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Abstract—By equipping with the advanced smart meters and
two-way communications infrastructure, smart grids, as a key
component of future smart cities, are able to improve the
energy efficiency and reduce the energy cost through real-time
monitoring and customer load scheduling. However, the high
penetration of intermittent renewable energy such as solar power
may cause frequent overvoltage and undervoltage problems at
certain buses, making the load scheduling face new challenges
on voltage regulation. In this paper, we investigate the impact of
voltage constraints on load scheduling by power flow analysis in a
power distribution system with renewable generators. A voltage
regulator (VR) is introduced to regulate the voltage of buses
in the distribution system and assist load scheduling. To jointly
minimize the cost and stabilize the voltages of the distribution
system, we propose a grid-customer coordinated load scheduling
strategy, which simultaneously determines the tap changes of
VR and scheduling of customer electricity loads in each time
slot. Finally, we evaluate the performance of the proposed
strategy based on realistic power demand and renewable energy
generation datasets. Extensive numerical results demonstrate that
the proposed strategy can remarkably reduce the energy cost and
stabilize the voltage fluctuation of distribution systems.

Index Terms—Load scheduling, voltage regulation, distribution
system, renewable generator, demand response.

I. INTRODUCTION

ODAY, traditional power grids are under pressure to ac-

commodate the increasing power demand and to provide
a sustainable and stable supply of electricity. These significant
challenges are motivating the evolution of smart grid technolo-
gies. By integrating wireless communication networks into
power grids, smart grid is able to preform real-time monitoring
and schedule the electrical loads of customers through smart
meters and two-way communication infrastructures [1]. In this
way, electricity consumption can be shifted from peak to off-
peak periods depending on consumers’ flexibility/preferences
in operating their appliances, which is also referred to as
demand response [2]. It is expected that load scheduling would
be a promising and cost-effective alternative than adding gen-
eration capabilities to meet the ever-increasing electricity load.
This advancement makes smart grid an important component
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Frequently Used Notations

Notation Description

N Set of electrical appliances.

g Set of distributed renewable energy generators (DGs).

N Set of electrical appliances.

T Set of time periods.

&gt Electricity generated by g during the period .

By Total electricity generated in a period ¢t € T.

Ny, N Set of inelastic and elastic appliances, respectively.

Ly, Lsit Loads of inelastic and elastic appliances, respectively.

Tt Load of ¢ at time period t.

Tt Load scheduling vector for all elastic appliances in ¢.

D; Feasible working time periods for each i € N.

051> Oi,m Minimum and maximum power consumption of appli-
ance ¢ at time period ¢.

Ki Minimum energy for appliance 7 to complete a given
task.

w Set of buses.

BN; Set of appliances connected to the bus w;.

BG; Set of DGs connected at w;.

Voltages of two neighbouring buses in time period ¢.

Vi(®), V;(t)

P ;(t), Qi ;(t) Active and reactive power flow from Bus; to Bus;
during period ¢.

Pi(t), Qi(t)

Active and reactive power injection at bus w; during

period t.

BG; Power injection by the DGs at w;.

Vi, Vin Lower and upper voltage limits of the buses, respec-
tively.

% Nominal voltage of the distribution system.

u Set of taps U in the LTC.

uelU Corresponding voltage at wg.

ut €U LTC tap position in t.

ct Electricity price at time period .

Ce Total electricity cost.

A1 Lagrange multiplier matrixes.

P, D Results of (PP) and (DP), respectively.

of future smart city to improve energy efficiency. Meanwhile,
the global concern on reducing greenhouse gas emission mo-
tivates the increasing utilization of renewable energy sources
(e.g., wind and solar) in the power chain. According to the
forecast from International Energy Agency (IEA), the power
generation from renewable energy sources will nearly triple
from 2010 to 2035, reaching 31% of the global power gen-
eration. The wind and solar generation will provide 25% and
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7.5% of the total renewable power generation, respectively [3],
[4]. The proliferation of distributed generators (DGs) with
high penetration of renewable energy sources and distributed
energy storages has brought great opportunities to alleviate
energy burden for smart grid. However, due to the intermittent
electricity generation and penetration of renewable generators,
load scheduling in smart grid also faces new challenges on
voltage regulation.

Since renewable energy sources are stochastic and intermit-
tent in nature, the electricity outputs of DG units usually vary
from time to time. Consequently, overvoltage and undervoltage
problems may frequently arise at certain buses (e.g., DG unit
points and load connection points) [5], when performing load
scheduling. An effective way to address this challenge is to
monitor and predict the DG penetration level to keep the
voltages at all buses within an acceptable range [6]. As a result,
load scheduling has to face strict voltage constraints to meet
the requirements of voltage regulation. In order to regulate
the voltages of distribution lines more effectively, voltage
regulators (VRs) are generally installed to accommodate the
voltage constraints of buses by changing their tap positions,
and hence to assist the load scheduling. For instance, the
voltage of a feeder can be controlled from 10% boost to
10% buck by a widely used McGraw-Edison single-phase
VR [6]. Since the tap changes of VR and load scheduling
can both significantly impact voltage fluctuation in smart grid,
voltage regulation strategy should be carefully determined and
coordinated with the load scheduling strategy to optimize the
overall objective of the power gird.

There have been a number of existing works focusing on
load scheduling to reduce the peak-to-average-ratio (PAR) in
load demand or economically minimize electricity expense.
But few of existing works take account of voltage regulation
into load scheduling to simultaneously minimize the energy
cost and stabilize the stochastic voltage fluctuation, which is a
critical issue for the power distribution system with DG inte-
gration. In this paper, we investigate the joint load scheduling
and voltage regulation problem in a power distribution system,
which is connected to the main grid and equipped with a
number of distributed renewable generators. A grid-customer
coordinated load scheduling strategy is proposed to minimize
the electricity cost and stabilize the voltages of the distribution
system. In summary, the main contributions of this paper are
two-fold.

(i) We incorporate the voltage constraints of all buses into
the load scheduling problem based on power flow analysis in
a power distribution system with DGs. A VR is introduced to
regulate the voltages of buses and assist the load scheduling.
Based on the power flow analysis, we investigate the joint
load scheduling and voltage regulation problem to determine
a combined strategy, consisting of the tap position of VR and
the scheduled load of each appliance in each time period. To
minimize the total energy cost, we formulate this problem as
a mixed-integer non-linear programming (MINLP) problem,
and decouple it into two independent subproblems. The primal
problem is finally addressed by solving the subproblems
separately and efficiently.

(i) According to the solution of the primal problem, we

propose both offline and online algorithms to schedule the
electricity load of customers and determine the tap positions
of the VR. By taking advantages of wireless communications,
the online algorithm can adjust the scheduled load for each
time period based on the real-time generation and environment
parameters. Extensive numerical results based on realistic
renewable energy generation and power consumption datasets
demonstrate that the proposed load scheduling and voltage
regulation strategy can significantly reduce the electricity cost
and stabilize the voltages of the distribution system.

The reminder of the paper is organized as follows. We
review the related work in Section II and introduce the system
model in Section III. The joint load scheduling and voltage
regulation problem is formulated in Section IV and solved
in Section V, respectively. The grid-customer coordinated load
scheduling strategy is proposed in Section VI. We evaluate the
performance of the proposed strategy in Section VII. Finally,
Section VIII concludes this paper and outlines our future work.

II. RELATED WORK

With the ever-increasing power consumption, increasing
attention has been drawn on load scheduling in recent years,
to reduce the peak-to-average-ratio (PAR) in load demand or
economically minimize electricity expenses. Existing works
can be briefly divided into two categories, i.e., direct load
control and indirect load control, according to the control
mechanisms [7]-[9].

Direct load control refers to grid control center can remotely
turn off or cycle customers’ electrical appliances to achieve
some specific objectives. This program is generally offered
to low consumption customers (i.e., residential customers)
by signing control contracts. Nikolaos et. al. [10] propose a
residential load control strategy to minimize the electricity
provider cost plus the total user dissatisfaction. This strat-
egy can find near-optimal schedules even if the exchanged
information between the utility company and customers is
lost. Deng et. al. [11] address the residential load scheduling
problem by a game-theory approach under the consideration
of user interactions and temporally-coupled load demand
constraints. Based on these solid research foundation, some
researchers extend their focuses to demand response in smart
grid. An adaptive electricity scheduling algorithm is proposed
in [12] to minimize the grid operation cost and guarantee the
residents’ quality of service in electricity. Meanwhile, with the
proliferation of renewable energy sources and electric vehicles
(EVs), generated electricity prediction and flexible electricity
storage scheduling are integrated into load scheduling in smart
grid. Mosdaddek et. al. [13] present a centralized method to
jointly schedule the load of home appliances and plug-in EVs
to minimize the electricity expenses for customers. In [14], the
impact of EVs is also investigated in a residential grid and a
demand response strategy is proposed as a load shaping tool
to tackle the problem of distribution transformer overloading.

On the other hand, indirect load control strategies aim to
economically stimulate customers to schedule their loads by
themselves, via dynamically adjusting the electricity price.
Antonio et. al. [15] propose a real-time pricing scheme joint
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with an optimization model to adjust the hourly customer load
in response to hourly electricity prices. There are also some
related works investigating the impacts that should be consid-
ered in electricity pricing determination, such as residential
renewable generation [16], customer fairness [17], etc. A real-
time electricity pricing strategy is designed in [16] to support
high penetrations of renewable generation and flexibly achieve
overall load control. Zahra et. al. [17] highlight fairness
should be paid more attention in demand response according
to customers’ contribution on system optimization. A smart
billing mechanism is then proposed to enforce both optimal-
ity and fairness in demand response. Maharjan et al. [18]
establish a Stackelberg game between electricity providers and
consumers, where providers behave as leaders maximizing
their profit and consumers act as the followers maximizing
their individual welfare, to optimize the load scheduling of
the whole system.

In additional to the load scheduling solutions, there are also
a number of existing works focusing on voltage regulation in
smart grid through adjusting the tap position of voltage reg-
ulator. By taking consideration of the voltage changes caused
by the increasing distributed generation, Senjyu et al. [19]
optimize the distribution voltage and simultaneously reduce
the power loss for the whole power system by adjusting the tap
position of voltage regulator. Kryonidis et al. [20] propose a
decentralized voltage regulation algorithm to minimize the ac-
tive power losses and the total reactive power consumption in
medium-voltage netowrks with radial topology. A cooperative
on-load tap changer control is adopted to further reduce the
network losses. Zakaria et al. [21] investigate the problem of
the increasing distribution system losses caused by the voltage
deviations and reverse power flow, under the high penetration
of DGs. They propose a decision mechanism to achieve the
optimal schedule for DGs, including battery energy storage
system, controllable loads and tap changing transformers, to
minimize the loss of the whole power system.

However, few of existing works jointly consider voltage
regulation and load scheduling to optimize the energy cost
of the gird, which is a critical issue for power distribution
system with DG integration. Although many research efforts
have been invested in voltage regulation from a power system
point of view [5], [22], to the best of our knowledge, there is
still no significant achievement to study coordinated voltage
regulation and load scheduling. To this end, in this paper, we
investigate the joint voltage regulation and load scheduling
problem by adjusting the voltage regulator and scheduling the
load of buses, to achieve simultaneous energy cost reduction
and voltage stabilization.

III. SYSTEM MODEL

We consider a power distribution system, consisting of a set
of distributed renewable energy generators (DGs) G (|G| = G),
a control center, a step-down transformer with a VR and a set
of electrical appliances N (|[N'| = N). The control center is
responsible for scheduling and controlling the electricity loads
of appliances, as well as adjusting the VR, in the system.
Each DG is equipped with a remote terminal unit (RTU)

to send information to the control center. The appliances of
each consumer are wirelessly connected to a smart meter
through bluetooth or Zigbee. The smart meters can exchange
information with the control center and control the working
periods of the connected appliances. We divide a day into a set
of time periods 7 = {1,...,T}. For each DG g € G, let £, ;
be the electricity generated by g during the period t. Then, the
total electricity generated in a period¢ € T is By = > g€ gt
In our generator model, we consider that the DGs consist
of wind and solar power generators. Although both types of
renewable energy sources are stochastic in nature, a number of
existing models can predict the short-term power generation of
renewable energy generators with a high accuracy [23], [24].

A. Electricity Load Model

The electricity load can be roughly divided into two cate-
gories: inelastic and elastic 1oad. We use Ny and N to denote
the set of inelastic and elastic appliances, respectively. Thus,
we have the set of total home appliances is N' = N UNj. For
each time period ¢, if Ly and L, ; are the loads of inelastic
and elastic appliances, respectively, the total load L; of the
system can be calculated as Ly = Ly, + Ly ;.

For each appliance ¢ € N, let x;; denote the load of i
at time period t. Since the inelastic load cannot be shifted,
we have x;, is fixed for each i € Ny and each t € 7. On
the other hand, the elastic loads of the appliances N; (e.g.,
electric vehicle and clothes dryer) can be scheduled by the
system to meet the system objective. For these loads, users
only care about whether the task can be completed or not
before a certain deadline [11], [25]. If ;, is the scheduled
load for each i € N in t, we use @; = [7;]icn, to denote
the load scheduling vector for all elastic appliances in ¢, and
X £ [z],c7 to denote the load scheduling matrix for all
elastic appliances over the whole day.

In addition, we define D; £ [a;, b;] as the feasible working
time periods for each i € Ny, where a; and b; are the starting
time and deadline constraints for ¢, respectively. For instance,
D; can be the time duration when an electric vehicle is parked
at home. Therefore, we have the following constraint on x; ,

YVt € D;
otherwise ’

{51',[ < Tit < 51’,77“ (1)

xi,t = Oa

where d;; and 6; ,,, are the minimum and maximum power
consumption of appliance ¢ at time period ¢, according to its
power levels [26]. Meanwhile, we have another time-coupled
constraint on z;, for the total power consumption over the
working periods D;, that is,

b;
> mia > ki, )

t=a;

where ; is the minimum energy for appliance ¢ to complete
a given task. For example, «; should be 16 kWh for an
electric vehicle to achieve a daily 40 miles driving range [25].
This constraint is to guarantee that the scheduled task can be
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Fig. 1: Illustration of Power Flow between Two Adjacent
Buses

finished by the deadline b;. In summary, the total load of the
system during 7 can be calculated as

Li=Lfi+Lsy = Lyi+ Z Tig, 3)
PEN

where Ly ; is constant.

B. Voltage Regulation

We consider that the electricity transmission model of the
distribution system can be abstracted as a one-line diagram
with multiple buses [6], [27]. Let W = {wo, w1, ...,ww}
denote the set of buses. A transformer is equipped at the initial
bus wy to inject electricity from the main grid and distribute it
to consumers (or reversely sell electricity to the main grid)'.
For each bus w; € W\ {wp}, there is a set of appliances BA/;
connected to the bus. Thus, we have |J!", BA'; = N. Since
DGs are distributed at different buses, we refer to the buses
with DGs as generation buses and the others as load buses.
We use BG; to denote the set of DGs connected at w;, and
thus, !V, BG; = G.

Given the certain line impedance, the voltage of each bus
can be derived based on the active/reactive power injection via
power flow analysis [6], [28]. As shown in Fig. 1, the relation
between the voltages of two neighbouring buses in time period
t, i.e., V;(t) and V;(t), is given by [27]

Pij(@) i+ Qi (1) - i
Vi(t)

where P; j(t) and Q; ;(t) are the active and reactive power

flow from Bus; to Bus; during period ¢, respectively, and

;.5 + 7 - yi,; denotes the impedance of the feeder line i — j.
In per unit, Eq. (4) can be approximately rewritten to [27]

Vi(t) = Vi(t) = Pij(t) - rij + Qij(t) - yi - &)

If we use P;(t) and Q;(t) to denote the active and reactive
power injection at bus w; during period ¢, respectively, then
we have

Pio1,i(t) = — ZJ i Pi(t) — Pi(t) = — Zj‘% Ps(t)

Qi-1,:(t) = _ZJ =i+l QJ( ) —Qi(t) = _Zj:i Q;(t)
Let BL;; = > JeBN,; Tigt be the electricity load at w; in time
period t. Since appliance load is fully supplied by the active
power flow, we have

Pi(t)

Vi(t) = V;(t) = “4)

(6)

= BG;+ — BL; g, (7N

The transformer of the power distribution system is a step-down trans-
former to reduce the voltage from a transmission level (above 110 kV) to

a distribution level (below 50 kV). wq refers to the low voltage side of the
step-down transformer.

4

where BG;; = ZjGBQ- &g,t 1s power injection by the DGs
at w;, and we have BG;; = 0 if w; is a load bus. Note
that, if the power generation is larger than the load at w; (i.e.,
BG;,; > BL;;), Pi(t) is positive, which means that there

- is power injection at bus w; and voltage rises; otherwise, it

indicates that the voltage drops at w;. Based on Eq. (5), we can
derive the relation between the voltages of w; (1 < ¢ < W)
and wq as

Vo) =Y (P (015 + Qi1,;(Dys-15) . (8)

Jj=1

Vi(t) =

According to the requirements of voltage stability, the voltage
of all the buses should stay with a certain range. Let V; and
V., denote the lower and upper voltage limits of the buses,
respectively. For example, if we use V* to denote the nominal
voltage of the distribution system, generally, we have V; =
0.9-V* and V,,, = 1.1 - V*. Therefore, based on Eq. (8), (6)
and (7), the voltage constraint of w; in ¢ is

Vi < Vo(t) + Z { > (BGry = BLiy) 151,

k=j

+ ZQk(t) 'yjl,g} < Vin. 9
k—j

Note that, in Eq. (9), 741 and y;;4q are fixed, and
ZZV:j Qi (t) is the reactive power from w; to w;;1 which
can be monitored and predicted at each bus, and BG; ¢ is the
power generation of bus wj that can also be predicted based
on our generation model. Therefore, Eq. (9) is a constraint for
the aggregated load of each bus.

To keep the stability of the distribution system, the total
power generation capacity would never exceed the transformer
capacity. Let P.S,, be the maximum active power withdrawal
capacity of the transformer, then the C%Ba(nty limit of the dis-
tribution system can be written as » ;" , (BL;; — BG;;) <
PS,,. According to Eq. (6) and (7), it is equivalent to

Z it < e,

i€Ns

where ¢, = PS,, + 29—1 Egt-

In addition, the equipped VR can change the voltage of
the initial bus by adjusting the load tap changers (LTC) [29].
We assume that there is a set of taps U in the LTC (e.g.,
|| = 32 for a 32-step LTC). Each tap v € U indicates the
corresponding voltage at wo: Vo, = T'(u), where I'(:) is a
linear function. If u; € U is the LTC tap position in ¢, Eq. (9)
can be rewritten as

i w
Vi < T(ut) + Z { Z (BGr,t — BLyt) 151,

j=1 Lk=j

(10)

w
+)Qk(t) - yj_l,j} < Vi (11)

k=j

C. Electricity Pricing Model

We consider the distribution system and customers as a
unity. If the generated electricity of DGs can satisfy the
electricity load of the customers in ¢, ie., Ly < FEj, we
say the unity is self-sustained at this time period. Once the
load exceeds the generated electricity, the unity should buy
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electricity from the main grid. We assume there is no storage
device in the DGs, so the residual electricity, i.e., Fy — Ly, will
be sold to the main grid, if L; < E;. The electricity sell price
is assumed to be equivalent to the buy price. Therefore, from
the perspective of the unity, the electricity price of the main
grid is the only price concerned to schedule the load, which
changes during different time periods but can be known day-
ahead, e.g., Hourly Ontario Energy Price (HOEP) in Ontario,
Canada. If we use ¢; to denote the electricity price at time
period ¢, the total electricity cost C'. can be calculated as

Co=> (ct-(Li— Ey)). (12)
teT
Note that, if L; < E;, C, is negative, which means that the
utility can make profits by selling electricity to the main grid;
otherwise, C. is the cost for the utility to buy electricity from
the main grid to meet the power demand of customers.

IV. PROBLEM FORMULATION AND DECOMPOSITION

The objective is to minimize the electricity cost and sta-
bilize the voltages of the distribution system. In this section,
we mathematically formulate this joint load scheduling and
voltage regulation problem as a constrained mix-integer non-
linear programming (MINLP) problem. Since the MINLP is
hard to be directly solved, we investigate its dual problem and
decompose the dual problem into two subproblems that can
be efficiently addressed.

A. Problem Formulation

The electricity cost C. is the primary cost. It is determined
by the deviation of the load and renewable generation, as well
as the electricity price, during each time period ¢t € 7. On the
other hand, the tap changing of VR will bring wear and tear
to itself and shorten its lifetime. Thus, we have another cost
on VR, caused by the difference between current and previous
tap settings [6], [29]. The related cost function is defined as
A() : U XU — R, i.e., the cost associated with the wear and
tear of VR during ¢ € T is determined by A(u¢, u;—1), where
A(ug,us—1) = 0, if up = ug—1; otherwise, A(ug, us—1) = cy-
Here, we set A(uy,ug) = 0. If we use u = [us]te7 to denote
the tap position Vector of VR over the whole day, the total cost
of VR is C,, = (ug,up—1). Since the cost of VR tap
changing C,, is 1n§ependent of the electricity cost C,, the
total cost can be calculated as

Cu,X) = Z {Ct - (Lyge + Z it — Egt) + A(ut,utfl)}~

teT iEN

In summary, the joint load scheduling and voltage regulation
problem can be formulated as determining u = {uq,...,ur}
and X = {z;+|Vi e N;,Vt € T} to

(PP) minimize C(u,X)
s.t. Eq.(1),(2),(10) and (11).

Obviously, (PP) is an MINLP problem. Due to the non-
convex objective function (i.e., >, A(ug, ur—1)), traditional
solutions [27] can not be directly applied to address this
problem. If we pay attention to the two decision variables
uw and X, their only relationship in (PP) is the constraint
Eq. (11). Therefore, if we can remove this constraint by
Lagrangian relaxation, this problem can be decomposed to two
independent optimization problems for X and wu, respectively.

5

B. Problem Decomposition

Since Eq. (11) is the only constraint coupling the 0{)&-
mization for w and X, we introduce two Lagrange multiplier
matrixes A = {A,; > 0]l < w < W,1 <t < T} and
p={pw: > 01 <w < W,1 <t <T} toremove this
constraint. Therefore, the Lagrangian L(-) associated with the
primal problem (PP) is

=3 {ett

teT

w W
>\w,t (F(ut) - Z Z Z (Tp—l,pxi,t) + Sw,t — Vm)
1

p=w q=p i€ W,
Hw,t Vi
1

where 5,1 = ZZV:w Zq‘:ip(rpflqu,t +Yp—1,pQq,t) and 2, =
c(t) - (Ly(t) — E(t)) are both constants.
s T
Denote  «y = [ty ey QA 2]
[@its s ¥)pr.),e)T . Then, we define

L(u, X, A\, 1) Z Tit +A(Utvut71)+zt}

ZENS

n
M=
M=

&
[
I
i

n
M=
]~

t

g
Il
—

w W
- F(ut) + Z Z Z (Tpfl,p$i,t) - Sw,t) 5

P=w q=pi€EWqy

and x =

— Sw, t

Therefore, the Lagrangian can be written as

[’(ua Xa A?"") = Z (Z C(t)xi,t - (at)Tmt>
teT \ieN,
+ ) [Au,ur) + Be - T(w)] + 96, (13)
teT
and the dual function is
DA, p) = in)f(ﬁ(u,X,)\, w. (14)

In order to decouple v and X from the dual problem, we
define the following subproblems,

o5 (S tara)

teT \i€N,
s.t. Eq.(1),(2) and (10)

(SPD) S; (A, p) 21

ktﬁ

(SP2) Sz (A, p) £ min Y [A(ur, ug—1) + B - D(ur)]
teT

st. wel,U]NZ, VteT.

Since € is independent of X and w, therefore, due to the
separable property, the dual function can be rewritten as

D(Avlj’) =5 (Avlj’> + 52 (Avl"’) + 0.

Note that, the primal problem (PP) has been divided into
two subproblems: (SP1) is to schedule the load of elastic
appliances, and (SP2) is to determine the tap positions of VR.

15)
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Finally, the dual problem is to maximize the dual function
over A and u, i.e.,

DP) maxD (A pu)
A p
S.t. )\w,t > Oa,u'w,t >0, Yw € Wt e T

Due to the discrete variable u; and non-convex function
> e A(ug, us—1) in (PP), only weak duality can be ensured
by Lagrangian relaxation, and the duality gap exists [30]. Let
P and D be the result of (PP) and (DP), respectively. We
have, D < P holds for all feasible solutions and D actually
becomes the lower bound of P [31].

V. SOLVING DUAL PROBLEM AND SUBPROBLEMS

In this section, we focus on solving the primal problem by
addressing the dual problem and two subproblems.

A. Subgradient Method for Dual Problem

For given A\ and p, if we can address (SP1) and (SP2), the
dual problem (DP) can be iteratively calculated using a sub-
gradient method [32]. Specifically, each Lagrangian multiplier
can be updated in an opposite direction to the partial gradient
of the Lagrangian dual function [30], [33], i.e.,

{Aw,t(k +1) = Pt (k) + 72 Frae (R)]F (6)

.uw,t(k +1) = [/Lw,t(k) + Ve fu,w,t(k)]Jr

where k € N* is the iteration index, vy > 0 and vy, > 0 are
the step sizes adjusting the convergence rate, and f ., (k) and
fuw,t(k) are subgradients of the dual function with respect to
Aw,t and i, ., respectively,

f)\,w,t(k) = w = Sw,t + F(ut(k)) - Vm
- Zg?;w ZI;;,) ZiEWq (rp—1,p@ie(K)) an
k) = PPCB i v )

o
+ ZZ[;U Z};‘;p >iew, (rp—1,pTit(k))

where s+ = Z;I;‘;w Elp(%—l,pfq,t + Yp—1,pQq,t), and
x;,4+(k) and u (k) can be obtained by solving (SP1) and (SP2).
Since the concavity of (DP) always holds, the optimal La-
grangian multipliers can be achieved through this subgradient
method.

B. Solving Subproblems

In this subsection, we discuss the solutions to the subprob-
lems (SP1) and (SP2). Due to the iteration process in address-
ing the dual problem, subproblems should be solved efficiently
to guarantee the efficiency of our approach. Specifically, the
load scheduling problem, i.e., (SP1), is a linear optimization
problem, which can be directly solved by traditional linear
programming techniques [34]. Meanwhile, the VR adjusting
problem, i.e., (SP2), is an integer optimization problem, which
is generally hard to be addressed efficiently. Therefore, we
focus on finding a polynomial solution for (SP2) in the
following.

w(211)

W(T,U,U)

Set T-1
(Time tr.1)

Set 1
(Time t;)

Set 2
(Time t,)

Set T-1
(Time ty)

Fig. 2: The directed graph that is defined to solve (SP2).

1) Solution to (SPI): Given A and u, o; can be fixed for
each period ¢t € 7. If we set ¢; ; Lo — «; ¢, the objective
function of (SP1) can be rewritten as

S1 (A p) = m)}HZ Z (@it " Tit),

teT ieN

and the constraints can be rewritten as

A< gy < T Vi e N, VEE T,

%
ZtET Tt > Ri,
Zié]\fs :I;i,t S wh Vt S T7

min max

where ] =] = 0, V¢t ¢ [a;,b;]. Therefore, (SP1)
becomes a classic linear programming problem. Karmarkar’s
algorithm [34] is a feasible solution for addressing this prob-
lem efficiently, which uses a projective method for linear
programming and guarantees a polynomial bound.

2) Solution to (SP2): Given A and p, we have a fixed
B¢ (B¢ € R) for each period ¢ € 7. Since the objective
function of (SP2) is dependent on all the deviation of u; and
u:—1, the global optimal solution can not be derived by local
optimization. In the following, we are trying to convert this
problem into deriving the shortest path in a directed graph.

We define a directed graph G as shown in Fig. 2, consisting
of T independent vertex sets. In each set ¢ (1 <t < T), there
are U nodes. We denote the node j (1 < j < U) in set ¢ as
ng ;. For 2 < ¢t < T, each node j of set t — 1 has an edge
connected to all the nodes of set ¢t. The weight of the edge
from node j of set t — 1 to node k of set i is w(t, j, k).

Now, we change our focus to the objective function of
(SP2). If we define F(t — 1,t) = A(ug,us—1) + B - T'(uyg)
for each 1 <t < T, the objective function can be rewritten as
Sa (A, p) = ZtT:l F(t —1,t). Recall that, our objective is to
determine a tap position u; from the tap set I/ at each period
t to obtain Sy (A, p).

If we set in each time ¢, each tap position j € U is a node
ny; in set ¢t of G, then the weight w(t,j, k) (1 < j < U,
1 < k < U) can be defined as

{w(z,yym = A(j. k) + BT () + BT (R), if ¢ =2

w(t,j. k) = AG k) + BI(k), if2<t<T (1%

Therefore, (SP2) is equivalently transformed to choose a node
ng ; from each set t of G, to minimize the total weight of the
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whole path. We refer to the nodes that are chosen to form the
set connection path as path nodes.

In order to solve this problem, we make some further
modifications on this graph. If all the path nodes from set
1 to set t — 1 have been determined, we can easily choose the
path node from set ¢. It means that, if the path node is fixed
as j in set t — 1, the best choice of set ¢ should be the node
k with the minimum weight min; <<y (A(4, k) + BT (k)).
Therefore, we can regard the set ¢ as a single node .S, and
then the weight of the edge from node j of set ¢ — 1 to this

node is
w(T, j,S) = 1£1£Uw(t,j, k), (19)
and the path node of set ¢ is
S =arg 1;1}1%1[]11)(@], k). (20)

If we choose S as the source node and the node n; ; of
the first set as the destination node, and reverse all the edge
directions of the graph G, then the minimum weight of the
whole path is the shortest path from S to n; ;. Thus we can
iteratively calculate the values of the shortest path from S to
n1; (1 < j < U), and the minimum one is the solution of
(SP2). Note that since the weight of each edge in G could be
negative, we can calculate the shortest path based on Bellman-
Ford algorithm. We describe the main idea of our solution to
(SP2) in Algorithm 1.

The time complexity of Bellman-Ford algorithm is O(|V| -
|E|), where |V| =T - U is the number of vertices in G and
|E| =T -U -U is the number of edges in G. Therefore, the
time complexity of our solution to (SP2) is O(U3T?).

VI. GRID-CUSTOMER COORDINATED LOAD SCHEDULING
STRATEGY

The previous section has illustrated the main ideas of
addressing the dual problem (DP). In this section, we sum-
marize the steps of our solution and propose a grid-customer
coordinated load scheduling strategy to minimize the cost and
stabilize the voltages of the distribution system. Specifically,
the proposed load scheduling strategy consists of two phases:
firstly, before the day, the control center determines the sched-
uled load and tap position vector of LTC over the next day;
secondly, during the day, the control center will adjust the
real-time scheduled load and tap position at the beginning of
each time period.

A. Day-ahead Load Scheduling

We first focus on the primal problem (PP), which is the
objective of the grid-customer coordinated load scheduling
strategy. According to our system model, except the decision
variables X and w, all the parameters of (PP) are known in
advance or can be predicted before the next day, including
the electricity price of main grid ¢ = {¢|Vt € T}, the
power demand of elastic appliances k = {x;|Vi € N},
the fixed load of customers Ly = {L;|t € T}, and the
predicted renewable generation E = {E;|Vt € T }. Therefore,
we describe the main idea of day-ahead load scheduling in

7

Algorithm 1: Bellman-Ford based Solution to (SP2)

Input : The graph G and 8 = {51, ...,0r};
Output: The optimal value of Sy (A, 1) and the tap
position vector u = {uy, ..., ur};

1 Initialize the vertex matrix n[T" — 1][U], the source node
D and the edge matrix w[T'|[U][U] according to
Eq. (18) and (19);
src < D, dist|D] « 0;
for each vertex nlt][j] in the vertex matrix do
dist[t][j] + infinity;
predecessor|(t][j] + null;
end
or each vertex nlt][j] in the vertex matrix do
for each edge w(t + 1][j][k] in the edge matrix do
if dist[t + 1][k] + w[t + 1][j][k] < dist[t][j] then
dist[t][§] < dist[t + 1][k] + w[t + 1][j][k];
predecessor|[t][j] < n[t + 1][k]
end
end

e
- e XN N R W
=

—
W N

end
Sy (A, p) < min; <<y dist[1][j];

[
[ I

16 d < arg ming <<y dist[1][j];

17 for each t from 1 to T do

18 if t =T then

19 | Set 1 according to Eq. (20);
20 else

21 e < d;

2 d < predecessor(d);

23 end

24 end

25 return Sy (A, ) and w;

Algorithm 2: Day-ahead Load Scheduling

Input : The predicted generation vector E, the
electricity price vector ¢, the fixed load vector
L and the required load vector k;

Output: The optimal scheduled load X (k) and tap
position vector u(k);

1 Let k = 0; Initialize Lagrangian multipliers A, (k) and
,U/w,t(k);

2 repeat

3 With Ay, (k) and g, ¢(k), calculate the scheduled

load matrix X (k) by solving (SP1), and determines

the tap position vector u(k) by solving (SP2)

according to Algorithm 1;

4 | With z; (k) and u(k), update A\, (k + 1) and

.t (k + 1) according to Eq. (16) and (17);

s until (i) k exceeds the maximum iteration number; or (ii)
the gap between D and P is small enough;

6 return X (k) and u(k);

Algorithm 2, which returns the globally optimal scheduled
load of elastic appliances and tap positions of LTC over the
next day.
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Fig. 3: Illustration of Intra-day Load Adjusting Strategy.

B. Intra-day Load Adjusting

Algorithm 2 provides an offline load scheduling strategy,
which is run one day ahead based on the predicted renewable
generation during the next day. Although existing generation
prediction algorithms can achieve an acceptable accuracy,
the prediction error still exists and may affect the system
performance. In order to further mitigate the negative impact
of generation prediction error, we propose an intra-day load
scheduling strategy to update the real-time scheduled load
of elastic appliances and the tap position of LTC w; for each
time period t (2 <t < T).

The operation of intra-day load adjusting is based on the
day-ahead load scheduling, as shown in Fig. 3. That is, before
the first time period, we use Algorithm 2 to determine the
scheduled load X and the tap position vector u of LTC, over
the next 7. After that, at the beginning of the t'" 2<t<T)
time period, the control center will re-predict the electricity
generation vector E' = {E,,..., E;}, based on the actual
electricity generation during the last 7' — ¢ time periods and
the real-time environmental parameters (e.g., solar radiation
and wind speed, etc.). Then, we can use E' as the input of
Algorithm 2 to determine the real-time scheduled load vector
x; and the tap position u;.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
load scheduling schemes based on the realistic power demand
and renewable generation datasets. Simulations are performed
based on the Kumamoto 15-bus system [35]. We add a VR
between utility grid and bus 1, i.e., bus 0, a PV generator on
bus 14 and a wind turbine generator on bus 9, as shown in
Fig. 4.

A. Simulation Configuration

The installed VR is the McGraw-Edison single-phase VR,
with an adjustable range from 85% to 115% normal volt-
age [6]. The generated electricity data of PV generator and
wind generator are adopted from the UQ solar dataset [36]
and Belgium’s wind-power capacity dataset [37], respectively.
The real-time electricity price is adopted from the price for
residents in Ameren Illinois [38], which dynamically changes
at every hour. Fig. 5 shows the renewable generation and

8

Algorithm 3: Intra-day Load Adjusting

Input : Same with Algorithm 2;
Output: The adjusted scheduled load matrix X™* and tap
position vector ©* for time period 2 to T';
1 Schedule the load and adjust the LTC in the first time
period, based on the results of Algorithm 2;
2 Adding x; as the first column of X*, w; as the first
element of u*;
3 repeat
At the beginning of time period ¢t (2 <t <T),
updating the predicted generation vector
E ={E,, ... E}}, the required load vector k~ with
the scheduled load of the last 7" — ¢ periods;
5 With the updated E and K/, running Algorithm 2 to
obtain the real-time scheduled load a:; and tap
position vector ult during time period t;

&

6 | Adding x, as the t'" column of X*, u, as the t*"
element of u*;
7until t = T;

8 return X* and u*;
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Fig. 4: System Architecture.

electricity price data. The statistics of demand for each cus-
tomer at different times of a day is obtained from the smart
meter readings of two residences subscribed to Waterloo North
Hydro in the Laurelwood neighborhood of Waterloo Region
in Canada [6]. The elastic load takes around 30% of the
total load for each consumer [39], with specific scheduling
constraints for each appliance (e.g., the electricity load of
a charging vehicle can be scheduled between 6:00 pm and
8:00 am). We refer to the proposed day-ahead load scheduling
algorithm as offline scheduling with VR, and the proposed
intra-day adjusting algorithm as online scheduling with VR
in our simulation figures. A whole day is set as a scheduling
period, which is divided into 24 scheduling time slots (i.e.,
1 hour is a scheduling time slot per day). The compared
load scheduling algorithm is proposed by Deng et al. [40],
which only focuses on optimally scheduling the loads without
considering voltage regulation. The data of elastic loads and
inelastic load used in the simulations are listed in Table 1. The
appliance whose type is 0 means that it produces inelastic
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TABLE I: Appliance Usage Pattern

Appliance Operating| Required| Start Type| Scheduling
Power Load Time Con-
(KW) (KWh) straints
Dishwasher | 0.467 1.342 8,12,17 | 1 12-18
Electrical 4.500 16 18 1 18-8
Vehicle
Air Condi- | 2.550 5 19 18-21
tioner
Cloth-dryer | 4.115 4.110 11 1 11-22
Refrigerator | 0.265 1.32 0 0
Lighting 0.1 1.00 18 0
Heating 0.300 7.10 0 0
Compensation| 2 3 9 0
_ | DER (PV/Wind)
= 0.3+
o | PV
= o, | I wind
=
o
0.0 +
0 4 8 12 16 20 24
§4_5__ Real-Time Price
2 1 —— Price
240
Q
O 35
(]
230
D- T T T T T T
0 4 8 12 16 20 24
Hours

Fig. 5: Renewable Generation and Electricity Price.

loads. The simulations are based on Matlab R2012a using
Matpower toolbox on Windows 10.

B. Loading Scheduling and Electricity Price

Fig. 6 shows the comparison of original customer load
and the scheduled customer load by the online scheduling
algorithm. It can be seen from the figure that, by employing
our algorithm, the customer load will be scheduled to reduce
the peak load with high electricity price. Moreover, the online
scheduling algorithm can leverage the generated electricity of
DGs to meet the electricity demands of customers and sell the
residual generated electricity at good price.

Fig. 7 compares the electricity costs of Deng’s method and
the online scheduling algorithm with VR. It can be seen that
the online scheduling algorithm can significantly reduce the
original electricity cost on different days. However, Deng’s
method can achieve lower electricity cost than the proposed
algorithm. That is because Deng’s method only focuses on
achieving the optimal load scheduling without considering the

0.5+
Customer Load
————— Original
9 —— Online Scheduling with VR
Q'_ 0.4+
N—r
©
©
o
-1 034
0.2 T T T T T T
0 4 8 12 16 20 24
Hours
Fig. 6: Scheduled Customer Load.
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4 8 12 16 20
Days

Fig. 7: Comparison of Electricity Cost.

constraint of voltage regulation. It can consequently achieve
an improved electricity cost.

C. Voltage Regulation

Fig. 8 presents the comparison of voltage violation proba-
bilities, under Deng’s method, the offline and online schedul-
ing algorithms with VR. As shown in the figure, since we
jointly consider load scheduling and voltage regulation, our
proposed schemes can provide much lower voltage violation
probabilities for the distribution system than Deng’s method.
Moreover, because the online scheduling can capture more
accurate electricity generation and price information, the vio-
lation probability of online scheduling can be further reduced
when compared to that of offline scheduling.

VIII. CONCLUSION

In this paper, we have studied the joint load scheduling
and voltage regulation problem in a power distribution system
with renewable DGs. Based on the power flow analysis,
the problem has been formulated as a constrained MINLP
problem. We have addressed this problem by decomposing it
into two independent subproblems that can be separately and
efficiently solved. Furthermore, a grid-customer coordinated
load scheduling strategy, including offline and online algo-
rithms, has been proposed to simultaneously achieve improved
load scheduling and voltage regulation. Finally, simulation
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Fig. 8: Comparison of Voltage Violation Probability.

results based on realistic datasets have validated our theo-
retical analysis and demonstrated the high performance of
our proposed strategy. In our future work, we will investigate
the power distribution system where renewable generators are
equipped with distributed electrical energy storages that can
further assist the voltage regulation of the grid.
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