupation

of spectrum bands, but also identify the transmission power

over the occupied spectrum band. Specifically, the occupa-

tion of spectrum bands is first detected by examining the

posterior probability ratio between two different hypotheses.

Then, the transmission power on the occupied spectrum band

is identified by leveraging minimum Bayes risk criterion.

When the signaling features of macrocell transmitted signals

are available, we propose an optimal spectrum sensing and

power classification (OSC) algorithm. The OSC algorithm

is designed a coherent classification algorithm, where the

decision metric is conducted as the output of matched filter

weighted by channel gain and noise correlation factors. For

the case without signaling features at cognitive small cell,

we propose a more generic spectrum sensing and power

classification (GSC) algorithm, which is designed as a non-

coherent classification algorithm. The decision metric of GSC

algorithm is conducted as the weighted energy of received

signals. We prove that the total error rates of both proposed

algorithms are convex function with respect to the sensing

threshold, and the optimal thresholds are respectively derived

such that the total error rates are minimized. Moreover, closed-

form decision regions for classifying the transmission powers

are theoretically derived. In a nutshell, the main contributions

of this paper are summarized as follows:

• We propose two channel states classification algorithms

considering multiple transmission powers. Specifically,

when the signaling features of transmitted signal are

available, an optimal spectrum sensing and power clas-

sification algorithm is proposed, which is a coherent

classification algorithm. For the case where the signaling

features are unavailable, a non-coherent classification

algorithm is proposed, where the decision metric is the

summation of received signal energy weighted by channel

gain and noise correlation factors.

• The total error rate is proved to be a convex function

with respect to the sensing threshold. By minimizing the

total error rate, the optimal sensing threshold is obtained

for detecting the occupation of the spectrum band. Ad-

ditionally, closed-form decision regions for classifying

transmission powers are theoretically derived.

• A unique phenomenon in MTP scenarios, namely power

mask effect, is discussed whenever the priori proba-

bility of each transmission power is equal or not. To

comprehensively evaluate the classification capability of

the proposed algorithms, a new performance metric,

i.e., classification probability is introduced. Simulation

results demonstrate that both the proposed algorithms

can classify the primary transmission power of the MBS

and the classification performance improves when the

sensing condition becomes better. Moreover, compared

to GSC algorithm, OSC algorithm requires less samples

to achieve a desired performance such that it can meet

the real-time demand of channel states classification in

cognitive small cell networks.

The remainder of this paper is organized as follows. Section

II presents the system model and formulates channel states

classification problem in MTP scenarios. Section III pro-

poses the optimal spectrum sensing and power classification
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algorithm if the signaling features of macrocell transmitted

signal are available. Section IV presents an alternative generic

spectrum sensing and power classification algorithm for cases

where the signaling features are unavailable. Simulation results

are provided in Section V, followed by the conclusion in

Section VI.

II. SYSTEM MODEL

Consider a cognitive small cell network where cognitive

small cells are overlaid with a primary macrocell to share

the same spectrum resources. The spectrum bandwidth of

macrocell is divided into several channels. Cognitive small

cell base station firstly performs spectrum sensing and power

classification to determine the status of each channel, and

then access the available channel based on the classification

results. The MBS operates on the licensed band with one

of the discrete power levels Pi, i = 1, · · · , L. Without

loss of generality, these power levels are ordered as P1 <
P2 < · · · < PL. Suppose that once a transmission power

is chosen by the MBS, it will be used for a certain period

during which the cognitive small cell could perform spectrum

sensing and power classification as well as the subsequent

data transmission. Cognitive small cell base station is equipped

with M antennas to improve the sensing accuracy. To detect

the occupation status of the channels, a set of N discrete time

vector observations x[n], n = 0, · · · , N−1 are utilized. Hence,

the hypothesis testing problem of interest can be expressed as

H0 : x[n] = ŵ[n],

Hi : x[n] =
√
Pih̃s[n] + ŵ[n], i = 1, · · · , L (1)

where H0 denotes the hypothesis that primary macrocell is

inactive while Hi indicates primary macrocell is operating

with power Pi; h̃ = [h̃1, · · · , h̃M ]T represents the block-

fading channel from the primary MBS to the cognitive small

cell base station; s[n] is the symbol transmitted from the

primary macrocell that is normalized to have unit power; and

ŵ[n] = [ŵ1[n], · · · , ŵM [n]]T denotes the spatially correlated

noise. In block-fading channel, the channel coefficient vector

h̃ is considered to be constant for each antenna at the cognitive

small cell base station during one sensing period. Moreover, h̃,

s[n] and ŵ[n] are assumed to mutually independent with each

other, which is in accordance with practical communication

systems [28]–[30].

The priori probability of each state of primary macrocell

is defined as Pr(Hi), i = 0, 1, · · · , L. Also define Hon =
⋃L

i=1 Hi as the hypothesis that primary macrocell is active.

Then, the priori probability of Hon is Pr(Hon) =
∑L

i=1 Pr(Hi).
While the inactive state of primary macrocell, denoted by

Hoff , H0, has the priori probability Pr(Hoff) = Pr(H0).
We assume that cognitive small cell has the knowledge of the

available transmission power levels that primary macrocell can

select, since those power levels are normally deterministic and

regulated by the wide-used standards [16], [17]. In addition,

the corresponding priori probabilities Pr(Hi)’s are assumed to

be known at cognitive small cell.

A. Correlated Noise Model

The noise samples are considered to be correlated across the

spatial dimensions and uncorrelated in temporal dimension.

To analyze the spatial correlation characteristic of the noise

observations, one-sided noise correlation model is adopted

[18]. The correlated noise samples across spatial dimension

are related to white noise as

Ŵ = Θ1/2W, (2)

where W is an M ×N matrix with independent and identi-

cally distributed (i.i.d.) Gaussian entries with zero mean and

variance σ2
w, representing the white noise, Θ is an M × M

Hermitian matrix with entries corresponding to the correlation

among noise samples, and Θ1/2 denotes the square root of Θ.

A common model to effectively quantify the level of spatial

correlation is exponential correlation model [31], [32]. More

specifically, the exponential model can be given as

θij =

{

ρj−i, i ≤ j
(ρi−j)∗, i > j

(3)

where θij is the (i, j)th element of Θ, ρ ∈ C is the correlation

coefficient with |ρ| ≤ 1, and [·]∗ indicates the complex conju-

gate operator. We can easily notice that Θ does not affect the

noise power since it is normalized, i.e., (1/M)trace{Θ} = 1.

III. OPTIMAL SPECTRUM SENSING AND POWER

CLASSIFICATION ALGORITHM

In this section, the optimal spectrum sensing and power clas-

sification algorithm with spatially correlated noise is proposed

by leveraging the priori knowledge of signaling features. In

this case, the n-th received signal sample has the distribution

as follows:

x[n] ∼
{ CN (0, σ2

wΘ), H0;

CN (
√
Pih̃s[n], σ

2
wΘ), Hi.

(4)

Then, the received sample matrix at cognitive small cell base

station can be represented as X = [x[1], · · · ,x[N ]], and

the corresponding probability density function (PDF) under

hypothesie H0 is expressed as

f(X|H0) =

N
∏

n=1

f(x[n]|H0)

=

N
∏

n=1

1

πM det(σ2
wΘ)

exp

{

−xH [n]Θ−1x[n]

σ2
w

}

=
1

πMN{det(σ2
wΘ)}N exp

{

− 1

σ2
w

N
∑

n=1

xH [n]Θ−1x[n]

}

.

(5)



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2810073, IEEE
Transactions on Vehicular Technology

4

Define y[n] = Θ−1x[n] and Y = [y[1], · · · ,y[N ]], hence

there is Y = Θ−1X. Further, (4) can be re-written as

f(X|H0)

=
1

πMN{det(σ2
wΘ)}N exp

{

− 1

σ2
w

N
∑

n=1

xH [n]y[n]

}

=
1

πMN{det(σ2
wΘ)}N exp

{

− 1

σ2
w

tr(XHY)

}

=
1

πMN{det(σ2
wΘ)}N exp

{

− 1

σ2
w

tr(XHΘ−1X)

}

(a)
=

exp
{

− tr(XX
H
Θ

−1)
σ2
w

}

πMN{det(σ2
wΘ)}N , (6)

where (a) is derived by utilizing the invariant property of

the trace under cyclic permutations [33]. Similarly, the PDF

of received sample matrix X under hypothesis Hi can be

expressed as

f(X|Hi) =
1

πMN{det(σ2
wΘ)}N

exp

{

− tr(XXHΘ−1)

σ2
w

+

√
Pi(h̃

HΘ−1XsH + sXHΘ−1h̃)

σ2
w

− Pi‖s‖2h̃HΘ−1h̃

σ2
w

}

.

(7)

where s is the macrocell transmitted signal vector during one

sensing period, denoted by s = [s[1], s[2], · · · , s[N ]].
In MTP scenarios, the primary target at cognitive small cell

is to detect the occupation of macrocell channels, while a

secondary target is to classify the transmission power on the

occupied channel. The algorithm that detects the occupation of

macrocell channels is given in Section III-A. Then, in Section

III-B, the optimal sensing threshold is derived by minimizing

the total error rate. The algorithm and decision thresholds for

classifying the transmission power are given in Section III-C.

A. Occupation Detection of Macrocell Channel

To achieve the primary task, we first verify the hypothesis

Hon/Hoff. Let us examine the ratio of the posterior probabil-

ities between hypothesis Hon and hypothesis Hoff

ξ(X) =
Pr(Hon|X)

Pr(Hoff |X)
=

L
∑

i=1

Pr(Hi)f(X|Hi)

Pr(H0)f(X|H0)

=
L
∑

i=1

Pr(Hi)

Pr(H0)
exp







√
Pi(h̃

H
Θ

−1
Xs

H+sX
H
Θ

−1
h̃)

σ2
w

−Pi‖s‖2h̃H
Θ

−1
h̃

σ2
w







(8)

Since the signaling features of transmitted signal are known

to cognitive small cell base station, it is easily found that ξ(X)
is strictly increasing over TOSC , h̃HΘ−1XsH+sXHΘ−1h̃,

and hence the decision criterion can be made as

TOSC = h̃HΘ−1XsH + sXHΘ−1h̃
Hon

≷
Hoff

θ, (9)

where θ is the pre-determined sensing threshold. For simplify-

ing analysis, we perform singular value decomposition (SVD)

on noise correlation matrix Θ given by Θ = UΛUH , where

U is an M ×M unitary matrix of the eigenvectors of Θ, and

Λ is an M ×M diagonal matrix whose diagonal elements are

the corresponding eigenvalues, i.e., Λii = λi. Thus, (9) can

be expressed as

TOSC = hHΛ−1YsH + sYHΛ−1h
Hon

≷
Hoff

θ, (10)

where h = UH h̃ and Y = UHX. Note that Y is a linear

transformation of the received signal matrix X, such that Y

has the same statistical properties as X. Therefore, under

the hypothesis Hi, the test statistic TOSC follows Gaussian

distribution:

Hi : TOSC ∼ N (2
√

Piµ ‖s‖2 , 2σ2
wµ ‖s‖2), (11)

where ‖·‖ denotes the standard vector norm, and µ =

hHΛ−1h =
M
∑

m=1

|hm|2
λm

. Similar to the conventional cognitive

radio networks, we resort to the false alarm probability Prfa

and the detection probability Prd to evaluate the sensing

performance of the proposed OSC algorithm, which can be

separately calculated as

Prfa(θ) = Pr(Hon|Hoff) = Pr(TOSC > θ|Hoff)

= Q

(

θ√
2µσw ‖s‖

)

,

Prd(θ) = Pr(Hon|Hon) = Pr(TOSC > θ|Hon)

=

L
∑

i=1

Pr(Hi)

Pr(Hon)
Q

(

θ − 2
√
Pi ‖s‖2 µ√

2µσw ‖s‖

)

,

(12)

where Q(·) is the Complementary Cumulative Distribution

Function (CCDF), i.e., the right tail probability of the standard

normal distribution.

The pre-determined sensing threshold θ is crucial for the

cognitive small cell networks to control the system perfor-

mance. For example, a lower sensing threshold results in a

higher false alarm probability Prfa(θ), which will waste the op-

portunity to re-use the idle channel. Whereas, a higher sensing

threshold leads to a higher miss-detection probability Prm(θ),
which will increase the interference to macrocell. Therefore,

there exists a tradeoff between false alarm probability and

miss-detection probability. We aim to calculate the optimal

sensing threshold such that the total error rate Pre(θ) of the

proposed OSC algorithm is minimized, where the total error

rate can be presented as:

Pre(θ) = Prfa(θ) + Prm(θ)

= 1 + Prfa(θ)− Prd(θ). (13)

B. Optimal Sensing Threshold

Since the sensing performance is related to both false alarm

probability and detection probability, we aim to obtain the

optimal sensing threshold θ∗ that minimizes the total error

rate Pre(θ). Such a problem can be formulated as

θ∗ = argmin
θ

Pre(θ)

= argmin
θ











1 +Q
(

θ√
2µσw‖s‖

)

−
L
∑

i=1

Pr(Hi)
Pr(Hon)

Q
(

θ−2
√
Pi‖s‖2µ√

2µσw‖s‖

)











(14)
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To prove the existence of the optimal sensing threshold for

detecting the occupation of macrocell channel, we prove

1)
∂Pre(θ)

∂θ = 0 has unique solution θ∗ and

2)
∂Pre(θ)

∂θ < 0 when θ < θ∗ and
∂Pre(θ)

∂θ > 0 when θ > θ∗.

In the following, we provide the theorem and corresponding

proof for the existence of optimal sensing threshold θ∗ that

minimizes the total error rate.

Theorem 1. There exists an optimal sensing threshold for

detecting the occupation of macrocell channel such that the

total error rate of the proposed OSC algorithm is minimized.

Moreover, the optimal sensing threshold θ∗ is the solution to

the following equation.

L
∑

i=1

Pr(Hi)

Pr(Hon)
exp

(√
Piθ − Pi ‖s‖2 µ

σ2
w

)

= 1. (15)

Proof: Differentiating Pre(θ) with respect to θ, we have

∂Pre(θ)

∂θ

= − 1

δ
√
2π

e−
θ2

2δ2 +
L
∑

i=1

Pr(Hi)

Pr(Hon)

1

δ
√
2π

e−
(θ−2

√
Pi‖s‖

2µ)2

2δ2

=
1

δ
√
2π

e−
θ2

2δ2 g(θ),

(16)

where δ =
√
2µσw ‖s‖, and g(θ) is defined as

g(θ) =

L
∑

i=1

Pr(Hi)

Pr(Hon)
exp

(√
Piθ − Pi ‖s‖2 µ

σ2
w

)

− 1. (17)

Since e−θ2/2δ2 > 0 always holds when θ ∈ (−∞,∞), then
∂Pre(θ)

∂θ = 0 if and only if g(θ) = 0. With positive Pi, it can be

easily found that g(θ) is monotonically increasing with respect

to θ, and

lim
θ→−∞

g(θ) = −1,

lim
θ→+∞

g(θ) = +∞.
(18)

Hence, there exists a unique sensing threshold θ∗ that satisfies

g(θ∗) = 0. Moreover, with the unique sensing threshold θ∗,

the following inequalities always hold.

• When θ < θ∗, g(θ) < 0, i.e.,
∂Pre(θ)

∂θ < 0.

• When θ > θ∗, g(θ) > 0, i.e.,
∂Pre(θ)

∂θ > 0.

Note that Pre(θ) is a monotonically decreasing function with

respect to θ when θ < θ∗, and a monotonically increasing

function with respect to θ when θ > θ∗. Thus, the minimum

total error rate is achieved at the unique sensing threshold θ∗.

Therefore, from the above analysis, it is concluded that the

optimal sensing threshold θ∗ uniquely exists for minimizing

the total error rate, which is obtained by solving the equation
∂Pre(θ)

∂θ = 0.

Remark 1. From (15), the optimal sensing threshold is dif-

ficult to be expressed in closed-form, while it can be calculated

numerically. Specially, when the macrocell has only one non-

zero transmission power, i.e., L = 1, the closed-form optimal

sensing threshold can be obtained as θ∗ =
√
P1 ‖s‖2 µ. If the

macrocell has multiple transmission powers, i.e., L > 1, the

optimal sensing threshold can be calculated numerically.

C. Transmission Power Classification on the Occupied Chan-

nel

After detecting the occupation of macrocell channel, the

next step is to identify at which power level the macrocell is

operating over the occupied channel. When the macrocell has

multiple different transmission powers, cognitive small cell

might make various erroneous decisions when classifying the

transmission powers. To distinguish the non-zero transmission

power of macrocell, a multiple hypothesis testing problem is

formulated, whereby the Bayes risk is employed. Define Cij as

the cost when the cognitive small cell claims that the macrocell

is working on power level Pi while the macrocell is actually

transmitting with power Pj . Then, the Bayes risk is

B =

L
∑

i=1

L
∑

j=1

CijPr(Hi|Hj ; Ĥon)Pr(Hj |Ĥon)

=

L
∑

i=1

L
∑

j=1

∫

Ri

Cijf(X|Hj ; Ĥon)Pr(Hj |Ĥon)dX

=
L
∑

i=1

∫

Ri

L
∑

j=1

CijPr(Hj |X; Ĥon)f(X|Ĥon)dX

=

L
∑

i=1

∫

Ri

Ci(X)f(X|Ĥon)dX

(19)

where Ri = {X; decideHi} is the partition of the observation

space, Ci(X) =
L
∑

j=1

CijPr(Hj |X; Ĥon) denotes the average

cost of deciding Hi if X is observed, and Ĥon represents that

TOSC > θ∗, which has the equivalent region as X ∈ X . In

order to minimize the Bayes risk B, we minimize Ci(X), i.e.,

the decision rule is given as

i∗ = argmin
i∈{1,2,··· ,L}

Ci(X). (20)

For the particular cost assignment

Cij =

{

0, i = j;
1, i 6= j,

(21)

the average cost can be expressed as

Ci(X) =
L
∑

j=1

Pr(Hj |X; Ĥon)− Pr(Hi|X; Ĥon) (22)

Note that the first term is independent with i, and Ci(X) is

minimized by maximizing Pr(Hi|X; Ĥon). Thus, the decision

rule turns into MAP criterion, i.e.,

i∗ = argmax
i∈{1,2,··· ,L}

Pr(Hi|X; Ĥon), X ∈ X . (23)

Using Bayes rule, the posterior probability of hypothesis Hi

can be written as

Pr(Hi|X; Ĥon) =
f(X|Hi; Ĥon)Pr(Hi; Ĥon)

f(X|Ĥon)

=
f(X|Hi)Pr(Hi)

f(X|Ĥon)Pr(Ĥon)
.

(24)
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Then, the MAP criterion can be expressed as follows:

i∗ = argmax
i∈{1,2,··· ,L}

f(X|Hi)Pr(Hi), X ∈ X . (25)

For a hypothesis pair (Hi,Hj), ∀i, j ≥ 1, Hi is decided rather

than Hj if

f(X|Hi)Pr(Hi) > f(X|Hj)Pr(Hj),X ∈ X . (26)

With (7), we can expand (26) as

(
√

Pi −
√

Pj)TOSC > σ2
w ln

[

Pr(Hj)

Pr(Hi)

]

+ (Pi − Pj) ‖s‖2 µ.
(27)

Define

Ψ(i, j) ,
σ2
w√

Pi −
√

Pj

ln

[

Pr(Hj)

Pr(Hi)

]

+ (
√

Pi +
√

Pj) ‖s‖2 µ.
(28)

To obtain the decision rule for each hypothesis pair with

respect to the test statistics TOSC, we have the following

inequalities.

• When i > j, i.e., Pi > Pj , there is TOSC > Ψ(i, j), ∀i >
j.

• When i < j, i.e., Pi < Pj , there is TOSC < Ψ(i, j), ∀i <
j.

For 1 < i < L, the lower bound of R(Hi) for hypothesis

Hi is max
1≤j<i

Ψ(i, j) and the upper bound of R(Hi) should be

min
i<j≤L

Ψ(i, j). Additionally, the MAP detection for recogniz-

ing the non-zero transmission power of MBS is defined on the

domain X ∈ X . Namely, all the decision regions of non-zero

transmission powers should stay in (θ∗,+∞). In summary,

the decision regions of hypotheses Hi’s, i ∈ {1, 2, · · · , L} are

given as (29) shown on the top of next page.

For the hypothesis H0, the decision region is (−∞, θ∗). De-

fine θi, i ∈ {1, 2, · · · , L} as the threshold between R(Hi−1)
and R(Hi). Note that θ1 is equal to θ∗. Moreover, define

θ0 , −∞ and θL+1 , +∞ for consistence and completeness.

Note that for a certain decision region R(Hi0 ), its lower

bound may be greater than the upper bound, i.e.,

max{θon/off , max
1≤j<i0

Ψ(i0, j)} > min
i0<j≤L

Ψ(i0, j). (30)

In this case, the decision region R(Hi0 ) is empty and the

corresponding transmission power Pi0 can never be detected.

We name this phenomenon as power mask effect. Many

reasons can lead to the power mask effect phenomenon, and

we conclude main reasons as:

1) If the licensed channel is idle in most of the time, i.e.,

the priori probability of Pr(H0) is very large, P0 may

likely mask its adjacent transmission powers;

2) If the transmission power Pi0 is seldom used by the

macrocell, i.e., the priori probability of Pr(Hi0 ) is very

small, then the transmission power Pi0 may be easily

ignored by the cognitive small cell;

3) If Pi0 is very close to the adjacent transmission power

Pi0−1 and Pi0+1, then Pi0 is very likely to be masked by

Pi0−1 or Pi0+1 when the instantaneous noise influence

is large.

Remark 2. The leftmost transmission power P0 and the

rightmost transmission power PL cannot be masked and are

always detectable.

Fig. 1 shows an example to illustrate the power mask effect

with unequal priori probabilities of transmission powers. Four

non-zero transmission powers (i.e., P1, P2, P3, P4) are con-

sidered, and the corresponding priori probabilities Pr(Hi), i =
1, 2, 3, 4 are set as 0.26, 0.14, 0.03, 0.17, respectively. The pri-

ori probability Pr(H0) is set to 0.4. In Fig. 1, we demonstrate

the decision thresholds and corresponding decision regions

for each hypothesis. It can be seen that transmission power

P3 is masked due to the power mask effect. This is because

that the corresponding priori probability of Pr(H3) is very

small, i.e., the transmission power P3 is rarely used. When

the transmission power P3 is masked, we set the threshold

θ4 = θ3, and thus the decision region R(H3) is empty.

Lemma 1. Consider a special but practical case where

Pr(Hi) = Pr(Hj) in MTP scenarios. Ψ(i, j) is independent

to the priori probability of each transmission power, and is a

monotonically increasing function with respect to Pj for any

given Pi, ∀i, j ∈ {1, 2, · · · , L}.

Proof: When Pr(Hi) = Pr(Hj) is considered, we have

Ψ(i, j) = (
√

Pi +
√

Pj) ‖s‖2 µ. (31)

Since ‖s‖2 and µ are positive constants, Ψ(i, j) is monoton-

ically increasing with respect to Pj for any given Pi, ∀i, j ∈
{1, 2, · · · , L}.

According to Lemma 1, when Pr(Hi) = Pr(Hj), there is

max
1≤j<i

Ψ(i, j) = Ψ(i, i− 1) < Ψ(i, i+ 1) = min
1<j≤L

Ψ(i, j).

(32)

Hence, the non-zero transmission powers cannot mask each

other, and the power mask effect may only happen when P0

masks the non-zero transmission powers. In addition, for i ≥
1, there exists Ψ(i, i + 1) = Ψ(i + 1, i). If the transmission

power Pi0 has not been masked by the power P0, the lower

bound of Hi0 , i.e., Ψ(i0, i0 − 1) equals to the upper bound

of Hi0−1, i.e., Ψ(i0 − 1, i0), and the upper bound of Hi0 ,

i.e., Ψ(i0, i0 + 1) equals to the lower bound of Hi0+1, i.e.,

Ψ(i0 + 1, i0). Thus, there are no gaps between the decision

regions of any two contiguous hypotheses.

Fig. 2 illustrates the power mask effect when each transmis-

sion power has equal priori probability. Similarly, four non-

zero powers (i.e., P1, P2, P3, P4) are considered, while the

corresponding priori probabilities Pr(Hi), i = 1, 2, 3, 4 are all

set equally to 0.1. Hence, the priori probability Pr(H0) is 0.6.

It can be noted that transmission power P1 is masked, because

the priori probability Pr(H0) is very large, i.e., the licensed

channel is idle in most of the time. When P1 is masked, we

set the threshold θ2 = θ1, thus the decision region R(H1) is

empty.

Different from the conventional binary hypothesis detection,

purely evaluating the false alarm probability and detection

probability is insufficient, since the cognitive small cell might

make various error decisions in MTP scenarios. Therefore, we

define Pr(Hi|Hj) as the probability that cognitive small cell
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R(Hi) =















TOSC ∈ (θ∗, min
1<j≤L

Ψ(1, j)), i = 1;

TOSC ∈ (max{θ∗, max
1≤j<i

Ψ(i, j)}, min
i<j≤L

Ψ(i, j)), 1 < i < L;

TOSC ∈ (max{θ∗, max
1≤j<L

Ψ(L, j)},+∞), i = L.

(29)
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Fig. 1. Illustration for the power mask effect with unequal priori probabilities.
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Fig. 2. Illustration for the power mask effect with equal priori probabilities.

claims the MBS is operating at transmission power Pi while

the MBS actually operates at Pj . Then, there is

Pr(Hi|Hj) = Q

(

θi − 2
√

Pj ‖s‖2 µ√
2µσw ‖s‖

)

−Q

(

θi+1 − 2
√

Pj ‖s‖2 µ√
2µσw ‖s‖

)

.

(33)

Additionally, for MTP scenarios, we introduce a new per-

formance metric, i.e., classification probability to describe the

classification capability of the proposed OSC algotithm, which

is defined as

Prc =
1

Pr(Hon)

L
∑

i=1

Pr(Hi)Pr(Hi|Hi). (34)

Remark 3. The false alarm probability Prfa and detection

probability Prd can also be calculated using the probability

Pr(Hi|Hj):

Prfa = Pr(Hon|Hoff) =
L
∑

i=1

Pr(Hi|H0), (35)

Prd = Pr(Hon|Hon) =
1

Pr(Hon)

L
∑

i=1

L
∑

j=1

Pr(Hj |Hi)Pr(Hi).

(36)

IV. GENERIC SPECTRUM SENSING AND POWER

CLASSIFICATION ALGORITHM

When the cognitive small cell has no information regarding

the signaling features of the transmitted signal, we propose

an alternative generic spectrum sensing and power classifi-

cation algorithm. According to the practical communication

systems, the transmitted signal can be reasonably supposed

as a complex Gaussian process [34]–[36]. Moreover, this

assumption indicates the worst case in spectrum sensing,

where the derived detection and classification probabilities

describe the low bound of the performance. In this case, the

n-th received signal sample has the distribution under each

hypothesis as:

x[n] ∼
{ CN (0, σ2

wΘ), H0;

CN (0, Pih̃h̃
H + σ2

wΘ), Hi.
(37)

Thereafter, under hypothesis H0, the PDF of the observation

matrix X can be written as:

p(X|H0) =
exp{−tr(XXH(σ2

wΘ)−1)}
πMN{det(σ2

wΘ)}N , (38)

where tr(·) denotes the trace of matrix. Similarly, under Hi

the PDF of the observation matrix X is as follows:

p(X|Hi) =
exp{−tr(XXH(Pih̃h̃

H + σ2
wΘ)−1)}

πMN{det(Pih̃h̃H + σ2
wΘ)}N

. (39)

A. Occupation Detection of Macrocell Channel

In this subsection, we first verify the hypothesis Hon/Hoff.

The ratio of the posterior probabilities between two hypotheses

can be written as

ζ(X) =
Pr(Hon|X)

Pr(Hoff |X)
=

L
∑

i=1

Pr(Hi)p(X|Hi)

Pr(H0)p(X|H0)

=
L
∑

i=1

Pr(Hi)

Pr(H0)

det(σ2
wΘ)N

det(Pih̃h̃H + σ2
wΘ)N

× exp

{

tr(XXH(σ2
wΘ)−1)

−tr(XXH(Pih̃h̃
H + σ2

wΘ)−1)

}

.

(40)
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Using the following Sherman-Morrison formula [37]

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1,
(41)

we obtain

(Θ+
Pi

σ2
w

h̃h̃H)−1 = Θ−1 − Θ−1h̃h̃HΘ−1

σ2
w/Pi + h̃HΘ−1h̃

. (42)

Additionally, with the aid of Θ = UΛUH , Y = UHX, and

h = UH h̃, the ratio of the posterior probabilities (40) can be

simplified as

ζ(Y) =

L
∑

i=1

Pr(Hi)

Pr(H0)

det(σ2
wΛ)N

det(PihhH + σ2
wΛ)N

× exp

{

tr(YYHΛ−1hhHΛ−1)

σ2
w(σ

2
w/Pi + hHΛ−1h)

}

.

(43)

Note that ζ(Y) is strictly increasing over TGSC ,
tr(YYHΛ−1hhHΛ−1), and therefore the decision criterion

for detecting the occupation of macrocell channel can be given

as

TGSC = tr(YYHΛ−1hhHΛ−1)
Hon

≷
Hoff

η, (44)

where η is the pre-determined sensing threshold. To obtain

the sensing threshold, we first calculate the distribution of the

test statistics. Note that the noise covariance matrix Θ is a

Hermitian matrix, and hence Λ is real and diagonal, i.e., there

is (Λ−1)H = Λ−1. Therefore, the test statistics can be written

as

TGSC = tr(YYHΛ−1hhHΛ−1)

= tr(hHΛ−1YYH(Λ−1)Hh)

=
∥

∥gHY
∥

∥

2
,

(45)

where gH = hHΛ−1. The distribution of the test statistics is

TGSC

Piµ2+µσ2
w

2

=

∥

∥gHY
∥

∥

2

Piµ2+µσ2
w

2

∼ χ2
2N , (46)

where χ2
2N is the centralized chi-squared distribution with 2N

degrees of freedom. As a result, the false alarm probability and

detection probability can be calculated as

Prfa(η) = Pr(Hon|Hoff) = Pr(TGSC > η|Hoff) =
Γ(N, η

µσ2
w
)

Γ(N)
,

(47)

Prd(η) = Pr(Hon|Hon) =
L
∑

i=1

Pr(Hi)

Pr(Hon)
Pr(TGSC > η|Hi)

=
L
∑

i=1

Pr(Hi)

Pr(Hon)

Γ(N, η
Piµ2+µσ2

w
)

Γ(N)
, (48)

where Γ(·, ·) is the upper incomplete Gamma function with

the definition Γ(s, x) =
∫∞
x

ts−1e−tdt and Γ(·) denotes the

Gamma function.

B. Optimal Sensing Threshold

Similar to Section III-B, we aim to obtain the optimal

sensing threshold η∗ to minimize the total error rate Pre(η),
where the total error rate is defined as

Pre(η) = 1 + Prfa(η)− Prd(η)

=
Γ(N, η

µσ2
w
)

Γ(N)
+

L
∑

i=1

Pr(Hi)

Pr(Hon)

γ(N, η
Piµ2+µσ2

w
)

Γ(N)
,

(49)

where γ(·, ·) is the lower incomplete Gamma function with

the definition γ(s, x) =
∫ x

0 ts−1e−tdt.
To prove the existence of the optimal sensing threshold for

detecting the occupation of macrocell channel, we prove

1)
∂Pre(η)

η = 0 has unique solution η∗ and

2)
∂Pre(η)

η < 0 when η < η∗ and
∂Pre(η)

η > 0 when η > η∗.

In the following, we provide the theorem and the correspond-

ing proof for the existence of the optimal sensing threshold η
that minimizes the total error rate Pre(η).

Theorem 2. There exists an optimal sensing threshold for

detecting the occupation of macrocell channel such that the

total error rate of the proposed GSC algorithm is minimized.

Moreover, the optimal sensing threshold η is the solution to

the following equation.

L
∑

i=1

Pr(Hi)

Pr(Hon)

(

σ2
w

Piµ+ σ2
w

)N

exp

{

Piη

σ2
w(Piµ+ σ2

w)

}

= 1.

(50)

Proof: Differentiating Pre(η) in (49) with respect to η,

we have

∂Pre(η)

∂η

= − ηN−1e
− η

µσ2
w

Γ(N)(µσ2
w)

N
+

1

Γ(N)

L
∑

i=1

Pr(Hi)

Pr(Hon)

ηN−1e
− η

Piµ
2+µσ2

w

(Piµ2 + µσ2
w)

N

=
ηN−1e

− η

µσ2
w

Γ(N)(µσ2
w)

N
d(η),

(51)

where d(η) is defined as

d(η) =

L
∑

i=1

Pr(Hi)

Pr(Hon)
(

σ2
w

Piµ+ σ2
w

)N exp

{

Piη

σ2
w(Piµ+ σ2

w)

}

−1.

(52)

Note that the test statistics TGSC =
∥

∥gHY
∥

∥

2
is always

nonnegative, i.e., TGSC ∈ [0,∞), hence the sensing threshold

η must be positive, i.e., η ∈ (0,∞). In this case,
∂Pre(η)

∂η = 0
holds if and only if d(η) = 0 happens. With the definition of

the priori probability of each transmission power, it holds that
L
∑

i=1

Pr(Hi)
Pr(Hon)

= 1. As a result, we have

L
∑

i=1

Pr(Hi)

Pr(Hon)

(

σ2
w

Piµ+ σ2
w

)N

< 1, (53)

since σ2
w/(Piµ + σ2

w) < 1 is always ture. We can easily

verify that lim
η→o

d(η) < 0 when the sampling numbers N is
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sufficiently large, and d(η) is monotonically increasing with

respect to η such that there exists a unique sensing threshold

η∗ satisfies d(η∗) = 0. In addition, with the unique sensing

threshold η∗, the following inequalities hold.

• When η < η∗, d(η) < 0, i.e.,
∂Pre(η)

∂η < 0.

• When η > η∗, d(η) > 0, i.e.,
∂Pre(η)

∂η > 0.

Hence, Pre(η) is a monotonically decreasing function with

respect to η when η < η∗, and a monotonically increasing

function when η > η∗.

Therefore, to sum up the above analysis, it is concluded that

the unique optimal sensing threshold for minimizing the total

error rate Pr(η) exists, and it can be obtained by solving the

equation
∂Pre(η)

∂η = 0.

C. Transmission Power Classification on the Occupied Chan-

nel

After the macrocell channel is detected to be occupied,

power classification is then performed to identify at which

power level the MBS is operating. Recalling the MAP criterion

derived in section III-C, the optimal decision is “i” if

i∗ = argmax
i∈{1,2,··· ,L}

p(X|Hi)Pr(Hi),X ∈ X (54)

For a hypothesis pair (Hi,Hj), ∀i, j ≥ 1, Hi is decided rather

than Hj if

p(X|Hi)Pr(Hi) > p(X|Hj)Pr(Hj), i 6= j. (55)

With (39) and (42), the inequality (55) can be re-written as

(Pi − Pj)TGSC

(σ2
w + Piµ)(σ2

w + Pjµ)
> ln

[

Pr(Hj)

Pr(Hi)

]

+N ln

[

det(Pihh
H + σ2

wΛ)

det(PjhhH + σ2
wΛ)

]

, i 6= j.

(56)

As P1 < P2 <, · · · , < PL, all L − 1 inequalities in (56)

can be simplified to

max
1≤j<i

Ξ(i, j) < TGSC < min
i<j≤L

Ξ(i, j), (57)

where

Ξ(i, j) =
(σ2

w + Piµ)(σ
2
w + Pjµ)

Pi − Pj

×
{

ln

[

Pr(Hj)

Pr(Hi)

]

+N ln

[

det(Pihh
H + σ2

wΛ)

det(PjhhH + σ2
wΛ)

]}

(58)

Hence, when 1 < i < L, the lower bound of decision

region D(Hi) for hypothesis Hi, is max
1≤j<i

Ξ(i, j) and the upper

bound of D(Hi) should be min
i<j≤L

Ξ(i, j). Moreover, all the

decision regions of non-zero transmission power should stay

in (η∗,+∞). Hence, the decision regions of hypothesis Hi’s

are given as (59) shown on the top of this page.

For the hypothesis H0, the decision region is [0, η∗). Define

ηi, i ∈ {1, 2, · · · , L} as the threshold between D(Hi−1)
and D(Hi). Note that η0 is equal to 0 and η1 is equal to

η∗. Additionally, define θL+1 , +∞ for consistence and

completeness.

Remark 4. Similarly, the power mask effect still exists

in the GSC algorithm, since it is mainly caused by the rare

usage of some transmission powers. We provide the following

Lemma to show that the non-zero transmission powers cannot

mask each other when there is Pr(Hi) = Pr(Hj).

Lemma 2. When the special case that Pr(Hi) = Pr(Hj)
is considered in MTP scenarios, Ξ(i, j) is independent with

the priori probability of each transmission power and is a

monotonically increasing function over Pj for any given

Pi, ∀i, j ∈ {1, 2, · · · , L}.

Proof: Please refer to Appendix A.

According to Lemma 2, there is Ξ(i, i − 1) < Ξ(i, i + 1)
when Pr(Hi) = Pr(Hj), i, j > 1. Hence, the non-zero

transmission powers cannot mask each other, and the power

mask effect may only happen when P0 masks the non-zero

transmission powers.

The probability Pr(Hi|Hj) that the cognitive small cell

claims the MBS is operating at transmission power Pi while

the MBS actually operates at Pj , can be calculated as

Pr(Hi|Hj) = Pr(ηi+1 > TGSC > ηi|Hj)

=
γ(N, ηi+1

Pjµ2+µσ2
w
)

Γ(N)
−

γ(N, ηi

Pjµ2µσ2
w
)

Γ(N)
.

(60)

Moreover, the classification probability, false alarm proba-

bility, and detection probability can be obtained using (34),

(35), and (36) by replacing Pr(Hi|Hj) with (60).

V. SIMULATION RESULTS

In this section, simulation results are provided to evaluate

the performance of the proposed algorithms. We consider that

the MBS has five transmission powers, and the corresponding

probabilities are set to Pr(H0) = 0.4 and Pr(Hi) = 0.12, i =
1, · · · , 5, respectively. The transmission powers satisfy P1 :
P2 : P3 : P4 : P5 = 3 : 5 : 7 : 9 : 12. The average signal-to-

noise ratio (SNR) is defined as 1/5
∑5

i=1 PiE[|h̃|2]/σ2
w. All

the results are averaged over 10000 tests using Monte-Carlo

simulations.

A. Decision Probability

The decision probability versus the number of samples of

the proposed OSC and GSC algorithms are shown in Fig. 3(a)

and Fig. 3(b), respectively. In the simulation, the number of

antennas M at cognitive small cell is set to be 4, and the

noise correlation coefficient ρ is set to be 0.2. The average

SNR is chosen as −8dB. The number of samples are arranging

from 100 to 1000 in evaluating OSC algorithm and from 1000
to 2200 in evaluating GSC algorithm. From both Fig. 3(a)

and Fig. 3(b), it is seen that the simulation results match the

theoretical results well. Furthermore, the correct decision prob-

abilities raises while the error decision probabilities reduces

with the increase of the number of samples. This indicates

that both the detection and classification performance of both

the proposed algorithms can be improved when the number of

samples becomes large. Additionally, even when the number

of samples lows to 100, the probability Pr(H1|H0) of the

OSC algorithm still approaches to zero. It suggests that if the
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D(Hi) =















TGSC ∈ (η∗, min
1<j≤L

Ξ(1, j)), i = 1;

TGSC ∈ (max{η∗, max
1≤j<i

Ξ(i, j)}, min
i<j≤L

Ξ(i, j)), 1 < i < L;

TGSC ∈ (max{η∗, max
1≤j<L

Ξ(L, j)},+∞), i = L.

(59)
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Fig. 3. Decision probability vs number of samples with M = 4, ρ = 0.2,
and SNR=−8dB.

cognitive small cell has priori knowledge about the signaling

features of the transmitted signal, the false alarm probability

can be controlled below a very low level even when the

number of samples is extremely low, which is very important

for the cognitive small cell networks.

B. Detection and Classification Probability

The detection and classification probability versus the num-

ber of samples of the proposed OSC and GSC algorithms are

shown in Fig. 4(a) and Fig. 4(b), respectively. In the simula-

tion, we set the average SNR to be −20dB and −15dB for the

OSC algorithm, and −12dB and −8dB for the GSC algorithm.

In Fig. 4(a) and Fig. 4(b), it is shown that the detection and

classification probabilities of both the proposed algorithms

improve as the number of samples increases. Additionally, the

detection probability is much higher than the classification

probability for both algorithms. This is because that even

when the macrocell channel is detected to be occupied, the

cognitive small cell might make mistakes in classifying the

transmission powers on the occupied channel. It indicates

that in low SNR region, the occupation of the macrocell

channel can be correctly detected, while the exact transmission

power is difficult to be distinguished. Hence, in the low SNR

region, the cognitive small cell is suggested to adopt overlay

model rather than underlay model for limiting the interference

introduced to the macro cell. Moreover, the gaps between the

detection probability and classification probability decrease

for both algorithms when the number of samples becomes

larger or the SNR becomes higher. This indicates that when

the sensing condition becomes better, the mistakes made in

classifying the transmission powers gradually decrease and

only the classification probability can effectively evaluate the

detection and classification capability.

C. Impact of the Number of Antennas

The impact of the number of antennas on the detection

probability and classification probability are shown in Fig. 5(a)

and Fig. 5(b), respectively. In the simulation, we set the noise

correlation coefficient ρ to be 0.2. The number of samples

N is chosen as 400 and 2000, respectively. It is seen that

the detection and classification performance improves with

the increase of the number of antennas for both the proposed

algorithms. This is due to the fact that both the proposed OSC

and GSC algorithms can exploit the space diversity gain of

the multiple antennas. The amount of the improvement on

classification performance of the OSC algorithm is about 2dB,

when the number of antennas M increases from 4 to 16. As

for the GSC algorithm, the amount of the improvement on

classification performance is around 1dB, when M increases

from 4 to 16. Increasing the number of antennas at cognitive

small cell base station can improve the detection and classifica-

tion performance, while it also leads to an increase on the cost

and complexity of hardware devices. Therefore, a compromise

between the performance and the complexity exists for the

cognitive small cell networks.

D. Impact of the Noise Correlation

The impact of the noise correlation on the detection proba-

bility and classification probability are shown in Fig. 6(a) and

Fig. 6(b). In the simulation, we set the number of antennas

M at cognitive small cell base station to be 4. The number

of samples N are set to 100 in evaluating OSC algorithm and

1000 for GSC algorithm, respectively. It can be seen that the

detection and classification probabilities of both the proposed
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Fig. 4. Detection and classification probability vs number of samples with
M = 4 and ρ = 0.2.

algorithms improve with the increase of noise correlation

coefficient. This is because that to de-correlate the spatially

correlated noise will create a linear transformation on the

received signal. The effect of this linear transformation is to

introduce different weight values on each antenna. Moreover,

the weight values is related to noise correlation coefficient,

where a higher correlation coefficient results in a higher weight

value.

E. Comparison Between OSC and GSC Algorithms

The average number of samples required to achieve a

desired detection and classification probability of the OSC and

GSC algorithms are shown in Table I and Table II. In this

simulation, we set the number of antennas M at the cognitive

small cell base station to be 4 and the noise correlation

coefficient ρ to be 0.2. The average SNR is chosen as −12dB

for evaluating the detection performance and −10dB for eval-

uating the classification performance, respectively. From Table

I and Table II, it can be seen that, to achieve a same desired

detection probability or classification probability, less samples

are required for the OSC algorithm compared to the GSC
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Fig. 5. The impact of number of antennas on the proposed OSC and GSC
algorithms with ρ = 0.2.

TABLE I
THE AVERAGE NUMBER OF SAMPLES REQUIRED TO ACHIEVE THE

DESIRED DETECTION PROBABILITY

Prd 80% 85% 90% 92% 95% 97%

OSC algorithm 12 25 65 85 100 165

GSC algorithm 1360 1780 4570 6250 9800 12500

algorithm. This indicates that by leveraging the priori knowl-

edge about the signaling features of the transmitted signal,

the cognitive small cell can more fleetly and effectively detect

the occupation status of the macrocell channel and classify

the transmission power of MBS. In other words, the energy

consumption to perform the channel states classification can be

dramatically reduced, such that more energy can be reserved to

transmit data for the cognitive small cell, if the total available

energy is limited.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have investigated the channel states classi-

fication in cognitive small cell networks, considering multiple

transmission powers. With the priori known signaling features,
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Fig. 6. The impact of noise correlation on the proposed OSC and GSC
algorithms.

TABLE II
THE AVERAGE NUMBER OF SAMPLES REQUIRED TO ACHIEVE THE

DESIRED CLASSIFICATION PROBABILITY

Prc 50% 60% 70% 80% 90% 95%

OSC algorithm 200 350 610 880 1640 2350

GSC algorithm 1200 1880 3460 5570 9200 15400

we have proposed a coherent classification algorithm (i.e.,

OSC algorithm). The OSC algorithm can achieve a desired

detection and classification performance with relatively less

samples, which is crucial to shorten the spectrum sensing

period. Moreover, for the unknown signaling features, we have

proposed a non-coherent classification algorithm (i.e., GSC

algorithm) which is much simple to implement, due to the

lower hardware requirements. We have derived the optimal

sensing threshold as well as closed-form decision thresholds

for analyzing the detection and classification performance.

With the proposed algorithms, the cognitive small cell can

classify the exact transmission power of MBS when it has mul-

tiple different transmission powers, which is of significance

to improve the spectrum efficiency and mitigate the inter-cell

interference.

For the future work, we will investigate cooperative channel

states classification for the cognitive small cell networks,

where cognitive small cell base station and cognitive mobile

users cooperatively detect the occupation of macrocell channel

and classify the transmission power on the occupied channel.

APPENDIX A

PROOF OF LEMMA 2

When the case Pr(Hi) = Pr(Hj) is considered, Ξ(i, j) can

be written as

Ξ(i, j) = N ln

[

det(Pihh
H + σ2

wΛ)

det(PjhhH + σ2
wΛ)

]

(σ2
w + Piµ)(σ

2
w + Pjµ)

Pi − Pj
(61)

Using Sylvester’s determinant theorem [33] with a more

general case, for A, an m × n matrix, B, an n ×m matrix,

and any invertible m×m matrix Z, there is

det(Z+AB) = det(Z) det(In +BZ−1A). (62)

then, we have

det
(

Pihh
H + σ2

wΛ
)

= (σ2
w)

M det(Λ)(1 +
Pi

σ2
w

hHΛ−1h).

(63)

Therefore, Ξ(i, j) can be further simplified as

Ξ(i, j) = N ln

[

σ2
w + Piµ

σ2
w + Pjµ

]

(σ2
w + Piµ)(σ

2
w + Pjµ)

Pi − Pj
. (64)

Define ξ =
σ2
w+Piµ

σ2
w+Pjµ

= α
β , ξ ∈ (0, 1)

⋃

(1,∞), we have

Ξ(i, j) = N ln(ξ)
αµ

ξ − 1
. (65)

The partial derivative of Ξ(i, j) over Pj can be computed as

∂Ξ(i, j)

∂Pj
=

∂Ξ(i, j)

∂ξ
· ∂ξ

∂Pj
= Nµ2 ln(ξ) + 1/ξ − 1

ξ2(ξ − 1)2
. (66)

It can be verified that ln(ξ) + 1/ξ − 1 > 0 for ξ ∈
(0, 1)

⋃

(1,+∞). Hence, Ξ(i, j) is an increasing function over

Pj for any given Pi, ∀i, j ∈ 1, 2, · · · , L.
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