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Abstract—In Body Area Networks (BANs), bio-sensors can collect
personal health information and cooperate with each other to provide
intelligent health care services for medical users. Since personal health
information is highly privacy-sensitive, the flourish of BANs still faces
critical security challenges, especially secure communication between
bio-sensors. In this paper, we propose a flexible and efficient authenti-
cated key agreement scheme (PBAKA) to provide secure communica-
tion for BANs. Specifically, we employ a control unit (e.g., smart phone)
to launch authentication based on physiological features collected from
BANs, and integrate bilinear pairings to negotiate session keys for bio-
sensors. Since physiological features can be collected from various
kinds of bio-sensors in real time, PBAKA is flexible for adding new
bio-sensors without pre-distributed keys. Meanwhile, PBAKA is com-
putationally efficient by offloading authentication burden from resource-
limited bio-sensors to the control unit. Security analysis demonstrates
that PBAKA is provably secure under the decisional bilinear Diffie-
Hellman assumption. Extensive experimental results validate efficient
communication, computation and energy consumption of our scheme
when compared with several existing solutions.

Index Terms—Key Agreement, Privacy, Authentication, Physiological
Features, BANs, E-Healthcare

1 INTRODUCTION

Body Area Networks (BANs) are emerging with the
development of e-healthcare systems, which can monitor
medical users’ health information and transmit it to
remote health centers for intelligent healthcare services
[1] [2]. A BAN is composed of one control unit (smart
phone) and some bio-sensors that are integrated with
wireless transceivers and constrained by limited comput-
ing resources. Bio-sensors can be worn on or implanted
in human body to measure diverse physiological values
(blood pressure, electrocardiogram, blood oxygen level,
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glucose level, activity recognitions etc.) [3], and provide
intelligent treatments through the cooperation of various
bio-sensors. For instance, automatic insulin pump ad-
ministers insulin when receiving the health information
of high-glucose level [4]. With the development of BANSs,
medical users can receive efficient and intelligent health
care services at any time and any where.

Although BANs can benefit medical users by pro-
viding convenient healthcare monitoring services, the
flourish of BANSs still hinges upon how we fully un-
derstand and address the challenges faced in BANS.
Especially, owning to the openness of wireless network
environment and the privacy sensitiveness of personal
health data, security and privacy challenges in BANs are
urgent to be addressed [5]-[7]. First, malicious attackers
may access the bio-sensors and transmit incorrect health
information to bio-sensors, such that they can affect
the treatment procedures even blackmail medical users
that are equipped with bio-sensors. For instance, severe
brainjacking risks in deep brain stimulation implants
may happen if malicious devices access them [8]. Sec-
ond, the information transmitted between bio-sensors
may be tampered or disclosed, such that medical users’
treatment may be affected and their lives may be in
danger. For instance, the dosage of Hospiras Symbiq
drug pumps can be changed when they are delivered
to patients [9]. To protect the health information from
being accessed, tampered, and disclosed by malicious
attackers, it is imperative for BANs to be equipped with
authentication and confidentiality mechanisms that can
guarantee secure communication [10] - [12]. To this aim,
authenticated key agreement schemes are established as
the basis for secure BANs communication [13] - [15].

Key agreement schemes between bio-sensors in BANs
can be implemented by pre-deployed keys [16] [17],
which are required to be distributed and stored in bio-
sensors by manufacturers. However, in the pre-deployed
key agreement schemes, bio-sensors cannot recognize
identities of other bio-sensors, and these schemes are
not flexible especially when new bio-sensors are added
into BANs. Meanwhile, if bio-sensors are abandoned or
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captured, their keys may be disclosed to adversaries,
who may disrupt the key generation function even com-
pute other bio-sensors” keys to obtain personal sensitive
information [18]. Furthermore, unscrupulous business-
men can utilize the disclosed key hardware modules to
fabricate bio-sensors and put them into the marketplace,
which may cause critical security and privacy problems.
Channel-based key agreement schemes are proposed by
integrating received signal strength [19] - [22], because
RSS is more stable between bio-sensors in BANs than
that among sensors out of BANs. However, the channel-
based schemes have limitations caused by channel inter-
ference in wireless environment. For instance, in hospi-
tals or communities where many medical users that are
equipped with BANs crowd, the channel interference in
BANSs can seriously impedes channel-based key agree-
ment schemes to be applied for bio-sensors. Thus, it is
necessary to design flexible authenticated key agreement
schemes with the consideration of key pre-distribution
and environmental interference.

Physiological-feature-based key agreement schemes
[23] - [29] are promising candidate solutions since some
physiological features are unique in the human body.
For the cardiovascular physiological features (ECG, PPG,
heart sounds, blood pressure and blood flow), they are
evaluated to have intrinsic characteristics of uniqueness
between different individuals to make identity recogni-
tion for bio-sensors [30] [31]. Meanwhile, the stability of
cardiovascular physiological features have been assessed
in [32] - [34]. As a result, physiological-feature-based
authenticated key agreement schemes [35] - [37] are
proposed, in which bio-sensors can extract the session
keys that are hidden in physiological features. How-
ever, existing physiological-feature-based key agreement
schemes introduce high authentication burden from the
aspects of computation and storage, which is not appli-
cable for resource-limited bio-sensors. Meanwhile, they
can only work for dedicated bio-sensors collecting the
same kind of physiological features, which is not feasible
and scalable. Furthermore, they cannot guarantee both
authentication rate and key strength simultaneously. The
difficulty for adversaries to obtain session keys increases
with physiological feature size, while the authentication
rate of bio-sensors decreases at the same time [29].

In this paper, we propose a flexible and efficient
authenticated key agreement scheme (PBAKA), which
integrates physiological features and bilinear pairings to
achieve secure communication between cardiovascular
bio-sensors in BANSs. First, PBAKA employs the control
unit as the authentication server to make identity recog-
nition based on cardiovascular physiological features.
Then we utilize bilinear parings to negotiate determined
session keys for the authenticated bio-sensors. Specifi-
cally, our contributions can be summarized as follows:

e We employ the intrinsic physiological features col-
lected from bio-sensors as the basis for authenticated key
agreement between bio-sensors. Such that PBAKA can be
flexibly applied for newly-added bio-sensors, and release

the pre-deployed key management burden.

e We utilize the control unit to launch authentica-
tion for various bio-sensors collecting different kinds of
physiological features. Such that our scheme is computa-
tionally efficient by offloading the authentication burden
from resource-limited bio-sensors to the control unit.

e We apply bilinear pairings to negotiate session
keys for bio-sensors through certificates generated from
physiological features. Such that PBAKA can provide
deterministic security level for different physiological
feature sizes. Meanwhile, we analyze PBAKA is secure
under the decisional bilinear Diffie-Hellman assumption
with key forward secrecy.

e We conduct extensive experiments based on ECG
signals to demonstrate the performance efficiency with
low computation overhead, communication overhead
and energy consumption on bio-sensors when compared
with some existing key agreement schemes.

The remainder of this paper is organized as follows.
Section II reviews the related works on key agreement
schemes in BANs and authentication based on physi-
ological features, and Section III introduces models and
goals. Then, we define the preliminaries and notations in
Section 1V, and provide the details of PBAKA in Section
V. The security analysis and performance evaluation are
presented in Section VI and VII respectively, followed by
a conclusion in Section VIIL

2 RELATED WORKS
2.1 Key Agreement Schemes in BANs

The key agreement schemes based on specific charac-
teristics of BANs can be divided into channel-based
schemes and physiological-feature-based schemes.

Since wireless channel has a special characteristic: the
underlying channel response between any two parties is
unique and decorrelates rapidly in space, the channel
provides a basis for secret information sharing [19].
In [20], Wang et al. analyzed that the communication
channel between two devices worn on the same body
is much more stable than that between a body-worn
device and a faraway device off the body. Shi et al. [21]
proposed a lightweight and fast authenticated secret key
extraction scheme for intra-BANs communication based
on channel signals. Revadigar et al. [22] introduced dual
antennas and frequency diversity for obtaining uncorre-
lated channel samples to improve the entropy of key bit
rate in static channel conditions.

Since bio-sensors that belong to the same BANs have
a distinct advantage of measuring human body’s phys-
iological features, key agreement schemes are emerging
based on the same or similar physiological features. [28]
[29] proposed schemes to agree on a symmetric crypto-
graphic key generated from overlapping of physiological
features for bio-sensors that belong to the same BANS.
ELPA [23] performed a secure and transparent node
pairing by generating a symmetric key based on ECG
signals by introducing Linear Prediction Coding (LPC)
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to hide cryptographic key. Zhao et al. [24] proposed
a key negotiation scheme based on the fuzzy extrac-
tor technology and an improved linear interpolation
encryption method. Rostami et al. [25] introduced a
cryptographic device paring scheme to ensure access
by a medical instrument in physical contact with an
IMD-bearing patient based on ECG signals. Seepers et
al. [26] explored von Neumann entropy extractor to
increase the randomness of inter-pulse-interval (IPI) to
improve key agreement accuracy. Zhou et al. [27] pro-
posed a privacy-preserving key management scheme by
exploiting blinding technique and embedding human
body’s symmetric structure into bloom’s symmetric key
mechanism with modified proactive secret sharing. The
work in [13] illustrated that physiological-feature-based
key agreement schemes can work in both sparse and
crowded environments compared with channel-based
key agreement schemes.

2.2 Authentication Based on Physiological Features

Poon et al. [38] conducted several experiments to show
that Inter-Pulse-Intervals (IPI) of physiological features
can be used for authentication in e-health networks.
IPI is available for different kinds of bio-sensors that
collect different kinds of physiological signals (e.g., ECG,
PPG, heart sounds, blood pressure wave and blood
flow). Meng et al. [39] studied the development of
authentication techniques by using biometrics on mobile
phones, and identified that physiological biometrics can
provide high authentication accuracy. Nanni et al. [40]
proposed a framework for biometric fusion based on a
single acquisition device and multiple matching units.
It demonstrated that even if a single matcher is weak,
or degrades its performance in presence of hostile en-
vironmental conditions, different matchers can provide
complementary information to improve the authentica-
tion accuracy. Miao et al. [41] proposed a single-window
Fourier transform scheme to improve the identification
performance of generated entity identifiers based on
physiological features. Kang et al. [42] introduced cross
correlation to make fast authentication based on ECG
signals in mobile and wearable devices with low false
acceptance rate and false rejection rate. [43] analyzed
that the extracted ECG features from time domain and
frequency domain can be used for authentication. Time
domain features include IPIs, statistics, Hjorth features,
Non-Stationary index, fractal dimension and high order
crossings of the physiological signal.

Since severe channel interference may affect the signal
strength and the accuracy of the negotiated keys [45],
most of the channel-based key agreement schemes can-
not be applied to mobile crowded environment, which
is a significant application scenario in BANSs. Existing
authentication technologies based on physiological fea-
tures establish strong basis for secure communication
between bio-sensors, which enable the physiological-
feature-based key agreement scheme a promising solu-
tion. However, existing physiological-feature-based key

agreement schemes can only negotiate session keys for
bio-sensors that collect the same kind of physiological
features, which is not feasible for bio-sensors that col-
lect different kinds of physiological features. In addi-
tion, existing physiological-feature-based key agreement
schemes cannot provide session keys with a determinis-
tic security level. Therefore, an authenticated key agree-
ment scheme with high flexibility and security should
be developed for BANs.

3 MODELS AND DESIGN GOALS
3.1 Network Model

A typical BAN that equipped by medical users consists
of some bio-sensors and a control unit.

Bio-sensors are resource-limited sensors that are usu-
ally worn on or implanted in the human body to
measure physiological signals. They communicate with
each other to provide cooperative treatment services and
transmit the collected health information to the control
unit for health monitoring.

The control unit is a relay server that has more
powerful resources than bio-sensors in terms of storage,
communication and computation. The control unit can
be played by a smart phone to provide health informa-
tion storage and management services. The control unit
performs functions of collecting physiological signals,
extracting physiological features, and authenticating the
identities of bio-sensors.

3.2 Security Threats and Design Goals

e Security Threats

In our scheme, control unit is trusted. Bio-sensors are
honest to keep their keys secret. Devices beyond one
specific BAN generally cannot sense personal physiolog-
ical information. Even if some devices are able to sense
physiological features, they can hardly to be adversaries
because if they intend to play as adversaries and obtain
the negotiated keys, they should be supposed to be
physically close to users, which is easy to discover for
general medical users. The security threats faced by
a BAN are the adversaries that can transmit incorrect
health data to access the medical users or eavesdrop
physiological information for health data privacy leak-
age. We categorize the security threats into active adver-
saries and passive eavesdroppers as follows. (1) Active
Adversaries. Active adversaries may intend to control
medical users through bio-senors. They may transmit
incorrect health information to bio-sensors for affecting
medical users’ treatments. (2) Passive Eavesdroppers.
Passive eavesdroppers may be unscrupulous vendors.
They can capture the health information and use it to
blackmail medical users or sell it for money from black
market trade.

e Security Goals

(1) Resist Threats from Active Adversaries and Pas-
sive Eavesdroppers. The authenticated key agreement
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scheme should protect the communication between bio-
sensors from active adversaries and passive eavesdrop-
pers.

(2) Key Correctness. Under the condition of there exist
attackers between communicating bio-sensors, the com-
municating bio-sensors can negotiate the same session
keys, and the keys obey uniform distribution.

(3) Key Unforgeability. Any adversaries cannot forge
the negotiated keys between bio-sensors or obtain the
session keys in the polynomial time.

(4) Key Reliability. The strength of the negotiated keys
should be reliable and the length of the negotiated keys
should be independent of the physiological feature size.

(5) Forward Secrecy. When private keys of the com-
municating bio-sensors and the system master key are
disclosed, previous session keys between the communi-
cating bio-sensors should still be secret.

e Performance Goals

PBAKA should guarantee secure communication
based on various kinds of physiological signals to
meet the communication requirements from different
bio-sensors. Meanwhile, since bio-sensors are resource-
limited, PBAKA is designed to offload the authentication
burden from bio-sensors to the control unit. The storage,
computation, communication, and energy consumption
burden on bio-sensors should be acceptably efficient.

4 PRELIMINARIES AND NOTATIONS

In this section, we briefly introduce some preliminaries
on physiological feature extraction, physiological feature
matching, bilinear maps and decisional bilinear Diffie-
Hellman assumption, as well as the important notations
frequently used throughout the paper in Table 1.

41

The physiological feature extraction methods can be di-
vided into time-domain and frequency-domain methods,
and they are not totally the same for different cardiovas-
cular physiological signals. We demonstrate ECG, PPG
and PCG feature extraction in this subsection. For the
ECG signal, the physiological features can be extracted
from the time domain after filtering the lower frequency
by fast Fourier transform. Fiducial points include R
peaks, S peaks, Q peaks, P peaks, T peaks, LP valleys,
TP valleys, and QRS complex can be detected from
ECG signals [49]. We can compute IPIs between these
fiducial points and take them as physiological features.
In addition, the amplitudes of R peaks, T peaks, P
peaks can also be computed as physiological features.
Photoplethysmography (PPG) is to measure the volume
of tissue blood. The widely used physiological features
are based on local marks of heart beats from the time
domain, which include systolic peak, dicrotic notch, di-
astolic peak, pulse interval, peak to peak, augmentation
index, alternative augmentation index and a series of
peak time. For the PCG signal, the physiological features
can be extracted through frequency domain from the S1

Physiological Feature Extraction

tone (it has an average duration of 100ms-200ms and
its spectrum is concentrated within 25Hz-45Hz) and S2
tone (it lasts for about 0.12s with a frequency less than
150Hz). First, the power spectral density of the signals
is estimated with the Short Time Fourier Transform
(STFT). Then, the magnitude of the spectral coefficients
is passed through the Mel-frequency filter and subjected
to Linear Discriminant Analysis (LDA) in order to reduce
dimensionality.

4.2 Physiological Feature Matching

After feature extraction, a physiological signal can be
denoted as feature vectors for matching. In physiological
feature matching, two key components are threshold
searching and distance computation. First, the batch pro-
cess can be used to conduct the search for the threshold
value T" through the threshold searching. Then, we can
compute the distance by using the distance functions
(Euclidean distance function, Manhattan distance and
Mahalabonis distance) and dynamic time warping [46].
The smaller the distance is, the more similarities the
two physiological signals F' and F have. Finally, we
can compare the threshold and the distance. Only if the
distance is smaller than the threshold, the two physi-
ological signals are matching with each other, and we
take them as the physiological signals collected from the
same body.

4.3 Bilinear Maps

The bilinear pairings namely Weil pairing and Tate
paring of algebraic curves are defined as a map ¢ :
Go x Gy — Gy, where Gy is a cyclic additive group
generated by g, whose order is a prime p, and G; is a
cyclic multiplicative group of the same order q. Bilinear
pairings have the following properties:

e Bilinearity: for any u,v € G, and a,b € Z,, it has
e(u,v’) = e(u,v)?;

e Non-degeneracy: e(g, g) # 1, 1 is the unit parameter
in Gl.

e Computability: for all u,v € Gy, there is an efficient
algorithm to compute e(u,v).

4.4 Decisional Bilinear Diffie-Hellman (DBDH) As-
sumption

A challenger chooses a group G of prime order p based
on the security parameter of system. Let a, b, ¢, z € Z,,
be selected randomly and ¢ be a generator of G. With
(9, A= g% B=g" C = g°), the adversary distinguish
a valid tuple e(g, )% from e(g, g)*.

An algorithm B that outputs a guess o € {0, 1} has the
advantage ¢ in solving DBDH if the following formula
was satisfied.

Pr[B(g, A, B,C,e(g,9)*) = 0] > e 1)
—Pr[B(g,A,B,C,e(g,9)*) =0] | —
We say that DBDH assumption holds if no polynomial

algorithm has a non-negligible advantage in solving the
DBDH problem.
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TABLE 1: Notations 5.2 Construction of PBAKA

Notation _ Definition PBAKA consists of five phases: System Initialization,
1D ID number of sender . . .
D, ID number of receiver Feature Extraction, Authentication, Secret Key Genera-
F, Physiological features collected by the sender tion and Key Negotiation as illustrated in Fig. 1. Let e:
E Phygiplogical features. collected by the receiver Go x Gy — G; be a bilinear map, and G be a bilinear
Cert, Certificate of the receiver . .
Cert. Certificate of the sender group of prime order p with generator g. Two hash func-
SKs Secret key of the sender tions Hy: {0,1}*x Zy = Zpand Ho: Zpx Z,xG1 — (0, 1))‘
SKr Secret key of the receiver are used in the proposed scheme.
Ts Intermediate crypto generated by the sender
Ty Intermediate crypto generated by the receiver
CKgsr Common key computed by the sender S Control Unit L
CKrs Common key computed by the receiver
Ky Final session key computed by the sender IDs or
Ky Final session key computed by the receiver
Collects Fs == fF—S'-‘[ES'—‘Pr-)- A:;ze;t,‘;a:fs M=~ ﬁe_?_’-ﬁesb \ 4
o "‘A Co\lectsz|
5 AUTHENTICATED KEY  AGREEMENT v W
Authenticates A”’

SCHEME

In this section, we present the detailed framework and
construction of PBAKA.

Receives secret key | <5Ks,Certr>
SKs and Certr and SKr
5.1 PBAKA Framework
. Compu(;(_es Computes
. . intermediate ~__ <T (td - intermediate
The framework of PBAKA is defined as follows. bt - < - cryplo key Tr

Definition 2 (PBAKA). PBAKA consists of a collec-
tion of algorithms that combine Setup, FeaGen, Auth,
SKeyGen, TKeyTran and KeyAgree.

e Setup (1)) — (e,Go, PK, MSK). The Setup algo-
rithm is run by the control unit. It takes no input other
than the implicit security parameter A. It outputs bilinear
pairings e, cyclic additive group G, public key PK, and
system master key MSK.

o FeaGen (Physiological Sample) — (F). The
FeaGen algorithm is run by the control unit. It takes
specific physiological signals as inputs, and outputs
physiological features F.

o Auth (F,F') — (Authsig, Cert). The Auth algorithm
is run by the control unit. It takes physiological features
as inputs. It outputs Authsig signal. The Authsig is
true if authentication successes, otherwise the Authsig
is false. It outputs certificates Cert of authenticated bio-
sensors if Authsig is true.

o SKeyGen (Cert, PK,MSK) — (SK). The SKGen
algorithm is run by the control unit. It takes certificate
Cert of the bio-sensor, public key PK and system master
key M SK as inputs. For each authenticated bio-sensor, it
generates a random number, then computes and outputs
a pair of secret keys SK.

e TKeyTran (Cert, PK) — (T). The TKeyTran al-
gorithm is run by bio-sensors. Each bio-sensor takes
certificate C'ert of another bio-sensor and public key PK
as inputs. It outputs a pair of intermediate keys 7" and
transmits it to another communicating bio-sensor node.

o KeyAgree (Cert, SK, PK,T) — (K). The KeyAgree
algorithm is run by bio-sensors. They take certificates,
secret keys, public key, both intermediate crypto infor-
mation of themselves and another bio-sensor as inputs.
And outputs the final session key K.

v

|

Computes final key -
Ksr

the receiver

!

Generates

= secret keys SKs

SKrand Certs

|

Computes final key
Krs

Fig. 1: Authenticated Key Agreement Process

Phase 1: System Initialization

The control unit runs algorithm Setup, which takes
security parameter A as input and chooses three random
numbers a, o, B € Z,, outputs public key PK and system
master key MSK.

PK = {GO7gl :gaah:glﬁ7e}

Phase 2: Physiological Feature Generation

The control unit runs the physiological feature gener-
ation algorithm FeaGen. Bio-sensors collect a few kinds
of physiological signals and transmit them to the control
unit. To improve the recognition rate, we can add histori-
cal physiological features collected on different places of
human body and store them on the control unit, such
that we have more template physiological features for
matching. Before the biometric authentication, the con-
trol unit pre-processes the biometric signals to remove
the noises and extract physiological features.

First, we pre-process the biometric signal from overall
perspective. We analyze the noises of biometric signals,
which include power-line interference, baseline wan-
der and unpredictable band components. We address
the noise reduction by Gaussian derivative filter [58],
which can remove baseline wanders and eliminate high-
frequency noises, meanwhile preserve the shapes of
pulsatile waveforms.

)]
®)
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We can compute the Gaussian derivative kernel as
Equation (4) and (5).

a1 (m—24)2

g[m} =e ? o? m = 172737"'7M (4)

him]=gm+1] —g[m] m=1,2,3,.., M -1 (5)

where M denotes the length of Gaussian kernel and
o denotes the width spread, which can be determined
empirically. We can obtain the filtered signal f[n| by
taking the convolution of a signal z[n] and Gaussian
derivative kernel h[n].

Second, we pre-process the biometric signal to reduce
noises for different physiological features respectively.
For the ECG authentication, we usually extract P wave,
T wave and QRS complex as the physiological features.
According to the experiments of [59], QRS complex
and T wave inherit most uniqueness and are not easily
affected by noises, while P wave gets easily corrupted
with noises since it possesses the lowest amplitude.
Specifically, we use proper precautionary measurements
to remove the effects of noises and artifacts, to provide
better uniqueness for P wave alone.

After the above noise reduction of biometric sig-
nal, we can extract physiological features to enroll in
the biometric-based authentication. Two physiological
feature templates are required: 1) enrollment feature
template and 2) authentication feature template. The
enrollment feature template is generated in the initiation
process and the authentication feature template is gener-
ated when bio-sensors intend to communicate with other
bio-sensors. Both of these two features are extracted in
the same way. We take the ECG signal as the example.
First, the fiducial points of ECG signal can be detected
as: R peaks, S peaks, Q peaks, P peaks, T peaks, LP
valleys and TP valleys. Second, the physiological feature
template can be expressed by ten vectors F; (i is from
0 to 9), and the value of each vector corresponds to
the median value of the IPIs between R peaks and the
other fiducial points, as well as the amplitudes of the
fiducial points. For simplicity, we term the enrollment
feature template F' = {F;}, where F; = { fi1, figA, o finh,
and authentication feature template 7 = {F;}, where
F, = {f;l, f;2, e f;N}. N is the number of the feature
size, which varies upon specific physiological features.

Phase 3: Authentication

The control unit runs authentication algorithm Auth,
which takes the enrollment feature template and authen-
tication feature template as inputs, and outputs the cer-
tificates of the authenticated bio-sensors. We define two
communicating sensors as the sender and the receiver.
The control unit authenticates both of them respectively.

The sender transmits /D, I D, of receiver, physiolog-
ical sample F' and timestamp ¢ of the receiver to the
control unit. First, the sender computes:

F = MAC(ID,||ID,||F|[t) 6)

Where MAC is the message authentication code. Then
the sender transmits (ID,,ID,,F,F,t) to the control
unit (¢ is the timestamp).

After checking whether F© = MAC(ID,||ID,||F||t),
the control unit extracts the enroll feature template Fy as
described above, and compares it with the authentication
feature template F, stored in the control unit. The thresh-
old T; of each feature vector is designed in advance,
and we compare each vector respectively and compute
the similarity. If the similarity between the enrollment
feature template and the authentication feature template
reaches to a pre-defined threshold T, the control unit
takes the bio-sensor as an authenticated bio-sensor in
the BAN.

The authentication process of physiological features
can be detailed as Algorithm 1.

Algorithm 1 Authentication algorithm based on physi-
ological features

1: Data: There exist two physiological feature sets F;
and F}, from which the control unit intends to de-
rive the similarity Count of the two physiological
features. We set Count = 0 in the initial state, and
T is the pre-defined threshold. If Count > T', control
unit sets Authsig = true, else sets Authsig = false.

2. fori=0to:=9 do

3. if Distance(F;, Fz) > T; then
4 Count ++, i+ +

5. else

6: 1+ +

7. end if

8: end for

9: if Count > T then

10:  Sets Authsig = true
11: else

12:  Sets Authsig = false
13: end if Outputs Authsig

If Authsig = true, the bio-sensor is an authenticated
node. The control unit selects a random number No, €
Z,, and computes a certificate Cert;, then sends it to the
bio-sensor via secure channel based on the physiological
features.

Certs = Hy(Fs, Noy) 7)

Similarly, the control unit performs the same authen-
tication process for the receiver as described above. The
control unit selects a random number No, and computes
Cert, for the receiver.

Cert, = H1(F,,No,) (8)

The control unit sends Cert, to the receiver and Cert,
to the sender.

Phase 4: Secret Key Generation

The control unit runs SKeyGen algorithm to generate
secret keys for communicating bio-sensors. It takes cer-
tificate Cert,, certificate Certs, public key g; and master
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key go as inputs, and outputs secret key pairs SK, and
SK,. For the sender, the control unit selects a random
number s € Z,, computes SK, and sends it to the sender.

SK, = {SKu, SKoa} = {2 WO gt} ()

For the receiver, it selects a random number r € Z,,
computes SK, and sends it to the receiver.

SKy = {SK1,5K2} = {g2- B, g{}  (10)

It is important to note that secret key pairs SK; can
only be known by the sender and the control unit, and
SK, can only be known by the receiver and the control
unit.

Phase 5: Key Negotiation

This phase is for key negotiation between the sender
and the receiver. The sender and the receiver run
TKeyTran algorithm respectively. They take certificate
Cert of another bio-sensor, and public key ¢; as inputs,
output the intermediate crypto information 75 and T;.
The sender selects a random number z € Z,, computes
T, and sends it to the receiver.

T - {Ts‘lvTS‘Q} - {gw CeTt agf}

Respectively, the receiver selects a random number y €
Zp, computes T and sends it to the sender.

= {T)1, Tra} = {g? ", g%}

Then the communicating bio-sensors run KeyAgree
algorithm to compute K ,. The sender and receiver take
their certificates Cert, and Cert,, secret key pairs SK
and SK,., public key g1, intermediate crypto information
T, and T,., as well as their selected random numbers z, y
as inputs, and output the final session key.

The sender computes:

(11)

(12)

CK, = e(SKy1,Try - Taa)e(SK L - hy Ty - gF 9%
(13)
K. = Hy(Cert,.,Certs, CKs,) (14)
The receiver computes:
CK,s = B(SKM; Tso - Tr2)e(S -h st - y Certr )
(15)
K,s = Hy(Certg, Cert,., CK,) (16)

After above phases, authentication bio-sensors suc-
cessfully negotiate session keys.

6 SECURITY ANALYSIS AND DISCUSSIONS

In this section, we first analyze that PBAKA can resist
threats from active adversaries and passive eavesdrop-
pers. Then, we prove that the negotiated session keys
satisfy key correctness and key unforgeability under
DBDH assumption. Followed by deterministic security
level analysis compared with other two physiological-
feature-based schemes and forward secrecy discussions.

6.1 Resist Threats from Active Adversaries and Pas-
sive Eavesdroppers

We use physiological features in BANs to authenticate
the bio-sensors, and our scheme only allow the authen-
ticated bio-sensors to make secure communication with
each other. As a result, the active adversaries that collect
irrelevant physiological information can be resisted to
access the bio-sensors. Meanwhile, our scheme enables
bio-sensors to negotiate symmetric session keys and
encrypt information under the negotiated session keys
before information is transmitted. Eavesdroppers cannot
gain the session keys to decrypt the encrypted infor-
mation. As a result, our scheme can resist the passive
eavesdroppers.

6.2 Key Correctness

The communicating bio-sensors can negotiate the same

session keys. According to the equation (9) — (12), w
can compute that K, = K,,.
CKST
= e(SKy, Tpo-Ts) e(SKL' - h, Ty - go o)
c . c . .
=e(g2- g7~ gt - gt) elgy 0, gt O - g o)
Cert, - oty
= ( e(ga- 97", g1) (g, g7 ))
_B.s z+y
= ( e(g2, g1) B“’C”ts, q) e(gr 7, gferte ))
= e(g1, 92)
(17)
CK,s
= €e(SKy1, Tay - Tpa) e(SK', T - gf “""™)
c e, -Cert,
=elg2- gy ", gt gY) elgr 7T, gy et gt o)

c Cert, z+y
= (elgz- g7 ™M™ g1) elgr ™", g5))

C A . Tty
= (elg2: 92) elg!™ """ 1) elgr ", g7°7))
):E+y

= e(gla 92

(18)

As detailed above, CK,,. = CK,; = e(g1, g2)*"Y, and
K = K,s = Ha(Certg, Cert,,e(gr, g2)*+Y).

6.3 Key Unforgeability

In this subsection, we prove that no polynomial time
adversary can break the proposed key agreement scheme
under the DBDH assumption.

The security game is played by an adversary and a
challenger in the polynomial time. The challenger makes
responses upon requests from the adversary. After the
game ends, the challenger chooses a random number
b = {0,1}. If b = 0, it outputs the correct session key;
otherwise, it chooses a session key randomly within its
own key space as output. The adversary obtains the
output from the challenger and guesses b’ from {0,1}.
If ¥ = b, the adversary wins the game. Otherwise,
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the adversary loses the game. The guess advantage of
winning the game is Adva,,,,. = |pr[t) = b —1/2] (A
represents the adversary).

If there is a polynomial time adversary .4 has a non-
negligible advantage ¢ = Adv4 to break our scheme,
then we can construct a polynomial time adversary B
that can distinguish a DBDH tuple from a random tuple
at the advantage of € - Con (Con is a constant).

We construct two security games to prove key un-
forgeability. In the first security game, players are the
DBDH challenger and the DBDH adversary 5. In the
second security game, B is played as the challenger, and
A is the adversary who aims to obtain the session keys
in PBAKA by performing Send, Corrupt and Reveal
requirements from the challenger.

Let e : Gy xGo — G be an efficiently computable map,
where Gy has the prime order p with the generator g.
In the first security game, DBDH challenger randomly
selects {a,b,c} € Z,, p € {0,1}, generator g € Gy and
a random element R € G;. The challenger defines T
to be e(g,9)®¢ if p = 0. Otherwise, it sets T = R.
Then, the DBDH challenger gives < g, A, B,C,T >=<
9,9% 9%, g°, T > to B. In the second security game, B is a
simulator that can execute all the algorithms in PBAKA,
and B plays as the challenger with adversary A. We
define [[S;; as a session oracle, i and j represent the
itp, and jy;, bio-sensors respectably. The adversary A can
make the following requirements in two phases.

Phase 1 A can make Send, Corrupt and Reveal re-
quirements from B regardless of order.

e Send(S;j, M) A initiates a session or sends informa-
tion to B. B outputs information m, or outputs a signal
to accept or refuse this session.

o Corrupt(i) A desires to obtain the secret key of i,
node.

e Reveal(S;;) A desires to acquire the session key
through this requirement. If B accepts the session, it
outputs the session key, otherwise, it outputs the end
signal.

Phase 2 A makes the Test(S;;) requirement. B chooses
i = {0, 1} through toss fair agreement, and sends session
keys to A. Finally, A outputs a guess p of p.

In the polynomial time, A can make Corrupt require-
ment from ¢g bio-sensors; A can make Send requirement
for ¢; times; A can make Reveal requirement for ¢, times.
B chooses the random number O in (0,¢2) and stores
it in its own system secretly. We set the [[ Oy be the
challenge oracle in the Test requirement, O means the
Oy, oracle, I and J are the i, and j;; bio-sensors, who
intend to negotiate session keys.

B provides these parameters {e, g1, g2, R} to the ad-
versary A, where g; = g% and g2 = ¢°. A and B play the
security game as follows.

. Corrupt (ID;): B maintains a list
L, = {ID;,r;,Cert;,SK;}, and the initialized state
is {null, null, null, null}. ID; represents the number of
the bio-sensor, r; represents the random number chosen
by the challenge oracle to compute the secret key of

the bio-sensor. If the element (ID;,r;, Cert;, SK;) in the
list L; exists, B outputs r; and SK;; else, B generates
a random number r; and computes the secret key SK;
by running the algorithm SKeyGen, then resets r; and
SK;, updates the list L, outputs r; and SK;.

. Send (S;;,M): B maintains a list
L, = {Sij,r,M,M' K}, its initial state is
{null, null, null, null, null}. S;; is the requesting oracle;
r is the random number to generate the intermediate
crypto information; M is the reception information;
M’ is the generation information computed by the
challenger; K is the negotiated session key.

(1) If M is the security parameter, then S;; is the
sender. We discuss it according to the following 2 cases:

Case 1: S = O. B runs the TKeyTran algorithm
and computes the intermediate crypto information 7,
T, = (Ta,Tw), Tn = C°, T, = C, M' =
(Ti1,Ti2) = (CPt,C), and then updates the list Ly =
{Si;, null, null, M', null}.

Case 2: S # O. B chooses a random number r € Z,,
and runs the TKeyTran algorithm and computes the
intermediate crypto information, then updates list L.

(2) If M is not the security parameter, B deals with
this requirement according to the following 3 cases:

Case 1: There is no element record (S;;,r, M, M', K) in
list Ly. B sets .S;; as the session receiver, and chooses the
random number r, then computes the value of M’ K,
and updates list Lo.

Case 2: There exists an element record
(Sij,rynull, M',null). S;; is the session sender. B
computes M’ and K by running the algorithms
TKeyTran and KeyAgree, and updates the list Lo
(Si]‘,’/‘,M,M/,K).

Case 3: There exists an element record
{Si;, null, null, M’ , null}. S;; is the member of Test
assumption, that means S = O. If M = (g"‘f'cert",g?),
then the challenger chooses a number z randomly from
{0,1}.

If z = 0, B computes e(g1,92)Y, sets SK = R -
e(g1, g2)¥, and updates the list L, with an element record
{Sij,null, M, M’ ,SK}.

If z = 1, B chooses a random session key in space
{0,1}* as the negotiated session key K, and updates the
list L, with an element record {S;;, null, M, M’ K}.

e Reveal (5;;): If S;; is the assuming Test session, i.e.,
S = O, B ends this game (E1); else, B searches from the
list Ly and returns the value of K.

o Test (5;;): After the first phase ends, .A makes a Test
requirement. If S # O, B ends the game (E2); otherwise,
B searches from the list Ly, and returns the relative K
to A.

Once A finishes the requirements, A outputs a guess
z' of z as the guess to the session key; B receives 2/,
and takes it as the guess of p in the first DBDH security
game.

Analysis:

if R=e(g,9)"

19
= e(91,92)¢ 19
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then K = R-e(g1,92)" = e(g1,92)""° (20)
K is the session key computed by the oracle.
If A has a non-negligible guess advantage

AdvAgame) to win the game, A can guess right
about z and learn whether the session key is correct or
not from the output of B in Test phase. Then the B can
guess right about x and know if R = e(g, g)**° or not.

If none of E1 and E2 happens, B continues the game,
and the game is indistinguishable to the real world.
If adversary A can obtain the session key successfully,
B can also solve the DBDH problem. We compute the
probability:

Pr(B,]) = PrlIEINE2N A,
= Pr[E1]- Pr[E2| - Pr[A,)]
=(a2—1)/q2- (1/q2) - Pr[Ay]
=c (—1)/¢

Since DBDH assumption holds in polynomial time, the
key agreement scheme is provably secure.

21

6.4 Key Reliability

Our scheme is reliable due to the fixed size of the
negotiated session keys. PSKA [28] and OPFKA [29] use
fuzzy vault [47] to hide physiological features among a
much larger vault size of physiological features. As a
result, the adversary can hardly identify the authentic
physiological features from a combination of authentic
and inauthentic features, and the key length is higher
when the feature size increases, but the authentication
rate decreases. The negotiated key size of our scheme
depends on the computational hardness of the hash
function. We illustrate the security comparison between
PBAKA, PSKA and OPFKA as seen in Fig. 2, it is obvi-
ously observed that the key bits of PSKA and OPFKA
increase along with feature size, while the key bits of
PBAKA is unrelated with the feature size.

130 T T T T

120

110

100

Security Level (bits)

70 OPFKA —@— |
: : PSKA —©—
PBAKA
.

50 I I I I
25 50 75 100 125 150

Feature Size

Fig. 2: Security Level of PBAKA, PSKA and OPFKA

6.5 Forward Secrecy

Our scheme can achieve forward secrecy. We introduce
the control unit to distribute secret keys generated from

system master key to bio-sensors. Session keys negoti-
ated in our scheme rely on the physiological features
and the random numbers selected by bio-sensors. If the
system master key and secret keys of the bio-sensors are
disclosed, session keys in the previous communication
between bio-sensors cannot be deduced. The session
keys negotiated in our scheme are unique since they
depend on random numbers selected by communicat-
ing bio-sensors. In other physiological-feature-based key
agreement schemes, since session keys only rely on
physiological features, non-communicating bio-sensors
that collect the same kind of physiological information as
communicating bio-sensors can also compute the session
key.

From the above security analysis, our scheme can
provide authenticated access and keep communicating
information confidential based on physiological features.
The session keys negotiated based on bilinear parings
are proved to be secure under the DBDH assumption,
and they can provide deterministic security level and
forward secrecy for BANs communication.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PBAKA
in terms of recognition rate, storage cost, computation
cost, communication cost and energy cost.

7.1 Recognition rate

We take the ECG signals as the example to show
the performance of authentication. ECG signals
can be downloaded from PhysioBANK database

(https:/ /physionet.org/physioBANk/database/).
Firstly, fiducial points can be detected as: R peaks,
T peaks, P peaks, LP valleys, TP valleys, and QRS
complex of ECG records by using the technology [48],
then ECG features are extracted as ten vectors by using
the technology presented in [49] for mobile sensors.
These features are for further authentication process.
The physiological feature generation process is shown
as Fig. 3.

Recognition rate can be denoted by TAR and FAR,
TAR represents the probability that the valid bio-sensors
are authenticated successfully, and FAR represents the
probability that the bio-sensors not belong to the BANs
are authenticated as the valid bio-sensors. The authen-
tication accuracy is higher when TAR is higher and
the FAR is lower reversely. The recognition rate can be
84.93% TAR and 1.29% FAR by using the hierarchical
authentication algorithm [49] and Polynomial Distance
Measurement (PDM) [59].

7.2 Storage cost

The communicating bio-sensors are only required to
store their own unique IDs, physiological features (Fj
and F;), secret keys (SK, and SK,), their selected ran-
dom numbers (r and s), and their intermediate crypto
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transaction information (75 and 7)) for key agreement
scheme. In PBAKA, ID; and ID, take 16 bytes each,
the feature points are 2.5 bytes each, the feature length
varies from 20 to 100, the random numbers r and s are
2 bytes each, Sk, Sk, Ts and T are 20 bytes. Thus,
the total storage cost is as follows. Fig. 4 illustrates
the comparison of storage cost between OPFKA and
our scheme. We can demonstrate that the storage cost
increases linearly with the feature size in both of these
two schemes, and PBAKA consumes less storage cost
than OPFKA [29] on bio-sensors.

ID;+ID, + F,+F, +SK,+SK, +r+s+T1s + T,
(22)
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Fig. 4: Storage Cost of OPFKA and PBAKA

7.3 Computation cost

We evaluate our scheme based on TinyPBC [51] on
the platform of 4KB RAM, 128KB ROM, and 7.3828-
MHz 8-bit ATmegal28L micro-controller, which is one
kind of most resource-limited sensors. The main op-
eration is on the nr paring using binary fields (Fam)

on elliptic curve y* + y = 2® + z. Our scheme takes
12.67s, and costs 0.8KB RAM usage to negotiate session
keys. On the same evaluation platform, we can vali-
date that our scheme can achieve secure key agreement
with acceptable cost when compared with several ex-
isting solutions. The implementation in [52] costs 22s
for key agreement, which is nearly twice as much as
our time usage and demonstrates the efficiency of our
scheme. Compare with the key establishment algorithm
in [53], which consumes 4s and 1.7KB RAM usage,
our scheme requires more computation time. However,
we integrate field element and point compression [55]
to significantly save 0.9KB RAM storage, which can
be used to perform physiological feature sensing and
analysis. Meanwhile, our scheme can provide stronger
security than [53] by providing key unforgeability and
forward secrecy according to the security analysis in
Section 6 of the revised manuscript. Generally, biometric
sensors equip with stronger ability than the ATmega128L
micro-controller, and are expected to demonstrate better
performance. For example, Samsung Bio-Processor [54]
that can measure PPG and ECG biometrics, is designed
with the 256KB RAM, 512KB flash and 168-MHz 32-bit
Cortex-M4 controller. On this modern biometric sensor,
our scheme is evaluated to consume less than 0.05s,
which offers a great performance improvement to realize
efficient key agreement on biometric sensors.

7.4 Communication cost

The communication cost can be divided into two parts:
communication cost between bio-sensors and the control
unit, and communication cost between two communicat-
ing bio-sensors. In the authentication process, the bio-
sensor sends its ID, and F, to the control unit, the
control unit compares F, with its stored physiological
information to confirm sender’s identity, and sends a
secret key SK, to the sender. The receiver performs
the same authentication process. In the key negotiation
process between two communicating bio-sensors, the
communication cost is 75 and 7. Fig. 5 shows the
relation between the communication cost and the feature
size. We observe that the communication cost increases
along with the feature size, and our scheme is more
efficient than OPFKA [29].

ID,+ID, + Fs+ F, + SK, + SK, + T, + T, (23)

7.5 Energy consumption

The energy consumption of bio-sensors in our scheme
consists of energy consumption in computation part and
communication part.

For energy consumption in computation part, as pre-
sented in [56], one time of bilinear paring operation con-
sumes approximately 25.5m]. Compared with bilinear
paring operation, the total energy consumption of ex-
ponentiation operation and multiplication operation on
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Fig. 5: Communication Cost of OPFKA and PBAKA

groups approximate to 1/5 times of energy consumption
of bilinear paring operation. In our scheme, bio-sensors
process operation on groups for 4 times. For the sake of
simplicity, we use 25.5 x (1 4+ 1/5 x 4) = 45.9m.J as the
energy consumption in computation part.

For energy consumption in communication part, as
presented in [57], a Chipcon CC1000 radio used in Cross-
bow MICA2DOT motes consumes 28.6u.J and 59.2uJ to
receive and transmit one byte, respectively. Bio-sensors
send their ID, physiological feature to control unit, and
send their intermediate crypto transaction information
to communicating bio-sensors. Respectively, bio-sensors
receive their secret keys from the control unit, and
receive the intermediate crypto transaction information
from communicating bio-sensors. The energy consump-
tion on transmitting and receiving the message equals to
(16 + 2.5|F| 4 21) x 59.211.] + (160 + 160)/8 x 28.6y.] =
(3.2 4 0.148|F|)ym.J.

Thus, the total energy consumption in PBAKA equals
to (49.1 4+ 0.148|F|)mJ. For OPFKA [29], the energy
consumption equals to (9.9 + 4.2|F|)mJ (|F'| means the
feature size). Fig. 6 shows the relation between the
energy consumption and the feature size. We can observe
that our scheme consumes less energy in bio-sensors
than OPFKA [29].
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Fig. 6: Energy consumption of OPFKA and PBAKA
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8 CONCLUSION

In this paper, we have proposed a secure authenti-
cated key agreement scheme PBAKA for bio-sensors
in BANs. Our scheme can obtain an authenticated key
agreement without key pre-deployment, and is flexible
for bio-sensors that collect different kinds of physiologi-
cal features with deterministic security level. Moreover,
PBAKA is computationally efficient for bio-sensors by
offloading the authentication burden to the control unit,
and is provably secure under the DBDH assumption. In
our future work, we will extend our research to negotiate
session keys among a group of bio-sensors that collect
non-unique physiological signals based on accelerator.
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