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Abstract—In vehicular networks, in-vehicle user equipment
(UE) with limited battery capacity can achieve opportunistic
energy saving by offloading energy-hungry workloads to vehic-
ular edge computing (VEC) nodes via vehicle-to-infrastructure
(V2I) links. However, how to determine the optimal portion of
workload to be offloaded based on the dynamic states of energy
consumption and latency in local computing, data transmission,
workload execution and handover, is still an open issue. In this
paper, we study the energy-efficient workload offloading problem
and propose a low-complexity distributed solution based on
consensus alternating direction method of multipliers (ADMM).
By incorporating a set of local variables for each UE, the
original problem, in which the optimization variables of UEs
are coupled together, is transformed into an equivalent general
consensus problem with separable objectives and constraints. The
consensus problem can be further decomposed into a bunch of
subproblems, which are distributed across UEs and solved in
parallel simultaneously. Finally, the proposed solution is validated
based on a realistic road topology of Beijing, China. Simulation
results have demonstrated that significant energy saving gain can
be achieved by the proposed algorithm.

Index Terms—vehicular edge computing, energy efficiency,
workload offloading, consensus ADMM, vehicular networks.

I. INTRODUCTION

A. Background and Motivation

THE rapid development of vehicular networks will spur
an array of applications in the domains of travel assis-

tance, self-driving, video streaming, and online gaming [1]–
[4], which require enormous computation resources to process
a large volume of workload data and have strict timeliness
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TABLE I
NOMENCLATURE

Valuables Definitions
M Number of RSUs (VEC nodes)
K Number of vehicles (in-vehicle UEs)
θk Workload data size of UE Uk

δ Required computation resource per workload
η Required computation resource for result
τk The latency constraint of workload execution for UE Uk

pok Workload offloading portion of UE Uk

λk Average workload arrival rate of UE Uk

τok Dwell time of vehicle Vk inside the coverage of RSU
Rm

dk Distance between the location of Vk and the coverage
edge of RSU Rm in the vehicle heading direction

v̄k Average velocity of Vk
dm The coverage diameter of RSU Rm

ulk Local computing capability of UE Uk

Sl
k Occupancy rate of CPU resources for UE Uk

T l
k Local computing latency of UE Uk

βk Power consumption of local workload processing for Uk

El
k Energy consumption of local workload processing for Uk

λem Sum workload arrival rate of all UEs at VEC node Im
Et

k Energy consumption of in-vehicle UE Uk

T t
k Workload transmission latency of UE Uk

T e
m Average waiting latency of each workload
T t
m Average waiting latency of each computation result
Th
k Handover latency of UE Uk

Etotal
k Total energy consumption of UE Uk

κ Time required to deliver the TPBU message
TL2 Time required to deliver the L2 report
T

′
k,PT Time required for the sMAG (nMAG) to send the data

(Tk,PT ) packets to the nMAG (RSU)
ϕ Time required to deliver the HI message
$k Time for confirming the received profile and creating

a new cache entry

requirements [5], [6]. To support the delay-sensitive and
multimedia-rich services in vehicular networks, vehicular edge
computing (VEC), in which workloads are processed at the
network edges to eliminate excessive network hops, has been
proposed [7]. VEC not only reduces the computation response
time, but also alleviates the traffic congestion problem in
capacity-constrained backhaul links [8], [9].

Furthermore, VEC allows opportunistic energy saving for
in-vehicle user equipments (UEs) with limited battery capacity
such as smart phones and wearable devices. Traditionally, all
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of the workloads have to be processed locally on the UE,
which dramatically reduces the battery endurance time and
impedes the service delivery reliability. With the assistance
of VEC, the energy-hungry workloads can be offloaded from
the UE to nearby VEC nodes with higher computing capability
and abundant energy supply via vehicle-to-infrastructure (V2I)
links [10]. As a result, the energy expenditure of local com-
puting is saved at the costs of increased latency caused by
workload offloading and the additional energy consumption
for transmitting the computation workload [11].

There exist some works that have tried to improve energy
efficiency of UEs via workload offloading [12]–[15]. You et
al. studied resource allocation problems under the computation
latency constraint for MEC offloading systems in order to
minimize the weighted sum energy consumption for mobile
UEs [14]. In [15], Li et al. introduced MEC into virtualized
cellular networks with machine-to-machine communications,
where each UE chooses to access virtual networks so as
to minimize the energy consumption and execution time.
However, some critical challenges have been neglected in
previous studies, which are summarized as follows.

First, workload offloading may not always lower energy
consumption due to communication costs. To minimize the
energy consumption, the tradeoff between energy saving of
workload offloading and energy consumption of communi-
cation should be optimized dynamically based on a number
of factors including channel conditions, workload attributes,
vehicle velocity, computing capability, etc., which has not been
thoroughly analyzed from the perspective of energy efficiency
[12]. Second, the offloading decisions of adjacent UEs are
often intertwined with each other via the constraint term of
VEC node’s computing capability, and the size of the joint
optimization problem grows rapidly with the number of UEs.
Centralized optimization approaches proposed in [13] faces
severe complexity and scalability problems. Last but not least,
the intermittent connectivity between vehicles and road side
units (RSUs) poses another critical challenge. A vehicle that
have moved out of the RSU coverage during workload data
transmission will result in frequent offloading failures, which
is not considered in previous works [12]–[15].

B. Contributions

In this paper, we investigate how to address the above chal-
lenges by exploring consensus alternating direction method
of multipliers (ADMM), which is a powerful tool for solv-
ing distributed convex optimization problems. It takes a
decomposition-coordination procedure, in which the joint op-
timization problem is firstly decomposed into several tractable
subproblems that can be solved in parallel, and then the
solutions of all the subproblems are coordinated to obtain
the global solution of the original problem [16]. The main
contributions of this work are summarized as follows.
• We introduce queuing theory to derive the stochastic

traffic models at both UEs and VEC nodes with the
consideration of queue heterogeneity. By assuming that
the generated workload follows a Poisson process and
the service time follows an exponential distribution, the

workload traffic models of the UE and the VEC node
can be regarded as a M/M/1 queue and a M/M/c
queue, respectively. Then, the closed-form expressions
of computation latency and waiting latency are derived
based on Little’s law and Erlang’s formula.

• An energy-efficient workload offloading problem is for-
mulated to minimize the total energy consumption of all
the UEs, with the explicit considerations of the overall
energy consumption and latency, including local comput-
ing latency and energy consumption, data transmission
latency and energy consumption, waiting latency, and
handover latency. The formulated problem is NP-hard due
to the fractional form of the objective function and that
the constraint term of VEC node computing capability
couples all the optimization variables.

• We propose a consensus ADMM-based distributed solu-
tion, which has less signalling overhead, higher scalability
and better flexibility compared to the conventional cen-
tralized approach. First, the coupling among optimization
variables is decoupled properly by incorporating a set
of local variables, which represent the local copies of
the same global variables at each UE. Then, the original
problem with coupled variables is transformed into an
equivalent general consensus problem with separable ob-
jectives. Next, the transformed problem is further decom-
posed into a bunch of subproblems, which are distributed
across UEs and solved in parallel.

• A real-world topology based simulation is conducted to
validate the proposed algorithm. The relationships be-
tween energy consumption and other key parameters, in-
cluding workload offloading portion, transmission power,
RSU coverage radius, and number of UEs are illustrated
through numerical results.

The remaining parts of this paper are organized as follows.
A review of related works is presented in Section II. Section
III describes the system model. The problem formulation is
presented in Section IV. The consensus ADMM-based dis-
tributed algorithm is proposed in Section V. Simulation results
and related analysis are elaborated in Section VI. Conclusions
and future directions are summarized in Section VII.

II. RELATED WORKS

Mobile edge computing (MEC) is regarded as a promising
solution to achieve the performance gain of proximate data
processing, short-range transmission, and location awareness
[17]. There have been many works investigating MEC in
vehicular networks. Feng et al. proposed a VEC framework
named autonomous vehicular edge (AVE) to increase the com-
putational capabilities of vehicles in a decentralized manner
[7]. In [10], Zhang et al. designed an offloading scheme to
improve the transmission efficiency with considerations of the
task execution time and the vehicle mobility. In [18], Taleb et
al. developed a cloud-based MEC offloading framework and
proposed a predictive computation mode transfer scheme to
improve task transmission efficiency in vehicular networks.
These works mainly focus on low-latency and high-reliability
system design, and have not considered the energy saving
problems for in-vehicle UEs with limited battery capacity.
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There are many studies that investigate the energy efficiency
issue in edge computing through workload offloading and
system resource allocation. In [12], the workload allocation
between fog and cloud is optimized to minimize the system
energy consumption under different service delay constraints.
In [13], Mao et al. proposed an effective computation offload-
ing strategy to construct a green MEC system with energy
harvesting devices.

Nevertheless, the above-mentioned works mainly target on
static cellular networks, and thus cannot be applied directly
for vehicular networks with highly dynamic and unreliable
connections. Without considering the fast mobility of vehi-
cles, conventional static decision-making schemes will re-
sult in frequent offloading failures when the connectivity
between vehicles and the RSU becomes unavailable before
the workload data has been fully uploaded. Although there
exist some works which have applied MEC for vehicular
networks [7], [10], [18], they mainly address the workload
offloading problem from a delay minimization perspective, and
have not considered the energy efficiency issues of in-vehicle
UEs with limited battery capacity. Their results cannot be
directly utilized to solve the energy-efficient workload offload-
ing problem investigated in this work. Moreover, most of the
previous solutions rely on a centralized optimization approach,
the computing complexity of which increases significantly
with the number of UEs. It is better to address the problem
from a distributed perspective considering the complexity and
scalability issues. Therefore, there lacks a unified distributed
solution to address the energy saving problems for in-vehicle
UEs with the considerations of vehicle mobility.

We next review the related studies about ADMM, which
is used to solve the formulation of the joint optimization in
this work. ADMM, which is known as a powerful tool for
solving distributed convex optimization problems [16], has
been widely applied in many aspects. Yin et al. considered
a fog-assisted data streaming scenario [19], and proposed
a hybrid ADMM (H-ADMM) method to solve the social
welfare optimization problem and reduce the communication
overhead. In [20], Vu et al. investigated the energy efficiency
optimization problem of small-cell networks with multi-
antenna transceivers and base stations. By using Charnes-
Cooper’s transformation, the original optimization problem
was transformed into an equivalent convex program, and an
ADMM-based decentralized algorithm was presented to solve
the problem and achieve a fast convergence.

This work is an extension of our previous work [1]. Dif-
ferent from the previous studies, we employ the consensus
ADMM approach to address the energy saving problem. The
differences between ADMM and the consensus ADMM are
summarized as follows. In ADMM, the primal variables are
updated in an alternating or sequential fashion, which can be
regarded as a modified version of the conventional method
of multipliers based on the Gauss-Seidel approach [16]. On
the other hand, the consensus ADMM employs a series of
local variables, based on which the primal variables no longer
need to be updated sequentially. Instead, the coupled objectives
and constraints of the joint optimization problem can be
separated and distributed across UEs, where each UE only

Fig. 1. The three-layer hierarchical architecture of VEC.

has to deal with its own objective and constraint term. In
other words, the consensus ADMM is actually the extension
of ADMM for solving the consensus problems, which aims
to achieve a consensus between the local variables and the
global variables in a dynamically changing environment [21].
Hence, the consensus ADMM approach not only reduces the
amount of information that needs to be exchanged, but also
enables parallel decision making [22]. This is of significant
importance for vehicular networks with fast mobility, capacity-
constrained communication links, and strict timeliness require-
ments. Convergence to the global solution is guaranteed as
long as the convergence requirements can be satisfied [23].
Furthermore, a more realistic handover model based on the
IFP-NEMO is utilized, which takes into account both the
link reestablishment and the data forwarding latency. Last but
not least, we provide a comprehensive analysis regarding the
convergence and complexity properties. We also validate the
proposed scheme by using a real-world road topology.

III. SYSTEM MODEL

In this section, we elaborate the overall system model
of VEC, the data transmission model, and the computation
workload offloading model in details.

A. The Overall System Model

The hierarchical computing framework for vehicular net-
works is shown in Fig. 1, which is composed of three layers,
i.e., the control layer, the VEC server layer, and the vehicular
network layer. In the control layer, a centralized controller is
responsible for the inter-cell resource coordination and han-
dover management [24]. To maintain Internet connectivity for
moving vehicles, the improved fast proxy mobile IPv6 based
network mobility basic support (IFP-NEMO) mechanism is
adopted [25]. In IFP-NEMO, the mobility management of
vehicles is performed by a mobile access gateway (MAG),
which acts as a proxy mobility agent. In the distributed
VEC server layer, M RSUs are deployed uniformly along an
unidirectional lane and connected to the MAGs via Ethernet
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connections. For each RSU, there exists a co-located VEC
node with c homogeneous servers. The m-th RSU and the co-
located VEC node are denoted as Rm and Im, respectively.

In the vehicular network layer, we can divide the road into
corresponding M segments based on the coverage areas of
M RSUs, e.g., segment m corresponds to the coverage of
RSU Rm. We assume that there exist K vehicles in the m-
th segment traveling towards the same direction, which is
shown in Fig. 1. The k-th vehicle is denoted as Vk. The
communication device mounted on each vehicle has two-
folded functions. On the one hand, it allows the vehicle to
transmit data to the RSU and offload workloads to the VEC
node via dedicated V2I links. On the other hand, it acts as
an access point and provides free connections for in-vehicle
UEs via short-range communication technologies such as Wi-
Fi [26]. The UE inside vehicle Vk is denoted as Uk. The set
of in-vehicle UEs is defined as U = {U1, · · · , Uk, · · · , UK}.

For any UE Uk ∈ U , an array of applications are executed,
which accordingly generate a series of computation workloads.
Without loss of generality, the workload generated at UE Uk
is assumed to follow a Poisson process with an average arrival
rate λk [27]–[29], which can be either processed locally by
the UE itself or offloaded to VEC node Im. The key attributes
of the workloads generated by UE Uk can be described by
a triplet {θk, δk, τk}, where θk represents the data size of
workloads, δk is the required computation resource for pro-
cessing the workloads, and τk represents the delay constraint.
We assume that each workload has the same computation
complexity, which is defined as δ. This assumption is valid
since a higher complexity workload is equivalent to several
several basic workloads with the same computation complex-
ity. Thus, we have δk = δλk. By further assuming that the
service time follows an exponential distribution, the workload
traffic models of UE Uk and VEC node Im can be regarded
as a M/M/1 queue and a M/M/c queue, respectively.

The workload offloading and execution are implemented as
the following three steps: (i.) each UE Uk ∈ U determines the
portion of workload offloaded to VEC node Im, i.e., 0 ≤ pok ≤
1, and transmits the workload related data to RSU Rm; (ii.)
the offloaded workload is processed at the VEC node; (iii.)
the obtained computation results are fed back to UE Uk.

Remark 1. In this work, we only consider the simplified
single-segment case in order to derive a tractable solution.
The more complicated multi-segment case is beyond the
scope of this paper and will be investigated in future works.
Nevertheless, the proposed solution can be easily extended
to the multi-segment scenario by adopting a time-slot model.
That is, the number of vehicles in each segment remains
constant within a slot and varies across different slots. Hence,
the proposed solution can be applied for the optimization
of workload offloading within each segment in a slot-by-slot
fashion.

Remark 2. A justification for the M/M/1 and M/M/c
queuing models is that the same traffic and service time models
have been adopted in a number of previous works such as
[27]–[29]. Moreover, the solution structure does not depend
on the specific traffic models. The proposed solution can be
extended to other traffic models.

B. The Transmission Model

We assume that each vehicle is allocated with an orthogonal
spectrum resource block so that the co-channel interference
among vehicles can be ignored. In the offloading mode, data
are actually transmitted from UE Uk to RSU Rm in a two-hop
fashion, i.e., data are firstly sent from UE Uk to vehicle Vk
in the first hop, and then are forwarded from vehicle Vk to
RSU Rm in the second hop. The signal to noise ratio (SNR)
expressions of the first-hop link and the second-hop link are
calculated as

γUk =
PUk g

U
k

N0
, (1)

γVk =
PVk g

V
k

N0
, (2)

where PUk and PVk are the transmission power of UE Uk
and vehicle Vk, respectively. gUk and gVk are the channel gain
between Uk and Vk, and the channel gain between Vk and
RSU Rm, respectively. N0 is the additive white Gaussian noise
(AWGN).

The effective SNR of the two-hop link, i.e., (Uk → Vk →
RSU Rm) [30], is expressed as

γk =
γUk γ

V
k

γUk + γVk + 1
. (3)

Hence, the transmission time required by UE Uk for upload-
ing workload data with size pokθk, i.e., T tk, can be obtained as

T tk(pok) =
pokθk

Bk log2 (1 + γk)
, (4)

where Bk refers to the channel bandwidth.
Due to the fast vehicle mobility, vehicle Vk might move

out of the communication range of RSU Rm during data
transmission, which results in an offloading failure. Denote
the dwell time of Vk inside the coverage of RSU Rm as τok .
An offloading failure occurs if τok < T tk. Therefore, τok also
represents the delay constraint of data transmission because
Vk can only transmit data to RSU Rm when it remains within
segment m. That is, an offloading request is admissible if and
only if T tk ≤ τok . τok can be calculated as

τok = dk/v̄k, (5)

where dk denotes the distance between the location of Vk and
the coverage edge of RSU Rm in the vehicle heading direction,
and v̄k denotes the average velocity of Vk within segment m.

Remark 3. Both dk and v̄k can be estimated from the GPS
data [31], which are generally available for latest vehicles. For
example, if Vk moves in the centrifugal direction to leave the
coverage area of RSU Rm with radius dm, dk is calculated as
dk = dm − dk,m, where dk,m is the distance between Vk and
RSU Rm. Otherwise, if Vk moves in the centripetal direction,
we have dk = dm + dk,m.

The energy consumed for transmitting the workload data to
the in-vehicle access point is calculated as

Etk(pok) = PUk T
t
k(pok) =

PUk p
o
kθk

Bk log2 (1 + γk)
. (6)
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C. The Computation-Offloading Model

Based on the Poisson splitting property [32], if the workload
of UE Uk follows a Poisson process with an average rate λk,
then the workload that is processed locally on UE Uk follows a
Poisson process with an average rate (1−pok)λk. Furthermore,
the workload offloaded from UE Uk to VEC node Im also
follows a Poisson process with an average rate pokλk. Next,
by using Little’s law, the local computing latency T lk of UE
Uk is calculated as

T lk(pok) =
1

ul
k

δ (1− Slk)− λk(1− pok)
, (7)

where ulk is the local computing capability of UE Uk. Slk
denotes the normalized workload of other on-going applica-
tions, which reflects the occupancy rate of CPU resources, i.e.,
0 ≤ Slk ≤ 1. For example, Slk = 1 represents that the CPU is
completely occupied by other applications.

The energy consumption of local workload execution is
given by

Elk(pok) = βkT
l
k(pok) =

βk
ul
k

δ (1− Slk)− λk(1− pok)
, (8)

where βk represents the local power consumption per unit
workload execution.

The energy consumption of UE Uk, which contains the
energy consumed for local workload execution and workload
data uploading, is expressed as

Etotalk (pok) = Elk(pok) + Etk(pok). (9)

Taking (6) and (8) into (9), the expression of Etotalk (pok) is
written as (10).

Remark 4. ulk, βk and Slk depend on the intrinsic nature of
CPU, workload complexity, and other ongoing applications.
To simplify the problem, the values of ulk, βk and Slk are
assumed as constants during the decision making process, and
may vary across different decision making processes. It is
noted that the values of ulk, βk and Slk are privacy information
of UE Uk, which are generally unknown for VEC node
Im. Hence, conventional centralized optimization algorithms
which require perfect knowledge of UE’s private information
cannot be directly applied.

Due to the limited computation resources, the VEC node
cannot execute a massive number of workloads simultane-
ously. In VEC node Im, the workloads offloaded from dif-
ferent UEs are pooled together and wait to be processed by
VEC servers. Since the combination of independent Poisson
processes is also Poisson [32], the sum rate λem is calculated
as

λem =
∑
Uk∈U

pokλk. (11)

Considering the c homogeneous servers deployed in VEC
node Im, the computing capability of each server is defined
as uem. Based on the M/M/c queuing model and Erlang’s

formula [33], the average waiting latency of each workload at
VEC node Im can be calculated as

T em(pok) =
ϕ(c, ρem)
cue

m

δ − λem
+

δ

uem
, (12)

where ρem is the server occupancy, and ϕ(c, ρem) is the Erlang
C formula which represents the waiting probability. ρem and
ϕ(c, ρem) are calculated as

ρem =
λemδ

cuem
, (13)

ϕ(c, ρem) =

(cρem)c

c!(1−ρem)∑c−1
l=0

(cρem)l

l! +
(cρem)c

c!(1−ρem)

. (14)

In RSU Rm, the computation results also have to wait in a
queue before they can be processed and delivered back to UE
Uk. Hence, the average waiting latency of each computation
result at RSU Rm, i. e. , T tm(pok), can be expressed as

T tm(pok) =
1

ut
m

η − λem
, (15)

where utm denotes the transmission processing rate of RSU
Rm, and η denotes the computation resouce required to
process each result. The transmission latency from RSU Rm
to Uk is ignored, due to the fact that the size of computation
results is usually negligible compared to that of the input data.

If vehicle Vk has already moved out of the coverage of
RSU Rm when the results are ready for transmission, i.e., a
handover occurs when T tk + T em + T tm > τok , then the results
have to be forwarded firstly from the serving MAG (sMAG) to
the centralized controller, and then sent from the centralized
controller to the next MAG (nMAG) with which Vk will be
attached. The handover process of the IFP-NEMO is carried
out from two perspectives in parallel: link reestablishment and
data forwarding [25]. The procedure of link reestablishment
is illustrated as follows.
• Step 1: The previous wireless layer 2 (L2) link between
Rm and VK is disconnected, which requires a time of
Toff .

• Step 2: A new L2 link between RSU Rm′ (Rm′ 6= Rm),
with which Vk is reconnected, and Vk is established,
which takes a time of Ton.

Hence, the total latency of link reestablishment is calculated
as

Tk,link = Toff + Ton. (16)

The procedure of data forwarding is illustrated as follows:
• Step 1: The predictive mode of IFP-NEMO is activated

when Vk sends a L2 report to the sMAG. The time
required to deliver the L2 report is denoted as tL2.

• Step 2: Upon receiving the L2 report, the sMAG sends
a handover initiate (HI) message to the nMAG, which
contains a number of key information including vehicle
ID, home network prefix, mobile network prefix, and cen-
tralized controller address. The time required to deliver
the HI message is denoted as ϕ.
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Etotalk (pok) =
βk

ul
k

δ

(
1− Slk

)
− λk

(
1− pok

) + PUk T
t
k(pok) =

Fk,1(p
o
k)︷ ︸︸ ︷

βkBk log2(1 + γk) + PUk p
o
kθk

[
ulk
δ

(
1− Slk

)
− λk

(
1− pok

)]
[
ulk
δ

(
1− Slk

)
− λk

(
1− pok

)]
Bk log2(1 + γk)︸ ︷︷ ︸

Fk,2(pok)

. (10)

• Step 3: Upon receiving the HI message, the nMAG
confirms the received profile of Vk and creates a new
cache entry, which takes a time of $k.

• Step 4: The nMAG sends a tentative proxy binding
update (TPBU) message to the centralized controller. The
time required to deliver the TPBU message is denoted as
κ.

• Step 5: The centralized controller confirms the received
profile of Vk and creates a new cache entry, which takes
a time of $k.

• Step 6: The sMAG sends the data packets to the nMAG
via the centralized controller, which takes a time of
T

′

k,PT .
The total time required for data forwarding is calculated as

Tk,data = TL2 + ϕ+ 2$k + κ+ T
′

k,PT . (17)

Once both the link reestablishment and the data forwarding
processes are completed, the nMAG sends the data packet to
RSU Rm′ (Rm′ 6= Rm), which takes a time of Tk,PT . The
handover latency Thk is defined as the total duration during
which Vk cannot send or receive any data packet due to either
link reestablishment latency or data forwarding latency. To
calculate the handover latency, the following four cases are
considered, which are shown in Fig. 2.
• Case A (TL2 + ϕ + 2$k + κ > Toff and Tk,data >
Tk,link): If Tk,data > Tk,link, the link reestablishment
process is finished earlier than the data forwarding pro-
cess. Therefore, the data can be directly sent to Vk
from the nMAG without buffering. Furthermore, since
TL2 +ϕ+ 2$k +κ > Toff , the handover latency should
be calculated from the moment that the previous L2 link
has been disconnected, which is given by

Thk,A = TL2 + ϕ+ 2$k + κ− Toff + T
′

k,PT + Tk,PT .
(18)

• Case B (TL2 + ϕ + 2$k + κ < Toff and Tk,data >
Tk,link): In this case, the sMAG starts to transfer data
to the nMAG even though the L2 link has not been dis-
connected. Therefore, the handover latency is calculated
from the moment when the sMAG starts to transfer data
packets to the nMAG. Thk is calculated as

Thk,B = T
′

k,PT + Tk,PT . (19)

• Case C (TL2 + ϕ + 2$k + κ > Toff and Tk,data <
Tk,link): Since Tk,data < Tk,link, Vk has not reconnected
with the nMAG when the data forwarding process is

completed, and the delivered data have to be buffered
in nMAG. Thk is calculated as

Thk,C = Ton + Tk,PT . (20)

• Case D (TL2 + ϕ + 2$k + κ < Toff and Tk,data <
Tk,link): This case is similar to case B. The only differ-
ence is that the data forwarding process is finished earlier,
and the nMAG has to wait for the link reestablishment
process to be finished. Therefore, Thk is calculated as

Thk,D = Toff − (TL2 + ϕ+ 2$k + κ) + Ton + Tk,PT .
(21)

A robust approach is to consider the worst-case scenario,
i.e., Thk = max{Thk,A, Thk,B , Thk,C , Thk,D}. Hence, the latency
caused by workload offloading is the sum of the workload
transmission latency, the waiting latency at VEC node Im, the
remote workload execution latency, the waiting latency at RSU
Rm, and the handover latency, which is given by

T ok (pok) = T tk(pok) + T em(pok) + T tm(pok) + Thk (pok). (22)

IV. PROBLEM FORMULATION

The objective is to minimize the total energy consumption
of K UEs within the coverage of RSU Rm. The formulated
energy-efficient workload offloading problem is given as fol-
lows:

P1 : min
{pok}

∑
Uk∈U

Etotalk (pok)

s.t. C1 : λk(1− pok) ≤ ulk
δ

(1− Slk),∀Uk ∈ U ,

C2 :
∑
Uk∈U

pokλk ≤
cuem
δ
,

C3 : T tk ≤ τok ,∀Uk ∈ U ,
C4 : T lk ≤ τk,∀Uk ∈ U ,
C5 : T ok ≤ τk,∀Uk ∈ U ,
C6 : pok ∈ [0, 1],∀Uk ∈ U . (23)

Here, C1 and C2 represent the computing capability con-
straints, i.e., the workload arrival rates λk(1 − pok) and∑
Uk∈U pok should not exceed the processing rate at UE Uk

and VEC node Im, respectively. C3 denotes latency constraint
of data transmission. C4 and C5 denote the latency constraints
of local and remote workload executions, respectively. C6 is
the boundary constraint of pok.

It is infeasible to find a polynomial-time solution for P1
due to the following two reasons. First, the objective function
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Fig. 2. Illustration of four handover cases.

is not convex. Second, the optimization variables of K UEs
are coupled through the term C2. Furthermore, it is noted
that the problem size of P1 grows enormously fast with
the number of UEs. Therefore, it is difficult to solve P1
via centralized solutions because the VEC node or the RSU
has to collect every detailed piece of information from all of
UEs. This might be infeasible for practical implementation
considering the communication overhead constraint and the
threat of privacy leakage. Hence, we aim at addressing P1 in
a distributed manner.

V. CONSENSUS ADMM-BASED ENERGY-EFFICIENT
WORKLOAD OFFLOADING

In this section, we introduce an energy-efficient distributed
solution based on consensus ADMM. First, we provide a
brief introduction to consensus ADMM for the readers’ better
understanding. Then, we introduce the problem transformation
which is a prerequisite for applying consensus ADMM. Next,
the implementation procedures of the proposed distributed
solution are elaborated. Finally, we analyze the convergence
and complexity properties.

A. Introduction to Consensus ADMM

Generally, ADMM is suitable to solve the problems with
the following forms [23]:

P1 : min
x,y

f(x) + g(y)

s.t. Ax + By = c, (24)

where x ∈ Rq1×1, y ∈ Rq2×1, A ∈ Rq3×q1 , B ∈ Rq3×q2 , and
c ∈ Rq3×1. The augmented Lagrangian of (24) is given by

Lρ(x, y,µ)

= f(x) + g(y) + µT (Ax + By− c) +
ρ

2
‖ Ax + By− c ‖22,

(25)

where ρ ∈ R++ denotes the penalty parameter in the aug-
mented Lagrangian, which is used to increase the speed of
convergence in ADMM [27]. ρ can be adjusted by using the
self-adaptive approach [16]. µ denotes the vector of Lagrange
multipliers.

The problem (24) can be solved via the following iterations:

x[t+ 1] = arg min
x
Lρ(x, y[t],µ[t]), (26)

y[t+ 1] = arg min
y
Lρ(x[t+ 1], y,µ[t]), (27)

µ[t+ 1] = µ[t] + ρ(Ax[t+ 1] + By[t+ 1]− c), (28)

where t is the index of iteration.
Next, we consider a global consensus problem with a global

variable vector z, i.e., z ∈ Rq1×1, and several local variable
vectors xi, i.e., xi ∈ Rq1×1, i = 1, · · · , N , which is formulated
as [22]:

min
xi

N∑
i=1

fi(xi)

s.t. xi − z = 0, i = 1, . . . , N. (29)

The consensus constraint guarantees that all of the local vari-
ables should be equal to the global variable. The augmented
Lagrangian corresponding to (29) is given by

Lρ(x1, . . . , xN ,µ, z)

=
N∑
i

fi(xi) + (µi)
T (xi − z) +

ρ

2
‖ xi − z ‖22 (30)

The resulting iterations are given given by

xi[t+ 1] = arg min
xi

{
fi(xi) + (µi[t])

T (xi − z[t])

+
ρ

2
‖ xi − z[t] ‖22

}
(31)
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z[t+ 1] = arg min
z

I∑
i

{
(µi[t])

T (−z)

+
ρ

2
‖ xi[t+ 1]− z ‖22

}
(32)

µi[t+ 1] = µi[t] + ρ(xi[t+ 1]− z[t+ 1]). (33)

Remark 5. It is noted that the x-minimization and y-
minimization steps in (26) and (27) are carried out in a
sequential fashion, while the xi-minimization in (31) is carried
out in parallel for each i = 1, · · · , N .

B. Problem Transformation

To apply ADMM, we have to transform problem P1 into a
tractable form. First, the original problem with a fractional-
form is transformed to a new problem with a subtractive-
form objective function. Second, the problem with coupled
variables is further transformed to a decomposable problem
with separable objectives and decoupled variables. The details
are illustrated as follows.

1) Nonlinear Fractional Programming: It can be observed
from (10) that Etotalk (pok) is a fractional-form function. Hence,
we can employ nonlinear fractional programming to transform
the original problem in the fractional form into an equivalent
problem in the subtractive form.

Let us define the numerator and denominator of (10) as
Fk,1(pok) and Fk,2(pok), respectively. Denote ψ∗k as the maxi-
mum value of Etotalk (pok), which is expressed as

ψ∗k = min
{pok}

Etotalk (pok) (34)

= min
{pok}

Fk,1(pok)

Fk,2(pok)
=
Fk,1(po∗k )

Fk,2(po∗k )
,

where po∗k denotes the global optimal solution for UE Uk.
Based on nonlinear fractional programming [34], we have the
following property:

Theorem 1: ψ∗k is achieved if and only if

min
{pok}

(
Fk,1(pok)− ψ∗kFk,2(pok)

)
=Fk,1(po∗k )− ψ∗kFk,2(po∗k ) = 0. (35)

Proof: The detailed proof is omitted due to space limita-
tion. A similar proof can be found in our previous work [35].

Theorem 1 indicates the necessary and sufficient conditions
to obtain ψ∗k. Accordingly, po∗k can be obtained by solving the
following transformed problem:

P2 : min
{pok}

∑
Uk∈U

(
Fk,1(pok)− ψ∗kFk,2(pok)

)
s.t. C1 ∼ C6. (36)

Remark 6. It can be easily proved that the objective of P2
is convex with regards to pok by calculating the corresponding
second derivative.

However, the specific value of ψ∗k required to solve P2 is
still unavailable. To obtain ψ∗k, the iterative Dinkelbach method
can be used [34]. Denote the iteration index as n and the initial

value of ψk as a small positive number. At the n-th iteration,
pok[n] is derived by using ψk[n] obtained from the (n− 1)-th
iteration, which is given by

P3 : min
{pok[n]}∑
Uk∈U

(
Fk,1(pok[n])− ψk[n]Fk,2(pok[n])

)
s.t. C1 ∼ C6. (37)

How to solve P3 is provided in Subsection V-C. Then, upon
obtaining pok[n], ψk[n+ 1] is updated as

ψk[n+ 1] =
Fk,1(pok[n])

Fk,2(pok[n])
. (38)

The iteration process will stop if

Fk,1(pok[n])− ψk[n]Fk,2(pok[n]) < ε, (39)

where ε represents the stopping criteria. The above imple-
mentation procedures are summarized as the outer loop of
Algorithm 1.

2) Consensus Problem Formulation: At each iteration n,
problem P3 has to be solved with a given ψk[n]. However,
the objectives in P3 are not separable because the work-
load offloading variables of K UEs are coupled through the
constraint term C2. To provide a distributed solution, local
copies of the global optimization variables are introduced to
transform P3 into a general consensus problem. Specifically,
defining the vector of global optimization variables as po =
{po1, · · · , pok, · · · , poK}, the local copy of the global vector po

at UE Uk is denoted as p̃ok = {p̃o,k1 , · · · , p̃o,kk , · · · , p̃o,kK }. For
instance, the local copy of the global variable pok−1 (i.e., the
offloading strategy of UE Uk−1) at UE Uk is po,kk−1.

Furthermore, we define the feasibility set of the local
optimization variables for UE Uk as ωk, which is given by

ωk = {p̃ok|C1 ∼ C6} . (40)

We define the local objective function associated with the
feasibility set ωk as χk. If p̃o,kk ∈ ωk, i.e., the solution is
feasible, then χk is equivalent to its global counterpart, i.e.,

χk(p̃o,kk ) = Fk,1(p̃ok)− ψkFk,2(p̃ok). (41)

Otherwise, if the constraints cannot be satisfied, χk(p̃o,kk ) =
∞.

Therefore, the general consensus problem corresponding to
P3 is given by

P4 : min
{p̃o

k}

∑
Uk∈U

χk(p̃o,kk )

s.t. C7 : p̃ok = po,∀Uk ∈ U , (42)

where C7 denotes the consensus constraint, i.e., the local
variables duplicated at different UEs should be equal to the
global variables.

Remark 7. C7 guarantees that P3 and P4 are equivalent.
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C. Consensus ADMM-based Distributed Solution

In this subsection, the proposed consensus ADMM-based
solution is elaborated in details. Let Λ be the K×K matrix of
the Lagrange multipliers corresponding to the consensus con-
straint C7 in P4. Λ is given by Λ = [µ1, · · · ,µk, · · · ,µK ],
where µk is a K × 1 vector.

The augmented Lagrangian for P4 is expressed as

L({p̃ok},Λ) (43)

=
∑
Uk∈U

χk(p̃o,kk ) +
∑
Uk∈U

µTk (p̃ok − po)

+
ρ

2

∑
Uk∈U

‖ p̃ok − po ‖22 .

The resulting iterations of updating local variables, global
variables, and Lagrange multipliers are given in (44), (45),
and (46), respectively.

Remark 8. From (44), it is clear that the optimization of
p̃ok is carried out independently for each UE. As a result, P4
can be decomposed into a set of subproblems, which are dis-
tributed across UEs and solved in parallel. The corresponding
optimization objective for Uk is exactly χk.

Based on the above analysis, the energy-efficient workload
offloading algorithm based on consensus ADMM is summa-
rized as Algorithm 1. It consists of two loops. The outer
loop represents the iterations to solve the nonlinear fractional
programming problem, and the corresponding iteration index
is n. The inner loop represents the iterations for updating
the primal and dual variables, and the corresponding iteration
index is defined as t. In iteration n of the outer loop, given
ψk[n], the primal and dual variables are updated sequentially
to find the optimal workload offloading strategy, which are
elaborated as follows:

1) {p̃ok} update : In iteration t of the inner loop, the
optimization of p̃ok[t+1] is carried out by using (44). It is
noted that (44) is actually a quadratic programming (QP)
problem [16], which can be easily solved by existing QP
solvers.

2) {po,µk} update : Compared with {p̃ok} update, the
optimization of po[t+1] and µk[t+1] can be carried out
more easily due to the nature of un-constrained quadratic
optimization. The specific updating processes of pok[t+1]
and µk[t+ 1] are shown in (45) and (46), respectively.

3) Termination criteria of the inner iteration: The inner
iteration stops

‖ rk[t+ 1] ‖22 =‖ p̃ok[t+ 1]− Po[t+ 1] ‖22≤ εpri,
∀Uk ∈ U , (47)

‖ s[t+ 1] ‖22 = ρ ‖ Po[t+ 1]−Po[t] ‖22≤ εdual.
(48)

where rk and s denote the primal residual and the dual
residual, respectively. εpri and εdual denote the thresh-
olds for rk and s, respectively. Moreover, as proved in
Subsection V-D, the primal and dual update iterations
in consensus ADMM satisfy objective convergence,
residual convergence and dual variable convergence as
t→∞.

Algorithm 1 Consensus ADMM-based Workload Offloading
Optimization Algorithm

1: for k = 1, 2, · · · ,K do
2: Initialize: n, t, pok, ψk, εpri, εdual, and ε.
3: Convergence = False;
4: while Convergence = False do
5: while ‖ rk[t] ‖22> εpri and ‖ s[t] ‖22> εdual do
6: Update p̃ok[t + 1], k = 1, . . . ,K, concurrently via

(44);
7: Update po[t+ 1] via (45);
8: Update µk[t+ 1] via (46);
9: Calculate

10: ‖ rk[t+ 1] ‖22=‖ p̃ok[t+ 1]− Po[t+ 1] ‖22;
11: ‖ s[t+ 1] ‖22= ρ ‖ Po[t+ 1]−Po[t] ‖22;
12: Update t→ t+ 1;
13: end while
14: Update p̃ok[t]→ pok[n];
15: if Fk,1

(
pok[n]

)
− ψk[n]Fk,2

(
pok[n]

)
> ε then

16: ψk[n+ 1] = Fk,1
(
pok[n]

)
/Fk,2

(
pok[n]

)
17: Convergence = False
18: else
19: Convergence = True
20: end if
21: Update n→ n+ 1;
22: end while
23: Set {po∗k } = {pok[n]};
24: Calculate ψ∗k by (34);
25: output: po∗k , and ψ∗k.
26: end for

4) Termination criteria of the outer iteration: When iter-
ation n terminates, pok[n] is used to update ψk[n + 1]
for the [n+ 1]-th iteration as (38). The stopping criteria
of the outer loop is given in (39). In the final iteration
of outer loop, the obtained workload offloading strategy
converges to the optimal strategies, i.e., po∗k . ψ∗k is
calculated by using po∗k as (34).

D. Property Analysis

In this subsection, we analyze the convergence and com-
plexity of the proposed algorithm.

1) Convergence of the Inner Iteration: The objective func-
tion of P4 is closed, proper, and convex, and the correspond-
ing epigraph is a closed nonempty convex set. Furthermore,
the Lagrangian L({p̃ok},Λ) has a saddle point. Thus, based
on [16], the inner iteration satisfies residual convergence,
objective convergence and dual variable convergence, which
is shown as below.
• Residual convergence:∑

Uk∈U
(p̃ok[t]− po[t])→ 0, t→∞, (49)

which indicates that the iterations approach feasibility.
• Objective convergence:∑

Uk∈U
χk(p̃o,kk [t, n])→

∑
Uk∈U

ψ∗k[n], t→∞, (50)
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{p̃ok[t+ 1]} = arg min
p̃o

k

{
χk(p̃o,kk ) + µTk (p̃ok − po[t]) +

ρ

2
‖ p̃ok − po[t] ‖2

}
, (44)

{po[t+ 1]} = arg min
po

{ ∑
Uk∈U

µTk (−po) +
ρ

2

∑
Uk∈U

‖ p̃ok[t+ 1]− po ‖2
}
, (45)

{µk[t+ 1]} = {µk}[t] + ρ(p̃ok[t+ 1]− po[t+ 1]). (46)

TABLE II
PARAMETERS.

Parameter Value
Number of UEs K 10 ∼ 20
Number of RSUs M 4
Number of servers in the RSU c 4
Diameter of RSU coverage dm 400 m ∼ 650 m
Workload data size θk 40 ∼ 150 Mb
Average vehicle velocity v̄k 40 ∼ 80 km/h
Delay constraint τk 2 ∼ 50 s
Local computing power βk 0.5 W
Transmission power of vehicle PV

k 23 dBm
Bandwidth Bk 2 MHz
Average workload arrival rate λk 2 ∼ 5 workload/s
Local computing capability ulk 1.4 ∼ 2.2 GHz
Workload computation complexity δ 0.5 GHz/workload
Edge computing capability uem 12 GHz
Noise power N0 -97 dBm
Time required to deliver the TPBU 20 ms
message κ
Time required to deliver the L2 report TL2 15 ms
Time required for the sMAG (nMAG) to 10 ∼ 30 ms
send the data packets to the nMAG
(RSU) T

′
k,PT (Tk,PT )

Time required to deliver the HI message ϕ 10 ms
Time for confirming the received profile 10 ms
and creating a new cache entry $k

which indicates that the objective function eventually
converges to the optimal value.

• Dual variable convergence: µk[t] → µ∗k as t → ∞,
where µ∗k is a dual optimal vector.

2) Convergence of the Outer Iteration: It can be proved that
pok[n] converges to po∗k in a super-linear speed as n increases.
A similar proof can be found in [35].

3) Complexity: In each iteration of the outer loop, P4 is
solved to produce a decreasing sequence of ψk. Here, we
define nloop as the required number of iterations by the outer
loop to reach convergence. Similarly, in each iteration of
the inner loop, (44), (45) and (46) are updated sequentially
to obtain po∗k [n] for a given ψk[n]. We define tloop as the
number of iterations required by the inner loop to reach
convergence. Hence, the computation complexity for solving
each decomposed subproblem is O(nlooptloop).

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we validate the proposed algorithm based on
the real-world topology of the Xidan area in Beijing, China.
This area is featured with the Chang’an avenue, which is

Fig. 3. Evaluation scenario based on the real-world topology of Xidan area,
Beijing,China.
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Fig. 4. The relationship between pok and the energy consumption of UE Uk .
(K = 1, dm = 400m, θk = 120Mb, λk = 4)

the road to several scenic spots such as Tian’an men Square
and the Forbidden City as well as the headquarters of many
companies and government agencies are located in this area.
An aerial snapshot obtained from the Baidu map is shown
in Fig. 3. First, The data of the digital map downloaded
from OpenStreetMap is imported to SUMO. Then, vehicle
traffics are generated based on the realistic road topologies,
which are marked as small yellow triangles in Fig. 3. The
critical attributes of each vehicle such as location and velocity
are obtained during simulation, based on which the average
velocity of each vehicle is estimated by using a simple rolling
window regression approach [36]. The RSUs are also deployed
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along the Chang’an avenue.
The simulation parameters are summarized in Table II [37]–

[39]. The proposed algorithm is compared with two heuristic
algorithms including the brute-force searching algorithm, and
the static offloading algorithm algorithm [11]. In the static
offloading algorithm, the portion of offloaded workload is fixed
and the same for any UE.

Fig. 4 shows the relationship between pok and the energy
consumption of UE Uk under different average vehicle veloc-
ities. It is clear that the energy consumption decreases firstly
and then increases with pok. When pok is small, the energy
consumption of transmission is less than that of the local
computing. Hence, more energy can be saved by increasing
pok. However, when pok > 0.5, the energy consumed for data
transmission starts to dominate the total energy consumption.
In other words, the energy saving brought by workload of-
floading cannot compensate the energy consumed for data
transmission. As a result, the energy consumption increases
monotonically with pok. Furthermore, we found that the energy
consumption also increases with the average vehicle velocity
when pok > 0.5. The reason is that higher velocity will cause
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more offloading failures when pok is large. This not only
increases transmission energy consumption, but also results in
higher energy consumption of local computing because more
workloads have to be processed locally.

Fig. 5 shows the energy consumption versus vehicle ve-
locity. The proposed algorithm is compared with the static
offloading algorithm under different workload offloading por-
tions. When pok is large, i.e., pok = 0.85 and pok = 0.6,
the energy consumption of the static offloading algorithm
increases dramatically with the vehicle velocity. The reason
behind is that higher velocity leads to frequent offloading
failures. In comparison, the energy consumption of the pro-
posed algorithm remains constant when the vehicle veloc-
ity is increased from 40 to 70 km/h. Simulation results
demonstrate that the proposed algorithm is more robust to
the negative impact caused by high vehicle mobility. Even
when the velocity exceeds 70 km/h, the proposed algorithm
still outperforms the static offloading algorithm. The reason
is that the proposed algorithm is able to reduce the energy
consumption by dynamically adjusting the offloading portion.
For example, the optimal offloading portions for the velocities



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2905432, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 12

of 70, 80, and 90km/h are 0.4576, 0.3918, and 0.3407,
respectively. That is, as velocity increases, the portion of
workload to be offloaded is also reduced accordingly to avoid
offloading failure.

Fig. 6 shows the average energy consumption per UE versus
the RSU coverage diameter with different numbers of UEs.
Enhancing the RSU coverage has positive impacts on the
energy consumption. It not only reduces the handover latency
but also relaxes the latency requirement of data transmission.
Hence, the average energy consumption per UE decreases
monotonically with the RSU coverage diameter. However,
when the coverage diameter reaches a certain value, the per-
formance improvement becomes saturated because the optimal
energy consumption have already been achieved. Furthermore,
when the number of UEs is doubled, the average energy
consumption per UE only increases slightly. The reason is that
the offloading portion is dynamically adjusted in accordance
with the number of UEs.

The convergence performance of the proposed algorithm is
shown in Fig. 7. The brute-force searching algorithm which
examines all possible of combinations to find the optimal solu-
tion is utilized as a performance benchmark. It is observed that
the proposed algorithm can converge rapidly to the optimal
result only within 2 ∼ 3 iterations.

Fig. 8 shows the total energy consumption versus different
workload offloading portions. The offloading portion of any
UE is kept as the same, i.e., pok = pok′ ,∀k′ 6= k. The numerical
results are consistent with Fig. 4, i.e., the energy consumption
decreases firstly and then increases with pok. Moreover, it
is observed that the maximally allowed offloading portion
decreases monotonically as the number of UEs increases. This
is due to the constraint C2 of problem P1 that the sum arrival
rate of all UEs’ workload cannot exceed the processing node
of the VEC node.

VII. CONCLUSION

In this paper, we have investigated the energy-efficient
workload offloading for in-vehicle UEs with limited battery
capacity, and proposed the consensus ADMM-based energy-
efficient resource allocation algorithm. First, by taking the
high mobility of vehicles into account, we have proposed a
queuing model to derive the closed-form expressions of the
computation latency and the waiting latency. Then, we have
formulated a workload offloading optimization problem with
the explicit considerations of the overall energy consumption
and latency. Next, we have proposed a consensus ADMM-
based distributed solution. The formulated joint problem was
decomposed into a set of subproblems and solved in par-
allel. Finally, a real-world topology based simulation has
been conducted. For the future work, we will investigate the
delay minimization problem in VEC by employing machine
learning based workload prediction and computation resource
prediction.
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