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a b s t r a c t 

Ciphertext-policy attribute-based encryption (CP-ABE) is a promising approach to achieve fine-grained 

access control over the outsourced data in Internet of Things (IoT). However, in the existing CP-ABE 

schemes, the access policy is either appended to the ciphertext explicitly or only partially hidden against 

public visibility, which results in privacy leakage of the underlying ciphertext and potential recipients. In 

this paper, we propose a fine-grained data access control scheme supporting expressive access policy with 

fully attribute hidden for cloud-based IoT. Specifically, the attribute information is fully hidden in access 

policy by using randomizable technique, and a fuzzy attribute positioning mechanism based on garbled 

Bloom filter is developed to help the authorized recipients locate their attributes efficiently and decrypt 

the ciphertext successfully. Security analysis and performance evaluation demonstrate that the proposed 

scheme achieves effective policy privacy preservation with low storage and computation overhead. As a 

result, no valuable attribute information in the access policy will be disclosed to the unauthorized recip- 

ients. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Internet of Things (IoT) is the network of physical “things”,

uch as smart phones, sensors, and wearable devices, that enables

hese things to connect and exchange data, creating opportunities

o improve our daily lives in different domains including electronic

ealthcare, smart home and transportation [1–3] . Almost 50 bil-

ion IoT devices will be connected together by 2020 [4] , and they

ill continuously produce large amounts of data which should be

tored and processed in a well-organized way. In such situation,

he traditional local data management is not scalable for large data

olume [5] . The cloud computing technology, which provides plen-

iful storage and computation resources, has been widely used to

aintain and manage these IoT-driven data [6,7] . 

However, the data owners lose the physical control over their

ata after outsourcing them to the cloud [8] . The frequent data

eakage incidents [9–11] undermine trust in the cloud service

rovider, which make data privacy and security be a serious con-
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ern for data owners [12,13] . Although traditional encryption tech-

ology can be used to protect data confidentiality, it is relatively

nefficient to serve the needs of flexible data sharing. Thus, the

ovel attribute-based encryption (ABE) [14] is applied to achieve

ne-grained access control and preserve data confidentiality simul-

aneously. Especially, ciphertext-policy attribute-based encryption 

CP-ABE) [15] enables the data owners to encrypt their data un-

er specified access policy over a set of attributes, and the data

ecipients are allowed to decrypt the ciphertext only if their at-

ributes satisfy the access policy associated with the ciphertext.

owever, in the conventional CP-ABE schemes [15,16] , the access

olicy is explicitly appended to the data ciphertext, thus anyone

ho obtains the ciphertext, including the cloud service provider,

ay be able to infer some secret information about the data con-

ent or the privileged data recipients from the policy. For ex-

mple, to share the medical records with the doctors or nurses

n the Cardiology Department of Hospital A or B , a patient en-

rypts them under the access policy {[ Occupation : (“Doctor ” OR

Nurse ”)] AND [ Department : (“Cardiology ”)] AND [ Hospital : (“A ”

R “B ”)]}, and uploads the encrypted data including the policy ex-

licitly to the cloud server. In such situation, anyone who obtains

he ciphertext infers that the data owner may suffer from a heart

roblem, although they do not obtain the plaintext. Even worse,
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the cloud service provider may conclude that the users who re-

quest these data regularly are working at the Cardiology Depart-

ment of Hospital A or B . Obviously, such information disclosures

are not expected by both the data owners and recipients, which

makes it necessary to preserve the privacy of access policy in

certain applications, just like this sensitive electronic healthcare

system. 

To solve the privacy leakage problem caused by the public ac-

cess policy, a direct solution is to hide the attribute information

in the policy. However, the simple approach makes the decryption

infeasible for the authorized recipients, since they do not know

which attributes should be used for decryption. Some proposed

schemes [17–22] consider a trade-off between the policy privacy

and the feasibility, in which the attribute is split into two parts:

name and value. Instead of hiding the whole attribute, only the

attribute value is concealed in the access policy. Though these

schemes can protect the policy privacy to some extent, the at-

tribute name itself could still reveal some valuable information. On

the other hand, inner-product predicate encryption (IPE) [23] can

be applied to construct a CP-ABE scheme with fully hidden policy,

but the blow up in size caused by the access structure transforma-

tion makes it extremely inefficient [21] . 

Recently, Yang et al. [24] put forward an innovative idea of re-

moving the attribute mapping function ρ from the access policy

( M, ρ), which is in the form of linear secret sharing scheme (LSSS).

Without sending ρ directly, they utilize a Bloom filter structure

[25,26] to help the recipients to locate their attributes to the access

matrix M precisely. However, their scheme is not secure against the

dictionary attacks, which means anyone can query any attribute

from the Bloom filter to confirm whether it is in the access pol-

icy, and further recover the whole access policy through multiple

trials. 

In this paper, we handle the above issue of policy privacy

preservation by hiding the whole attribute. Based on the obser-

vation in [24] , since the attribute mapping function ρ reveals

the relationship between the row and attribute in the expres-

sive LSSS-based access policy ( M, ρ), removing it can effectively

hide the attribute information. However, how to recover the re-

lationship between their attributes and the access matrix M for

the authorized recipients, while resisting dictionary attacks, is

a challenging problem. In our scheme, we propose a fuzzy at-

tribute positioning mechanism based on garbled Bloom filter to

help the recipients query the row numbers for their attributes, in

which only authorized recipients are allowed to verify the valid-

ity of the results through successful decryption, while for unau-

thorized recipients no valuable attribute privacy can be compro-

mised. Thus, we can realize fine-grained data access control on the

outsourced data, and protect both data confidentiality and policy

privacy. 

Our contributions are summarized as follows. 

1. We propose a fine-grained attribute-based data access control

scheme with attribute-hiding policy for cloud-based IoT. Differ-

ent from existing schemes, our scheme supports expressive ac-

cess policy and the attribute information is fully hidden. 

2. We design a fuzzy attribute positioning mechanism based on

garbled Bloom filter to assist the authorized recipients to lo-

cate the attributes effectively and decrypt the ciphertext suc-

cessfully, and prevent the unauthorized recipients deducing any

valuable attribute information from the ciphertext. 

3. We analyze the security and efficiency of our proposed scheme,

and the further simulations demonstrate that the scheme can

achieve effective policy privacy preservation with low storage

and computation overhead. 

The remainder of this paper is organized as follows. We first in-

troduce some related work in Section 2 and review several prelim-
nary concepts in Section 3 . The system model, security model and

esign goals are presented in Section 4 , followed by the detailed

onstruction of our proposed scheme in Section 5 . Finally, we an-

lyze the security and evaluate the performance in Section 6 and

ive the conclusion in Section 7 . 

. Related work 

The notion of attribute-based encryption (ABE) was first intro-

uced by Sahai and Waters [14] , which later develops into two

orms: ciphertext-policy ABE (CP-ABE) [15] and key-policy ABE

KP-ABE) [27] . Since CP-ABE enables the data owners to specify

ne-grained access policy for their data, it soon became popular

n the outsourced data access control systems. In a CP-ABE system,

he data owners encrypt the data under the access policy on the

ystem attribute universe, and the data recipients request the se-

ret key associated with their attributes from the attribute author-

ty. If and only if the access policy of the ciphertext is satisfied by

he recipient’s attribute set, can it be decrypted successfully. Gen-

rally, according to the expression form, the access policy is di-

ided into three categories: AND-based [17] , tree-based [27] and

SSS-based [15] . The AND-based policy is limited in expressive-

ess and the tree-based policy is a more expressive one that sup-

orts the gates of AND, OR , and m of n threshold. In addition, an

SSS-based access policy is often considered as the most expres-

ive representation, since any monotonic boolean formula can be

onverted into this type [15] . 

Currently, many ABE schemes with some new promising func-

ionalities which make them more practical have been proposed,

uch as revocable ABE [28] , lightweight ABE [29] , outsourcing ABE

30] and large universe ABE [16] . However, most of the schemes

xpose the access policy in clear text, which may incur privacy

eakage, thus the research on anonymity of ABE is also necessary.

n an anonymous ABE, the access policy is hidden such that the

nauthorized recipients cannot presume what access policy is for-

ulated by the data owners. The concept of partially hidden access

olicy was introduced into ABE by Nishide et al. [17] to achieve

nonymity, in which the attribute is split into an attribute name

nd multiple attribute values, and only the attribute values are

oncealed. Based on the scheme in [17] , some works [18–20] im-

roved the construction in terms of efficiency and security, but

hey are still restricted with the less expressive AND-based ac-

ess policy. Later, Lai et al. [21] put forward an anonymous CP-ABE

cheme in the composite order groups, which partially hides the

SSS-based access policy. With the same form of the access policy,

ui et al. [22,31] proposed a more efficient scheme in the prime or-

er groups on the basis of the large universe construction in [16] ,

here opportunistic decryption tests are required for the autho-

ized recipients. It might also be noted that all the above schemes

ocus on the partially hidden access policy, but the public attribute

ames may also lead to the issue of privacy leakage. Some other

chemes [23,32] based on the inner-product predicate encryption

nd hidden vector encryption are proposed to protect the policy

rivacy, but the efficiency and expressiveness are restricted. Table 1

hows the comparisons of some existing schemes in CP-ABE to pre-

erve the policy privacy. 

Recently, Yang et al. [24] proposed a creative scheme to fully

ide the attribute information by removing the attribute mapping

unction ρ from the access policy, but their scheme is vulnerable

gainst the dictionary attacks. In their scheme, anyone is allowed

o query any attribute from the attribute Bloom filter to reveal

hether it is in the access matrix and further recover the whole

ccess policy through multiple tests. To resist this dictionary at-

ack, we design a fuzzy attribute positioning mechanism, in which

nly authorized recipients can obtain the attribute information by

uccessful decryption. 
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Table 1 

Comparisons of CP-ABE schemes with policy hidden. 

Schemes Policy hidden Access policy Group order Decryption test 

Basic CP-ABE [15] no LSSS prime N/A 

Nishide et al. [17] yes (disclosed attribute name) AND gates with multi-values prime deterministic a 

Li et al. [18] yes (disclosed attribute name) AND gates with multi-values prime deterministic 

Lai et al. [19] yes (disclosed attribute name) AND gates with multi-values composite deterministic 

Zhang et al. [20] yes (disclosed attribute name) AND gates with multi-values prime deterministic 

Lai et al. [21] yes (disclosed attribute name) LSSS with multi-values composite opportunistic b 

Cui et al. [22] yes (disclosed attribute name) LSSS with multi-values prime opportunistic 

Michalevsky et al. [23] yes (whole policy hidden) Inner product predicates prime opportunistic 

Khan et al. [32] yes (whole policy hidden) LSSS with hidden vectors prime opportunistic 

Yang et al. [24] no LSSS prime N/A 

Ours yes (whole attribute hidden) LSSS prime opportunistic 

a “deterministic” means that the number of decryption test is fixed, usually is one. 
b “opportunistic” means that multiple tests may be required before finding the attributes for successful decryption. 
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. Preliminaries 

In this section, we review some technical preliminaries related

o our work. 

.1. Access structure 

efinition 1 (Access Structure [16] ) . An access structure on an at-

ribute universe U is a collection A of non-empty sets of attributes.

he sets in A are called the authorized sets. In addition, an access

tructure which satisfies the following requirement is called mono-

one: if B ∈ A and B ⊆C, then C ∈ A . 

In the CP-ABE scheme, only the user who has an authorized

ttribute set is allowed to decrypt the ciphertext. In this paper, we

nly consider the monotone access structure, and the concept of

ccess structure is also referred to as access policy in our context. 

.2. Linear secret sharing scheme 

We apply the linear secret sharing scheme to represent the ac-

ess policy in our scheme. 

efinition 2 (LSSS [16] ) . Let p be a prime. A linear secret sharing

cheme 
∏ 

with a secret in Z p according to the access policy over

n attribute universe U is called linear if: 

1. The shares of a secret s ∈ Z p assigned to each attribute consti-

tute a vector over Z p . 

2. For an access policy over U , there exist an l × n share-generating

matrix, and an attribute mapping function ρ labeling each row

in M with an attribute in U , which satisfy that: 

With a column vector � z = (s, z 2 , z 3 , . . . , z n ) , where z 2 , z 3 , . . . , z n 
are random values in Z p , M 

�
 z is the vector formed by the l shares

of the secret s based on 

∏ 

, and (M 

�
 z ) j is the share assigned to

the attribute ρ( j ). The pair of ( M, ρ) is referred to as access

policy. 

The linear secret sharing scheme satisfies reconstruction and

ecurity requirements. Specifically, if S is an authorized set for

he policy ( M, ρ), there exist constants { ω i ∈ Z p } i ∈ I such that
 

i ∈ I (ω i M i ) = (1 , 0 , . . . , 0) , where I denotes the set of rows for

hich the corresponding attributes belong to S , i.e. I = { i | ρ(i ) ∈
 ∩ i ∈ [ l] } 1 Obviously, the secret s can be recovered through
 

i ∈ I (ω i λi ) = s . However, no such constant exists for any unautho-

ized set. 
1 For simplicity, in our context we define [ n ] 
de f . = { 1 , 2 , . . . , n } for n ∈ N . 

 

 

 

.3. Bloom filter 

Bloom filter [25] is a space-efficient data structure for proba-

ilistic set membership querying. A Bloom filter includes an m -bit

rray to encode a set A including at most n elements, and a set of

ndependent hash functions H , where each h i ∈ H maps an element

o a position index in [ m ] uniformly. In general, (m, n, k, H) − BF 

s used to represent a Bloom filter with parameters ( m, n, k, H ),

F A denotes a Bloom filter encoding the set A , and BF A [ i ] denotes

he value in the i th position of BF A . 

At first, each bit in the array is 0. To add an element x ∈ A to

he filter, x is hashed by k hash functions respectively to generate k

osition indexes. Then, for each i ∈ [ k ], set BF A [ h i (x )] = 1 . To query

hether an element y belongs to the set A, y is also hashed by the

ash functions, and if there exists BF A [ h j (y )] = 0 , then y �∈ A . Oth-

rwise, y ∈ A with a high probability. A false positive exists in the

loom filter, which means it is possible that y �∈ A but all BF A [ h j ( y )]

qual to 1. Given the size of A , the probability of false positive can

e adequately small by selecting m and k optimally. 

The garbled Bloom filter is proposed by Dong et al. [26] to deal

ith the issue of private set intersection. Instead of using an array

f bits, an array of η-bit strings is applied in the garbled Bloom

lter. To add an element x ∈ A to the filter, it is split into k shares

hich will be stored at the positions { h i ( x )} i ∈ [ k ] . To query an ele-

ent y , if the value recovered from the shares of the k positions

 h i ( y )} i ∈ [ k ] is equal to y , then y ∈ A , otherwise y is not in A . 

. System model and design goals 

.1. System model 

Four entities are included in our system, namely data owners,

ata recipients, attribute authority and cloud server, as shown in

ig. 1 . 

• Data owners To save the local storage and computing cost, the

data owners would like to outsource the data generated by the

IoT devices to the cloud. Meanwhile, fine-grained access control

over the outsourced data is desired by the owners, thus they

will use the CP-ABE scheme to encrypt the data before upload-

ing them to the cloud. 

• Data recipients The data recipients originate data requests to

the cloud server and receive the ciphertext. Only authorized

recipients possessing attributes that satisfy the access policy

of the data, can decrypt the ciphertext successfully. While for

unauthorized recipients, they can neither recover the plaintext,

nor guess the attributes involved in the access policy. 

• Attribute authority The attribute authority manages the sys-

tem attribute universe and distributes the attributes and corre-

sponding private keys to the recipients according to their roles



4 J. Hao, C. Huang and J. Ni et al. / Computer Networks 153 (2019) 1–10 

Fig. 1. System model. 
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or credentials. In addition, the system public key is also gener-

ated and published by the attribute authority. 

• Cloud server The cloud server is considered to have powerful

storage and computing resources and is always online to pro-

vide services. It helps the data owners store and process their

data, responses the requests from the recipients, and distributes

the corresponding data to them. Note that, in our system, the

data access control is embedded into the decryption, but not

implemented by the cloud server. 

4.2. Security model 

In our system, the attribute authority is regarded as a entirely

credible party and the data owners are honest as well. Since the

cloud server is in different trust domain with the data owners, it

is assumed to be semi-honest, which means it is interested in the

data privacy and is not reliable to make the access decisions of

the data, but will execute the operations requested by the system

users faithfully. The recipients are divided into two kinds: autho-

rized and unauthorized. The authorized recipients are allowed to

obtain the data content, and we assume that they will not leak the

data information actively. The unauthorized recipients are the po-

tential attackers of the system. They may collude with each other

to attempt to decrypt the ciphertext which cannot be accessed in-

dividually, also they are interested in the policy privacy of the ci-

phertext. 

Note that, the dictionary attack is considered in our scheme,

which means the attribute universe is public, such that the unau-

thorized recipients, even the cloud server, may conspire to com-

promise the hidden attribute information of the access policy by

testing all the system attributes. 

4.3. Design goals 

Considering the requirement mentioned in the system and se-

curity model, our goal is to design a fine-grained and privacy pre-

serving data access control scheme supporting expressive access

policy with fully hidden attributes. Concretely, the following goals

should be fulfilled. 

• Fine-grained access control. The recipients whose attributes sat-

isfy the access policy can decrypt the ciphertext to obtain the

data content, while those unauthorized recipients cannot even

through colluding. 

• Privacy preservation of expressive policy. The expressive LSSS-

based access policy should be supported. Meanwhile, the unau-

thorized recipients, include the cloud server, cannot compro-

mise the attribute privacy of the access policy. 

• Practical implementation. The underlying system operations,

such as encryption and decryption, should be completed by the
corresponding entities effectively and efficiently. 
. Our proposed scheme 

In this section, we first give an overview of the proposed

cheme, and then describe the construction in detail of four

hases: 1) system setup; 2) key generation; 3) data encryption,

nd 4) data decryption. Our construction is on the basis of the CP-

BE scheme in [15] , and the idea of the attribute-hiding policy can

lso be used in other ABE schemes with LSSS-based access policy.

able 2 presents some notations used in our scheme. 

.1. Scheme overview 

We propose a fine-grained and privacy preserving data access

ontrol scheme supporting expressive access policy with fully hid-

en attributes for cloud-based IoT. In our scheme, we apply the ba-

ic CP-ABE primitive to achieve flexible access control, and remove

he attribute mapping function ρ from the access policy ( M, ρ) to

ide the attribute information. To help the authorized recipients

ocate their attributes to the access matrix, a fuzzy attribute posi-

ioning mechanism is designed based on a modified garbled Bloom

lter, which is referred to as attribute Bloom filter in our context. 

As shown in Table 3 , to add an attribute att x to the original

arbled Bloom filter [26] , the value att x itself is inserted. While

n [24] , a unique value rownum x || att x associated with the attribute

tt x is inserted, where rownum x is used to help the recipients to

recisely recover the corresponding row number in the access ma-

rix M of attribute att x . However, since the attribute universe U

ay be public, anyone including the cloud server can launch the

ictionary attack, which means they are able to query any attribute

rom the filter to make sure whether it is in the access policy, thus

he attribute privacy is still revealed. Different from their schemes,

o add an attribute to the filter, a unique value binding with the

orresponding row number is inserted in our scheme. When the

ecipients look up the filter, a correct row number can be recov-

red for those attributes belonging to the policy, but a random

ow number for others. In addition, only authorized recipients can

erify the validity of the row numbers for the attributes through

uccessful decryption, thus the attribute privacy can be preserved

ffectively. 

Generally, the following four algorithms are included in our

cheme. 

• Setup ( U ) → ( PK, MSK ) This algorithm takes as input the at-

tribute universe U , and outputs the public key PK and the sys-

tem master secret key MSK . 

• KeyGen ( PK, MSK, S ) → SK S This algorithm takes as input PK, MSK

and a attribute set S , and generates the secret key SK S associ-

ated with S . 

• Encrypt ( PK, msg , ( M, ρ)) → CT This algorithm takes as input

PK , a message msg and an access policy ( M, ρ), and outputs

the ciphertext CT , where only M is included in the ciphertext.

More specifically, two functions are included in the Encrypt al-

gorithm: CTGen and ABFBuild . 

– CTGen : This function encrypts the data under the access pol-

icy, which can be seen as the encryption algorithm in the

basic CP-ABE scheme. 

– ABFBuild : This function constructs an attribute Bloom filter

to hide the attribute information from the access policy. 

• Decrypt ( CT, SK S ) → msg / ⊥ This algorithm takes as input the ci-

phertext CT and SK S associated with S , and returns the message

msg if the attribute set S satisfies the access policy embedded

in CT . Otherwise, it returns ⊥ with a overwhelming probability.

It contains three functions: ABFQuery, MapRecover and DecTest . 

– ABFQuery : This function is used to query a row number from

the attribute Bloom filter for each attribute in the recipient’s

attribute set. 
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Table 2 

Notations used in our scheme. 

Notations Descriptions 

PK, MSK system public key and master secret key 

U = { at t 1 , . . . , at t | U| } system attribute universe 

h att x public key components for attribute att x in U 

S = { at t ∗
j 
} attribute set of the data recipient, S ⊂ U 

SK S secret key associated with attribute set S 

M an l × n matrix in the access policy 

ρ an attribute mapping function in the access policy 

msg data file to be uploaded 

CT final ciphertext uploaded to the cloud 

( m, n, k, H, η)- T attribute Bloom filter T with parameters ( m, n, k, H, η) 

� a mapping function from attribute set S to a set of rows J ⊆[ l ] 

M J a submatrix of M including the rows belonging to J 

I a set of minimum subsets of J such that for each I ∈ I there exists 
∑ 

i ∈ I w i M i = (1 , 0 , . . . , 0) 

Table 3 

Comparisons of value inserting. 

Schemes Added attribute Inserted value 

Dong et al. [26] att x att x 
Yang et al. [24] att x rownum x || att x 
Ours att x ξ l + rownum x 
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– MapRecover : This function helps to recover a set of the pos-

sible attribute mapping functions. 

– DecTest : This function is designed to test whether the De-

crypt algorithm is successful, and returns the final result. 

.2. Scheme description 

.2.1. System setup 

The attribute authority first executes the Setup algorithm with

he input of the attribute universe U = { at t 1 , . . . , at t | U| } . Let G

nd G T be multiplicative cyclic groups of prime order p, g be a

enerator of G , and e : G × G → G T be a bilinear map. The at-

ribute authority randomly chooses α, β ∈ Z ∗p and group elements

 att 1 , . . . , h att | U| ∈ G for all the attributes in U . The public key PK is

ublished as 

 K = 〈 e (g, g) α, g, g β, h att 1 , . . . , h att | U| 〉 
The attribute authority sets MSK = g α as the system master se-

ret key. 

.2.2. Key generation 

When the data recipient joins the system, the authority will as-

ign an attribute set S ⊂ U to him according to his roles or creden-

ials, and run the KenGen algorithm to generate the corresponding

ecret keys. 

• KeyGen ( PK, MSK, S ) → SK S 

This algorithm takes as input PK, MSK and an attribute set S . It

hooses a random number t ∈ Z ∗p , and computes 

 = g αg βt , D 

′ = g t , ∀ att x ∈ S D att x = h 

t 
att x 

Finally, the secret key is distributed to the recipient as 

K S = 〈 S, D, D 

′ , { D att x } att x ∈ S 〉 
.2.3. Data encryption 

To achieve data confidentiality and fine-grained access con-

rol simultaneously, the data owner first specifies an access pol-

cy ( M, ρ) over U for the data msg . Then, it executes the

ncrypt(P K, msg , (M, ρ)) algorithm to produce the ciphertext CT

hich will be uploaded to the cloud server. 
The Encrypt algorithm in our scheme includes two functions:

TGen and ABFBuild . The function CTGen is used to produce the

eal ciphertext components and the function ABFBuild is designed

o help the recipients locate their attributes to the access matrix M .

ote that the second one is indispensable since the attribute map-

ing function ρ is removed from the final ciphertext CT to prevent

he disclosure of attribute privacy in the access policy. 

1. CT Gen (P K, msg , (M, ρ)) → CT 0 

The function takes as input the public key PK , the data msg and

he access policy ( M, ρ), where M is an l × n access matrix and ρ is

n injective function that maps each row in M to a unique attribute

n U . It first selects random numbers s, z 2 , . . . , z n ∈ Z p , and con-

tructs a vector � z = (s, z 2 , . . . , z n ) . It calculates λi = M i · � z for each

 ∈ [ l ], where M i means the i th row of M . Here λi can be seen as

he secret share that is assigned to the attribute ρ( i ). Then the ci-

hertext CT 0 is produced as 

T 0 = 〈 C = msg · e (g, g) αs , C 0 = g s , { C i = g aλi h 

−s 
ρ(i ) 

} i ∈ [ l] 〉 
emarks. In order to allow the recipient to test whether the

ecryption succeeds, we can adopt the technique introduced in

33] , in which two independent and uniform δ-bit symmetric keys

 key 1 , key 2 ) are generated from a randomly selected value key ∈ G T .

hen key is encrypted by running CT Gen (P K, key , (M, ρ)) = CT 0 . In

ddition, the data msg is encrypted under key 1 with the symmet-

ic encryption SE key 1 
( msg ) . Finally, the ciphertext is in the form

 T ′ = (C T 0 , key 2 , SE key 1 
( msg )) . After decrypting key from CT 0 , the

ecipient first uses key 2 in CT ′ to verify whether key is decrypted

uccessfully, where the false positive probability (approximately

/2 δ) can be ignored with a long enough δ. If successful, the recip-

ent can decrypt msg from the symmetric ciphertext SE key 1 
( msg )

hrough key 1 derived from key . 

2. ABFBuild ( M, ρ) → T 

he function first defines the parameters ( m, n, k, H, η) of the at-

ribute Bloom filter T , where m means the size of the filter, n is

he number of attributes to be added, k means the number of the

ash functions in H , and η represents the bit length of the inserted

alue. In our scheme, n is set as the number of rows in M , which

lso means the number of attributes in the policy. Then, m and k

an be selected optimally according to n, η should be longer than

he bit length of l , and H = { h j } j∈ [ k ] are k independent hash func-

ions that hash each attribute to [ m ] uniformly. 

To add an attribute ρ( i ) to the filter, a unique value v i = ξi l + i

inding with the row number i will be inserted, where ξ i is a

andom number and v i < 2 η . More specifically, v i is split into k

hares { r j 
i 
} j∈ [ k ] with the ( k, k ) secret sharing scheme based on XOR

perations [34] , and the share r 
j 
i 

is put at the position h j ( ρ( i )).
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Fig. 2. Example of inserting values into the attribute Bloom filter. 

Function 1 ABFBuild. 

Input: (M, ρ) 

Output: (m, n, k, H, η) - T 

1: n = l, Select m, k, H, η optimally 

2: T = new m -element array of η-bit strings 

3: for i = 1 to m do 

4: T [ i ] = null 

5: end for 

6: for i = 1 to l do 

7: Select a random number ξi , such that ξi l + i < 2 η

8: EmptyPos = 0 , F inalShare = ξi l + i 

9: for j = 1 to k do 

10: pos = h j (ρ(i )) 

11: if T [ pos ] == null then 

12: if EmptyPos == 0 then 

13: EmptyPos = pos 

14: else 

15: Select a random number v from { 0 , 1 } η
16: T [ pos ] = v 
17: F inalShare = F inalShare � T [ pos ] 

18: end if 

19: else 

20: F inalShare = F inalShare � T [ pos ] 

21: end if 

22: end for 

23: T [ EmptyPos ] = F inalShare 

24: end for 

25: for i = 1 to m do 

26: if T [ i ] == null then 

27: Select a random number v from { 0 , 1 } η
28: T [ i ] = v 
29: end if 

30: end for 
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The k shares of v i are computed as follows: it first chooses k − 1

random number r 1 
i 
, r 2 

i 
, . . . , r k −1 

i 
with η bits, and computes r k 

i 
=

r 1 
i 

� r 2 
i 

� · · · � r k −1 
i 

� v i . 
Note that during the inserting process, some location pos =

h j (ρ(i )) could have been occupied by a previous inserted value.

In such a case, the existing T [ pos ] will not be overwritten, which

means r 
j 
i 

is set as T [ pos ] and used to compute the final share. For

example, as shown in Fig. 2 , a value v 1 is inserted into the filter

first, and the corresponding positions 2, 4, 7 have be filled with

the shares of v 1 . Then for the value v 2 , position 4 have already

be occupied by the share r 2 
1 

of v 1 . So in order to guarantee that

the previous inserted value v 1 can be recovered, r 2 1 will be reused,

which means that instead of randomly choosing a new share, we

set r 1 
2 

= r 2 
1 

. Following Function 1 shows the detailed implement

process of ABFBuild . 

Remarks. Note that the false positive error leads to an empty

value of the variable EmptyPos after the inner loop (line 9–22),

which will cause an illegal index position of the attribute Bloom

filter T in line 23. In such a situation, the ABFBuild function will

be failed and the encryption process will be interrupted, so it will

not degrade the security of our scheme. In addition, as proved in
26] , the upper bound of the failure rate of the ABFBuild function

s p k (O ( k p 

√ 

ln m −k ln p 
m 

) + 1) , where p = 1 − (1 − 1 /m ) (n −1) k , which

an be ignored with optimally selected m and k . Different from

24] , our scheme enables the data owners to select the parameters

f the attribute Bloom filter, such that even if the false positive

rror occurs, the ABFBuild function can be efficiently re-executed

ith new parameters (less than 5ms for 50 attributes). Thus, the

ffects on the efficiency of the proposed scheme caused by false

ositive property is limited and acceptable. 

After calling the two functions, the data owner uploads the final

iphertext C T = 〈 M, C T ′ , (m, n, k, H, η) - T 〉 to the cloud server. 

.2.4. Data decryption 

The recipients are allowed to download the ciphertext from the

loud server depending on their interests. When they obtain the

iphertext CT , they can run the Decrypt ( CT, SK S ) algorithm to re-

over the plaintext, if their attribute sets satisfy the access pol-

cy. In our scheme, the Decrypt algorithm consists of three func-

ions: ABFQuery, MapRecover and DecTest . The first function is used

o query a row number for each attribute in S , the second one is to

ecover a set of possible attribute mapping functions, and the last

ne is to test whether the decryption succeeds. 

1. ABFQuery ( S, T ) → �

The function takes as input the attribute set S and the at-

ribute Bloom filter T , where the parameters of T are include im-

licitly. For each attribute att x ∈ S , it first computes the k positions

 h j ( att x )} j ∈ [ k ] and obtains the shares { r j x = T [ h j (x )] } j∈ [ k ] . Then the

orresponding row number of the attribute att x is calculated as

ownum x = (r 1 x � r 2 x � · · · � r k x ) mod l. As shown in Function 2 , a

unction 2 ABFQuery. 

nput: S, T 

utput: � : S → J 

1: J = ∅ , � = ∅ 

2: for att x ∈ S do 

3: temp = 0 

4: for j = 1 to k do 

5: pos = h j (att x ) 

6: t emp = t emp � T [ pos ] 

7: end for 

8: rownum x = temp mod l 

9: if rownum x == 0 then 

10: rownum x = l 

11: end if 

12: if rownum x / ∈ J then 

13: add rownum x into J 

14: end if 

15: Add att x → rownum x into �

16: end for 

apping function �: S → J from the attribute set S to a set of rows

 ⊆[ l ] will be generated after calling the ABFQuery function. 

emarks. Note that for those attributes existed in the access pol-

cy, the row numbers recovered from T are valuable, but for oth-

rs are just random numbers in [ l ]. In addition, it is possible that

ome different attributes may recover the same row number, and

he possibility is influenced by the number of attributes in the at-

ribute set and access policy. 

After generating �, the Decrypt algorithm calls the following

apRecover function. 
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2. MapRecov er(�) → P

This function takes as input �, and produces a set of attribute

apping functions P by choosing only one attribute for each row

n J , such that each ˜ ρ ∈ P is an injective function which maps J

o an attribute set ˜ S ⊆ S. As shown in Function 3 , it first generates

unction 3 MapRecover. 

nput: � : S → J 

utput: P 

1: Num = 1 

2: for each rownum ∈ J do 

3: at t s rownum 

= �−1 (rownum ) 

4: Num = Num ∗ length (at t s rownum 

) 

5: end for 

6: for i = 0 to (Num − 1) do 

7: step = Num , ˜ ρi = ∅ , ˜ S i = ∅ 

8: for each rownum ∈ J do 

9: len = length (at t s rownum 

) 

10: step = step/len 

11: at t Index = (i/step) mod len 

12: at t = at t s rownum 

[ at t Index ] 

13: Add att to ˜ S i 
14: Add rownum → att into ˜ ρi : J → 

˜ S i 
15: end for 

16: Add ˜ ρi into P 

17: end for 

he attributes associated with each row in J and calculates the total

umber of the mapping functions in P (line 1–5). Then for each

˜ i , it chooses only one attribute for each row in J to compose an

ttribute set ˜ S i , with the condition that i � = j ⇒ 

˜ S i � = 

˜ S j (line 8–15).

inally, it adds all ˜ ρi to the set P (line 16). 

At last, for each ˜ ρi ∈ P and corresponding secret key SK ˜ S i 
⊆ SK S ,

he Decrypt algorithm calls the following DecTest function. If any

f them outputs msg , then the decryption completes successfully.

therwise, the Decrypt algorithm outputs ⊥ , which represents that

he recipient’s attributes do not satisfy the access policy. 

3. DecT est(CT ′ , (M J , ˜ ρ) , SK ˜ S ) → msg / ⊥ 

Here M J denotes the matrix composed of the rows belonging to

 . Similarly with [21] and [22] , this function first computes a set I
rom M J , where I denotes the set of minimum subsets of J such

hat for each I ∈ I there exists 
∑ 

i ∈ I w i M i = (1 , 0 , . . . , 0) . Then, for

ach I ∈ I, it calculates 

 = 

e (C 0 , D ) ∏ 

i ∈ I (e (C 0 , D ˜ ρ(i ) ) e (C i , D 

′ )) w i 

For authorized recipients with the right choice of ˜ ρ and I, C i 
nd D ˜ ρ(i ) are matched which means they are generated from the

ame public key component h ˜ ρ(i ) , such that 

 = 

e (g, g) αs e (g, g) βts 

∏ 

i ∈ I e (g, g) βtw i λi 
= e (g, g) αs , 

C 

B 

= key 

Then, it generates key 1 and key 2 from key . After verifying that

ey 2 is correct, it can recover msg with the symmetric decryption

lgorithm under key 1 . 

Otherwise, B is a random value in G T , so a random key 2 will

e derived, which cannot pass the validation process with a over-

helming probability. Thus the function outputs ⊥ . 

emarks. Since M J is fixed during the DecTest phase, I only needs

o be calculated once. In addition, the paring results can be reused
n different tests. 
. Security analysis and performance evaluation 

.1. Security analysis 

We analyze the security features of the proposed scheme from

he perspectives of data confidentiality and policy privacy. 

• Data confidentiality The proposed construction is based on the

underlying CP-ABE primitive in [15] , which has been proved

selectively CPA-secure on the basis of the decisional q-BDHE

assumption. Following we will demonstrate that the modifica-

tions in our scheme do not affect the data confidentiality. It

can be seen the Setup and KeyGen algorithms in our proposed

scheme are the same with that in [15] . In addition, the cipher-

text generated from the Encrypt algorithm in our scheme has

the similar structure with [15] , except that an attribute Bloom

filter T is included. Note that, the attribute Bloom filter is de-

rived only from the access policy ( M, ρ), which is public in [15] .

Since no more information in our scheme has been disclosed to

the adversary compared with [15] , the advantages of the adver-

sary to break the data confidentiality in our scheme is no more

than that in [15] . Thus, based on the same security assumption

with [15] , we can conclude that our scheme is able to guaran-

tee the data confidentiality. 

• Policy privacy In our scheme, the attribute mapping function

ρ is removed from the access policy to prevent the leakage of

attribute information. Additionally, a fuzzy attribute position-

ing algorithm is designed to help the authorized recipients to

decrypt the ciphertext. Following we will show that the adver-

sary (unauthorized recipients) cannot recover valuable attribute

information from the fuzzy attribute positioning algorithm. In

the fuzzy attribute positioning algorithm, the row number cor-

responding to each attribute in the access policy is inserted

into the attribute Bloom filter through the ABFBuild function.

By calling the ABFQuery function, the adversary is allowed to

query a row number for every attribute in his attribute set. Fur-

thermore, considering the dictionary attack, the adversary can

check all the system attributes. However, correct row numbers

can be recovered only for those attributes belonging to the ac-

cess policy, while for others, a random row number is returned.

Note that, the validity of the row number for an attribute can

only be verified through successful decryption. Since the adver-

sary cannot break the data confidentially, even through collud-

ing, nor can it identify the attribute mapping relationship. Thus,

our scheme can protect the policy privacy through hiding the

attribute information in the access policy. 

.2. Performance evaluation 

We first give a comparison of our scheme and some other

P-ABE schemes with LSSS-based access policy in the literature

15,21,22,24] , with respect to storage overhead and computation

ost. Some related notions are clarified as follows. 

- | G | , | G T | , | Z p | : The bit-length of element in G , G T and Z p , re-

spectively. 

- | U |, | S |, l : The number of attributes in the system attribute uni-

verse, recipient attribute set and access policy, respectively. 

- | M |, |( M, ρ)|, | h |, m : The bit-length of access matrix, access pol-

icy and hash function, respectively. 

- L l , L att : The bit-length of the value l and attribute string, respec-

tively. 

- k : The number of hash functions for the attribute Bloom filter. 

- m : The size of the attribute Bloom filter. 

- X M ,1 : The number of elements in I M 

= { I 1 , . . . , I X M, 1 
} , where I M 

means the set of minimum subsets satisfying the access matrix

M . 
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Table 4 

Comparisons of storage overhead. 

Schemes Public key Master secret key Recipient secret key Ciphertext 

Basic CP-ABE [15] (2 + | U| ) | G | + | G T | | G | (2 + | S| ) | G | | G T | + (1 + l) | G | + | (M, ρ) | 
Lai et al. [21] (4 + | U| ) | G | + | G T | | U|| G | + | Z p | (2 + | U| ) | G | 2 | G T | + 4 l| G | + | (M, ρ) | 
Cui et al. [22] 9 | G | + | G T | + | h | | G | + 4 | Z p | (2 + 5 | S| ) | G | (3 + 6 l) | G | + | (M, ρ) | 
Yang et al. [24] (2 + | U| ) | G | + | G T | + k | h | | G | (2 + | S| ) | G | | G T | + (l + 1) | G | + | M| + m (L l + L att ) 

Ours (2 + | U| ) | G | + | G T | | G | (2 + | S| ) | G | | G T | + (1 + l) | G | + | M| + mL l + k | h | 

Table 5 

Comparisons of computation cost. 

Schemes Operations 

Encryption Decryption 

Multi Expo Pairing Hash Multi Expo Pairing Hash 

Basic CP-ABE [15] l + 1 2 l + 2 0 0 | I| + 2 | I | 2 | I| + 1 0 

Lai et al. [21] 6 l + 2 8 l + 4 0 0 ≤ X M, 2 + X M, 1 + | I| + 2 ≤ | I| + X M, 2 ≤ 2(1 + | I| + | S| ) 0 

Cui et al. [22] 2 l + 1 8 l + 4 0 1 ≤ 5 X M, 2 + 2 X M, 1 ≤ X M, 2 + 2 X M, 1 ≤ 6 | S| + 1 ≤ X M ,1 
Yang et al. [24] l + 1 2 l + 2 0 k | I| + 2 | I | 2 | I| + 1 k 

Ours l + 1 2 l + 2 0 k ≤ | S|| J| + 2 |P| X M J , 1 ≤ |P| X M J , 2 ≤ | S| + | J| + 1 k 

Fig. 3. Computation time for ABFBuild and ABFQuery functions. 
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- X M ,2 : The total number of attributes in all the subsets of I M 

,

i.e., | I 1 | + · · · + | I X M, 1 
| . 

- |P| : The number of elements in the set of attribute mapping

functions P . 

- | J |: The number of rows used in the decryption. 

- | I |: The number of attributes used during the final successful

decryption. 

Table 4 presents the sizes of the public key, master secret

key, recipient secret key and ciphertext (i.e., storage overhead). It

demonstrates that our scheme achieves attribute hiding only with

few ciphertext storage overhead caused by the attribute Bloom fil-

ter compared with the underlying CP-ABE scheme [15] . Due to the

small size of the value inserted into the Bloom filter, our scheme

has a better performance than [24] . Compared with [21] and

[22] which apply the LSSS-based access policy with multi-valued

attributes, the size of the recipient secret key in our scheme is

much smaller. In addition, since the bit-length of the group ele-

ment is much longer than that of l , our scheme can also save some

ciphertext storage space. 

Table 5 shows the computing operations involved in the en-

cryption and decryption processes, in which only some time-

consuming operations are considered, such as pairing, hashing and

multiplication and exponentiation on groups. Considering the en-

cryption process, our scheme only has some additional hashing
perations compared with the underlying CP-ABE scheme. Our

cheme also has a better performance compared with [21] and

22] in terms of the multiplication and exponentiation operations.

ith regard to the decryption process, since opportunistic decryp-

ion test is required in [21] , [22] and our scheme, we give the re-

ults in a worst-case scenario. For [21] and [22] , a set of minimum

ubsets of attributes I M 

from M needs to be calculated before the

ecryption test. While in our scheme, we compute I M J 
from M J ,

hus X M J , 1 
≤ X M, 1 and X M J , 2 

≤ X M, 2 . In addition, for the most time-

onsuming pairing operation, our scheme has a significantly better

erformance. For the multiplication and exponentiation operations,

lthough the cost in our scheme is affected by |P| , the smaller

 M J , 1 
and X M J , 2 

make them be completed efficiently. 

Generally, taking into a comprehensive consideration of storage

verhead, computation cost and policy privacy, our scheme can

chieve more effective privacy preservation with a better overall

erformance. 

We simulate our scheme with python 3.5 on a notebook with

n Intel Core i7-7600U CPU at 2.80GHz and 16GB RAM running

buntu 18.04. Charm framework (v0.5) is applied to implement

he cryptographic operations from the supporting of the PBC li-

rary (v0.5.14) and the OpenSSL library (v1.0.2). We use the dou-

le hashing technology [35] based on the 128-bit MurmurHash

nd SpookyHash to construct the k hash functions of the attribute
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Fig. 4. Computation time for Encrypt and Decrypt algorithms. 

B  

r  

a

 

f  

n  

t  

f  

I  

n  

t

 

s  

M  

F  

t  

n  

o  

c  

o  

t  

a  

a

7

 

c  

t  

t  

t  

t  

f  

b  

a  

C  

s  

v  

w  

t  

w

N

m

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loom filter. The numbers of attributes in the access policy and

ecipient attribute set are both from 5 to 50. All the results are

verage running time in milliseconds of 50 trials. 

Fig. 3 shows the running time of the ABFBuild and ABFQuery

unctions with k = 8, 16, 24, where m = 1024 , η = 8 , and n is the

umber of attributes. In Fig. 3 (a), 50 attributes can be inserted into

he filter in less than 5 ms , thus in a worst case that the ABFBuild

unction fails, it can be completed with the new parameters soon.

n addition, it can be calculated that the ABFBuild function has a

egligible failure rate of 10 −5 with k = 16 , so we adopt k = 16 in

he subsequent simulations. 

We simulate the encryption and decryption algorithms in our

cheme on the basis of four elliptic curves: SS512, MNT159,

NT201 and MNT224 2 , which provide different security levels.

ig. 4 shows that the execution time of encryption and decryp-

ion increases linearly with the number of attributes. The run-

ing time for building and querying the attribute Bloom filter is

nly a tiny fraction of the total time for the encryption and de-

ryption processes. In addition, in our experiment, the decryption

f a ciphertext containing 50 attributes can be completed in less

han 400 ms with a secret key of 50 attributes, and the results

re acceptable even with multiple decryption tests in practical

pplications. 

. Conclusion 

In this paper, we have proposed a fine-grained data access

ontrol scheme supporting expressive access policy with fully at-

ribute hidden for cloud-based IoT. We have designed a fuzzy at-

ribute positioning mechanism based on garbled Bloom filter such

hat the authorized recipients are able to locate their attributes

o the access matrix and decrypt the ciphertext efficiently, while

or unauthorized recipients no valuable attribute information can

e presumed. Our scheme can achieve both data confidentiality

nd policy privacy preservation on the basis of the underlying

P-ABE scheme. Numerical analysis and simulation results demon-

trate that our scheme can achieve effective policy privacy preser-

ation with low storage and computation overhead. In the future

ork, we will focus on how to decrease the number of decryption

ests for the authorized recipients with more redundant attributes

hich are not in the ciphertext access policy. 
2 “SS” means the super singular curves (symmetric) and “MNT” is Miyaji, 

akabayashi, Takano curves (asymmetric). The number after the type of the curve 

eans the bit size of the base field [16] . 
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