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Abstract—Hybrid interweave-underlay spectrum access in cog-
nitive radio (CR) networks can explore spectrum opportunities
when primary users (PUs) are either active or inactive, which
significantly improves spectrum utilization. The practical wireless
systems such as Long Term Evolution-Advanced (LTE-A), usually
operate at multiple transmission power levels, leading to a
multiple primary transmission power (MPTP) scenario. In such
a case, the two fundamental issues in hybrid interweave-underlay
spectrum access, are to detect the “on/off” status of PUs and to
recognize the operating power level of PUs, which are challenging
due to non-Gaussian transmitted signals. In this paper, we exploit
high order cumulants (HOCs) to efficiently perform spectrum
sensing and power recognition. Specifically, for a given order and
time lag, we first propose a single HOC based spectrum sensing
and power recognition (SCSR) scheme with low computational
complexity, by leveraging minimum Bayes risk criterion. More-
over, we propose a hybrid multiple HOCs based spectrum sensing
and power recognition (HCSR) scheme with multiple orders and
time lags, to further improve the detection performance. Both
the proposed schemes can eliminate the adverse impact of the
noise power uncertainty. Finally, simulation results are provided
to evaluate the proposed schemes.

Index Terms—Cognitive radio, spectrum sensing, high-order
cumulants, multiple hypothesis testing, multiple primary trans-
mission power.

I. INTRODUCTION

With proliferation of wireless devices and emergence of
diverse wireless services, the available wireless spectrum re-
source has become severely limited. Meanwhile, conventional
fixed spectrum allocation policy suffers from low spectrum
utilization. Cognitive radio (CR), first proposed in [1], is
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deemed as a promising approach to alleviate the insufficiency
of spectrum utilization. The fundamental concept for CR
networks has been featured as dynamic spectrum access, which
allows secondary users (SUs) to opportunistically exploit the
spectrum bands that are not heavily occupied by the licensed
users [2]–[4].

The dynamic spectrum access strategies are mainly classi-
fied into three categories: interweave, underlay, and overlay
[5]. The interweave approach is based on the idea of oppor-
tunistic communication that SUs exploit the spectrum holes to
communicate when the licensed spectrum bands are not used
by PU [6]. In the case of underlay paradigm, SUs can always
access to the spectrum band if the interference caused to PU is
below a given threshold [7]. In overlay systems, the knowledge
about the primary network beyond the spectrum occupancy
might be obtained at SUs, so that SUs could maintain or
further improve the communications of primary network while
obtain some additional bandwidth for their own transmissions
[8]. Note that these three spectrum access strategies have dis-
tinct advantages in improving spectrum utilization. Recently,
hybrid schemes that can combine the advantages of different
approaches have drawn increasing attentions [9]–[14]. In [9],
a hybrid underlay/overlay transmission mode that the access
modes are switched based on the activities of PUs, was
investigated to improve the network throughput and guarantee
the SUs’ quality-of-service (QoS) requirements. Then, in [10],
an optimal power allocation strategy was proposed for hybrid
overlay/underlay spectrum sharing networks, where the SUs
join the power auction organized by the relay and bid for
maximizing the utility. In [11]–[13], some promising hybrid
interweave-underlay spectrum access strategies were studied
to utilize the licensed spectrum band more intelligently. In
hybrid interweave-underlay spectrum access, the SUs flexibly
switch between interweave and underlay schemes according
to the spectrum sensing results of the PU’s state. If the PU is
detected as absent, SUs adopt interweave mode with a higher
transmission power to achieve a higher transmission rate. If the
PU is detected as present, SUs switch to the underlay mode
to transmit with a low power to avoid causing harmful inter-
ference to the PU. With hybrid interweave-underlay spectrum
access, spectrum utilization can be further improved.

However, almost all these works [6]–[13] only consider PU
either being absent or transmitting at a constant power level.
In practice, PUs usually operate at different power levels to
adapt to the surrounding environments or rate requirements
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[15]–[17], as regulated in many standards, e.g., IEEE 802.11
series [18], long-term evalution (LTE) standard [19], and LTE-
Advanced standard [20]. When PU can transmit at multiple
transmission power levels (i.e., the multiple primary transmis-
sion power (MPTP) scenario), PU’s interference temperature
could vary under different transmission power levels. If SUs
switch to the underlay mode to perform transmission with
a constant power level, they may cause harmful interference
to the PU or waste spectrum opportunities when PU actually
operates at a low or high transmission power, respectively. In
this scenario, SUs need to know PU’s interference temperature
by sensing the power level of PU, and then adjust their
transmission power to fully exploit spectrum opportunities
while preventing PU from being harmfully interfered. Hence,
accurately detecting the power level that the PU used should
be taken into account when performing spectrum sensing,
which is consistent with the original concept of full cognition
introduced by Mitola [21].

Spectrum sensing should not only detect the “on/off” status
of PU but also recognize the power level when PU has multi-
ple transmission power level. Some preliminary works under
MPTP scenarios have been studied. The authors in [22] firstly
consider the spectrum sensing and power level recognition
in MPTP scenarios, where energy detector is derived as the
optimal detector for both detecting the “on/off” status of PU
and recognizing the power level of PU under the additive
white Gaussian noise (AWGN) conditions. However, it needs
to know the accurate noise power, which may not be available
to SUs in practice. In our previous work [23], a maximum
eigenvalue based sensing and power recognition method for
MPTP scenarios is proposed, where multiple antennas are
employed to assist SUs to recognize the power level of PU.
Note that both [22] and [23] are based on the assumption
that the transmitted signals from PU are Gaussian process.
While, in many applications [24]–[26], the transmitted signals
can be non-Gaussian process such as radar signals, sonar sig-
nals, speech, digital modulation signals and etc. For instance,
the phase-shift keying (PSK) and M -quadrature amplitude
modulation (M -QAM) modulated signals have finite discrete
constellations and finite constant amplitude, making the signal
distributions far from Gaussian. Therefore, the non-Gaussian
signal detection should be taken into account in a realistic CR
environment.

To deal with the non-Gaussian input, several spectrum
sensing schemes have been proposed [27]–[30]. In [27], the au-
thors investigates frequency domain spectrum sensing methods
based on analysis of the discrete Fourier transform of received
signals, which allow the PU’s signal to be non-Gaussian.
In [28], the authors utilize a short-time estimation of third-
order cumulant as the test statistic to detect the signal feature.
Whereas, only a third-order cumulant of a certain order is used
to design the sensing algorithm. Therefore, it fails to exploit
the rich statistical information of the received signal. In [29],
the authors investigate a detection algorithm of non-Gaussian
signals by leveraging the integrated polyspectrum. However,
the estimation of integrated polyspectrum is more complicated
than that of HOC. In [30], the authors study an optimized high
order spectral based detection techniques for non-Gaussian

signal, where a F -test statistic is derived. However, the channel
state information is not considered, which makes it only an
enlightening work for spectrum sensing by using the high
order statistics.

In this paper, we investigate spectrum sensing and power
recognition in MPTP scenarios considering the non-Gaussian
transmitted signals. We propose two spectrum sensing
schemes, namely single high-order cumulant based spectrum
sensing and power recognition (SCSR) scheme and hybrid
multiple high-order cumulants based spectrum sensing and
power recognition (HCSR) scheme. For a given order and
time lag, the SCSR sensing scheme is proposed based on the
minimum Bayes risk criterion. The SCSR sensing scheme has
low computational complexity since only the variance of single
order cumulant is required to be estimated when calculating
the lower bounds and upper bounds of decision regions of all
hypotheses. Then, HCSR sensing scheme is proposed with
multiple orders and time lags, so that the rich statistical
information of the primary signal can be excavated. The HCSR
sensing scheme provides more accurate sensing performance
at the cost of increasing the computational complexity. Never-
theless, it allows for a compromise between performance and
complexity. It is well known that cumulants higher than second
order are zero for Gaussian random process. Hence, both the
SCSR scheme and HCSR scheme can extract a non-Gaussian
signal from Gaussian noise even when the noise is colored.
Moreover, the proposed schemes require no information about
exact noise power, which makes them robust to noise power
uncertainty. For a specific channel realization, closed form
expressions of decision regions as well as the closed form
sensing performance are derived. Finally, simulation results
are provided to validate and evaluate the proposed schemes.

The remainder of this paper is organized as follows: In
section II, we formulate the spectrum sensing and power
recognition problem of MPTP scenario as well as recall the
definitions and estimation of cumulants. Section III presents
the spectrum sensing and power recognition scheme based
on single high-order cumluant, and provides the performance
analysis and some compelling discussions. Moreover, hybrid
multiple high-order cumulants based spectrum sensing and
power recognition scheme are presented in section IV. Simu-
lation results are provided in Section V, and the conclusions
are drawn in Section VI.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

Consider a hybrid interweave-underlay spectrum access
networks, where PU could either be absent or operate at one
of the discrete power levels Pi, i = 1, 2, · · · , L. Without
loss of generality, these power levels are arranged as P1 <
P2 < · · · < PL. Suppose that once a power level is chosen,
it will be used for a certain period, during which SU could
perform spectrum sensing and power recognition as well as the
subsequent transmission. The n-th received signal samples at
SU are given by:

H0 : x(n) = w(n)

Hi : x(n) =
√
Pih(n)s(n) + w(n), i = 1, · · · , L

(1)
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where s(n) is the non-Gaussian signal transmitted from the
PU, w(n) is the additive zero-mean complex colored Gaussian
noise, and h(n) represents the flat Rayleigh fading channel
from the PU to the SU. In addition, H0 indicates the PU is
absent, and Hi indicates the PU is operating with transmission
power Pi. The flat Rayleigh fading channel h(n) can be
represent as |h|ejφ, where |h| and φ are the gain and phase
elements, respectively. During one sensing period with N
samples, the gain and phase of Rayleigh fading channel are
assumed constant [31]. In this paper, we aims to derive
the detection probability and discrimination probability for a
specific channel realization.1 Moreover, in practical commu-
nication systems, the channel information can be obtained at
the SU through channel estimation, feedback using the channel
reciprocity or the cooperation between the PU and SU.

The noise at the SU may be colored due to oversampling
or imperfections in filtering. The colored Gaussian noise w(n)
can be regarded as the output of a single pole recursive filter
stimulated by a white Gaussian noise (WGN) according to [32,
Chap 9]. It can be expressed as w(n) = −aw(n− 1) +u(n),
where a (|a| < 1) is the correlation strength of the noise w(n)
and u(n) is WGN with variance σ2

u. Additionally, the colored
Gaussian noise w(n) is assumed to be independent with the
PU’s signal s(n).

The prior probability of each state of the PU is defined
as Pr(Hi), i = 0, 1, · · · , L. Define Hon =

⋃L
i=1Hi as the

hypothesis that the PU is active. Then, the prior probability of
Hon is Pr(Hon) =

∑L
i=1 Pr(Hi). In contrast, the inactive state

of the PU, denoted by Hoff , H0, has the prior probability
Pr(Hoff) = Pr(H0). Assume that the SU has the knowledge
of transmission power levels of PU as they are normally
predefined and discrete values2.

B. Estimation of Cumulants

For a random vector x = [x1, x2, · · · , xk], the cumulants
is defined as the coefficients in the Taylor series expansion of
the log of the its characteristic function as follows:

ck(x) , cum{x1, x2, · · · , xk}

, (−j)k · ∂
k ln Φ(ω1, · · · , ωk)

∂ω1∂ω2 · · · ∂ωk

∣∣∣∣
ω1=···=ωk=0

,
(2)

where Φ(ω1, · · · , ωk) , E{ejω1x1+···+jωkxk} is the charac-
teristic function of vector x. Based on the definition of cumu-
lants for a random vector, the cumulants for a discrete-time sta-
tionary complex process x(n) with lags τ = (τ1, · · · , τk−1),

1To evaluate the performance from a long-term perspective during which
the channel gain may vary, an average detection probability and discrimination
probability can be calculated by taking average over the probability density
function of channel gain. While, in this paper, we focus on deriving the
detection probability and discrimination probability for a specific channel
realization.

2Or, the user’s behavior can be obtained alternatively by statistically
learning from a long run.

is defined by replacing [x1, x2, · · · , xk] with [x(n), · · · , x(n+
τl−1), x∗(n+ τl), · · ·x∗(n+ τk−1)]

ckx(τ ) , cum

x(n), · · · , x(n+ τl−1)︸ ︷︷ ︸
l

× x∗(n+ τl), · · · , x∗(n+ τk−1)︸ ︷︷ ︸
k−l

 ,

(3)

where ∗ represents the conjugation operation and 0 ≤ l ≤ k.
Note that for a given order k, different l will lead to different
kth-order cumulants of the complex-valued process. Neverthe-
less, the following analysis is applicable to each realization of
l.

In actual wireless communication applications, usually, fi-
nite samplings of the primary signal can be used. According
to [33, Chap 2], the kth-order sample cumulant of x(n), n =
0, · · · , N − 1 is defined as:

ĉkx(τ ) =
∑
v

(−1)(p−1)(p− 1)!m̂v1x · · · m̂vpx, (4)

where (v1, · · · , vp) denotes a partition of {1, 2, · · · , k}, p is the
size of each partition, and the sum extends over all partitions
of the form v1, · · · , vp. Additionally, m̂kx is the estimate of
the kth-order sample moment of x(n) which can be calculated
as

m̂kx(τ ) =
1

N

N−1∑
n=0

x(n) · · ·x(n+ τl−1)︸ ︷︷ ︸
l

× x∗(n+ τl) · · ·x∗(n+ τk−1)︸ ︷︷ ︸
k−l

.
(5)

If x(n) satisfies the following assumption:

Assumption 1.

∞∑
τ1,··· ,τk−1=−∞

|τickx(τ )| < +∞, i ∈ {1, · · · , k − 1}. (6)

The sample moment m̂kx(τ ) is asymptotically unbi-
ased, mean-square sense consistent, i.e., limN→∞ m̂kx(τ ) =
mkx(τ ). Moreover,

√
N [m̂kx(τ )−mkx(τ )] is asymptoti-

cally complex normal [34]. The asymptotic covariance of√
Nm̂k1x(τ ) and

√
Nm̂k2x(ρ) can be expressed as

Qk1,k2(τ ,ρ) , lim
N→∞

Ncov{m̂k1x(τ ), m̂∗k2x(ρ)} = S2fτ,ρ(0),

(7)

where S2fτ,ρ(ω) ,
∞∑

ξ=−∞
cov{m̂k1x(τ ), m̂∗k2x(ρ)}e−jωξ rep-

resents the cross spectrum of m̂k1x(τ ) and m̂∗k2x(ρ). In
practice, the estimated covariance is used rather than the
asymptotic covariance, and the estimate of covariance can be
expressed as [35]:

Q̂k1,k2(τ ,ρ) ,
∑
ξ

ds(ξ)
1∑

n
dm( nN )

∑
n

dm(
n+ ξ

N
)dm(

n

N
)

× [fτ (n+ ξ)− m̂fτ ][f∗ρ(n)− m̂∗fρ ],
(8)
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where ds(ξ) is a symmetric real valued spectral window with
ds(0) = 1, dm(n) is a tapering window of bounder variations
that vanishes for |n| > 1, and fτ (n) and m̂fτ are defined as:

fτ (n) , x(n)x(n+ τ1) · · ·x(n+ τk−1), (9)

m̂fτ ,

∑
n
dm( nN )fτ (n)∑
n
dm( nN )

. (10)

According to [34], ĉkx(τ ) is also asymptotically unbiased,
mean-square sense consistent, and

√
N [ĉkx(τ )− ckx(τ )] is

asymptotically complex normal, if x(n) satisfies Assump-
tion 1. The estimated covariance between

√
Nĉk1x(τ ) and√

Nĉk2x(ρ) can be calculated using (8) as

T̂k1,k2(τ ,ρ) =
∑
µ

∑
v

(−1)p+q−2(p− 1)!× (q − 1)!

×
p∑

l1=1

q∑
l2=1

p∏
m1=1
m1 6=l1

m̂µm1x

q∏
m2=1
m2 6=l2

m̂µm2x
Q̂l1,l2(τl1 , τl2).

(11)

III. SPECTRUM SENSING AND POWER RECOGNITION
BASED ON SINGLE HOC

In this section, we propose a spectrum sensing and power
recognition algorithm based on single high-order cumulant for
non-Gaussian inputs in colored Gaussian noise scenario. Based
on N received samples in one sensing period, the estimate of
ckx(τ ) are

H0 : ĉkx(τ ) = ckw(τ ) + ε
(N)
kx (τ ),

Hi : ĉkx(τ ) = P
k/2
i |h|kejφ(2l−k)cks(τ ) + ckw(τ ) + ε

(N)
kx (τ ),

(12)
where ε(N)

kx (τ ) denotes the estimation error that will be van-
ished asymptotically as N → ∞. If w(n) is a Gaussian ran-
dom process, its cumulants higher than second order are zero
whereas that of a non-Gaussian random process are not. When
x(n) is zero-mean (if not, one can estimate and subtract the
mean), given a certain k and lag τ with τ = [τ1, · · · , τk−1],
we assume cks(τ ) exist while ckw(τ ) vanish. Hence, Eq. (12)
can be expressed as

H0 : ĉkx(τ ) = ε
(N)
kx (τ ),

Hi : ĉkx(τ ) = P
k/2
i |h|kejφ(2l−k)cks(τ ) + ε

(N)
kx (τ ).

(13)

As mentioned above,
√
N [ĉkx(τ )− ckx(τ )] is asymptotically

normal, and the estimated variance σ2
c of ĉkx(τ ) can be

calculated as σ2
c = 1/N ·T̂k,k(τ , τ ) by using (11). To simplify

the notation, let us denote |h|kejφ(2l−k)cks(τ ) as cks,h(τ ).
Moreover, define P0 = 0 as the equivalent transmission power
level when PU is absent. Then, the PDF of ĉkx(τ ) under
hypothesis Hi can be expressed as

ĉkx(τ ) ∼ CN (P
k/2
i cks,h(τ ), σ2

c ). (14)

In MPTP scenarios, the primary target is to detect the
presence or the absence of PU signal, while the secondary
target is to recognize the power-level of PU transmitter. Hence,
it is necessary to first verify the hypothesis Hon/Hoff and then
to recognize which Hi, i ≥ 1 is true when Hon is detected.

A. Detection of PU’s Presence

The ratio of the posterior probabilities between two hypoth-
esis can be written as

ξ(ĉkx(τ )) =
Pr(Hon|ĉkx(τ ))

Pr(Hoff |ĉkx(τ ))
=

L∑
i=1

Pr(Hi)p(ĉkx(τ )|Hi)

Pr(H0)p(ĉkx(τ )|H0)

=
L∑
i=1

Pr(Hi)
Pr(H0)

exp


P

k/2
i {c∗ks,h(τ )ĉkx(τ )+cks,h(τ )ĉ∗kx(τ )}

σ2
c

−P
k
i |h|

2k|cks(τ )|2
σ2
c


=

L∑
i=1

Pr(Hi)
Pr(H0)

exp


2P

k/2
i ×Re{c∗ks,h(τ )·ĉkx(τ )}

σ2
c

−P
k
i |h|

2k|cks(τ )|2
σ2
c

 .

(15)
It can be seen that ξ(ĉkx(τ )) is strictly increasing over
Re{c∗ks,h(τ ) · ĉkx(τ )}, and the decision rule can be made as
follows:

TSCSR = Re{c∗ks,h(τ ) · ĉkx(τ )}
Hon

≷
Hoff

θ, (16)

where θ is the pre-determined parameter. It is obvious
that, TSCSR obeys Gaussian distribution under the hypothesis
Hi, i ∈ 0, 1, · · · , L, i.e.,

Hi : TSCSR ∼ N (P
k/2
i |h|2k|cks(τ )|2, |h|2k|cks(τ )|2σ2

c ).
(17)

The false alarm probability Prfa and the detection probability
Prd can be calculated as below, respectively,

Prfa(θ) = Pr(Hon|Hoff) = Pr(TSCSR > θ|Hoff)

= Q

(
θ

|h|k|cks(τ )| · σc

)
,

Prd(θ) = Pr(Hon|Hon) = Pr(TSCSR > θ|Hon)

=
L∑
i=1

Pr(Hi)
Pr(Hon)

Q

(
θ − P k/2i |h|2k|cks(τ )|2

|h|k|cks(τ )| · σc

)
, (18)

where Q(·) is the Complementary Cumulative Distribution
Function (CCDF), i.e., the right tail probability of the standard
normal distribution.

Denote θ(·)
on/off as the decision threshold for detecting the

“on/off” status of PU. The superscript indicates which criterion
is used, e.g., “NP” indicates Neyman-Pearson criterion is
used while “MAP” indicates maximum a posterior probability
criterion is adopted. When the objective is to maximize the
detection probability Prd while keeping the false alarm proba-
bility Prfa under certain ε1, NP criterion should be used. Then,
we can the calculate the threshold θNP

on/off for the “on/off”
status of PU as

θNP
on/off = |h|k|cks(τ )|σc ·Q−1(ε1), (19)

where Q−1(·) is the inverse function of Q(·). Then the
detection probability Prd can be calculated as

Prd =
L∑
i=1

Pr(Hi)
Pr(Hon)

Q

(
Q−1(ε1)− P

k/2
i |h|k|cks(τ )|

σc

)
.

(20)
When the objective is to minimize the probability of error

Pre = Pr(Hon|Hoff)Pr(Hoff) + Pr(Hoff |Hon)Pr(Hon), the
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MAP detection criterion should be applied. In such case, we
compare the ratio ξ(ĉkx(τ )) in (15) with the value 1, which
can be formulated as

ξ(ĉkx(τ )) =
Pr(Hon|ĉkx(τ ))

Pr(Hoff |ĉkx(τ ))

Hon

≷
Hoff

1. (21)

Taking a deformation of (21), we have

∆ =
L∑
i=1

Pr(Hi) exp

{
2P

k/2
i TSCSR − P ki |h|2k|cks(τ )|2

σ2
c

}

−Pr(H0)
Hon

≷
Hoff

0.

(22)

The threshold θMAP
on/off for detecting the presence or the absence

of the PU can be calculated by setting ∆ = 0. As ∆ is strictly
increasing with TSCSR, ∆ has at least one value below 0 as
long as Pr(H0) is large enough. Hence, there exists one and
only one threshold θMAP

on/off that can satisfy

TSCSR

Hon

≷
Hoff

θMAP
on/off . (23)

The threshold θMAP
on/off in MAP criterion can be calculated

numerically for detecting whether the PU is present or not.
Thus, the detection probability Prd in MAP criterion can be
obtained by substituting θMAP

on/off into Eq. (18).
Remark 1. We introduce two ways to obtain the threshold

for detecting “on/off” status of the PU, which can be chosen on
the user’s demands. In the following, we choose MAP criterion
but the results can be easily extended to the case with NP
criterion.

B. Recognition of PU’s Transmission Power Level
When the PU is detected as present, the next step is to

recognize at which power level the PU transmitter is operating.
Since the PU has more than one transmission power levels,
the SU might make various errors in this process. In order
to distinguish the PU’s transmission power level, which is
formulated as multiple hypothesis testing problem, the Bayes
risk is employed. Define Kij as the cost when the SU claims
the PU operates on power level Pi while the PU is actually
transmitting on power level Pj and denote this situation as
Hi|Hj . Then, the expected cost or Bayes risk becomes

R =
L∑
i=1

L∑
j=1

KijPr(Hi|Hj ; Ĥon)Pr(Hj ; Ĥon), (24)

where Ĥon denotes that the SU has detected the presence of
the PU.

Theorem 1. The Bayes risk R is minimized if the following
decision rule is made.

i∗ = arg min
i
Ki(ĉkx(τ )), (25)

where Ki(ĉkx(τ )) =
L∑
j=1

KijPr(Hj |ĉkx(τ )). Particularly,

when the values of cost Kij are assigned as

Kij =

{
0, i = j;

1, i 6= j,
(26)

then the decision rule turns into MAP criterion shown as
follow, where H0 is not included in.

i∗ = arg max
i

Pr(Hi|ĉkx(τ ); Ĥon). (27)

Proof: See Appendix A.
Using Bayes rule, the posterior probability of hypothesis Hi

can be written as

Pr(Hi|ĉkx(τ ); Ĥon) =
p(ĉkx(τ )|Hi; Ĥon)Pr(Hi|Ĥon)

p(ĉkx(τ )|Ĥon)

=
p(ĉkx(τ )|Hi)Pr(Hi)
p(ĉkx(τ )|Ĥon)Pr(Ĥon)

. (28)

We define the equivalent region of ĉkx(τ ) for {TSCSR >
θMAP

on/off} as {ĉkx(τ ) ∈ Ron}. Then, the MAP criterion can
be rewritten as

i∗ = arg max
i
p(ĉkx(τ )|Hi)Pr(Hi), ĉkx(τ ) ∈ Ron, (29)

where Ron represents the region where the PU has been
detected as present. For a hypothesis pair (Hi,Hj),∀i, j ≥ 1,
Hi is determined rather than Hj if

p(ĉkx(τ )|Hi)Pr(Hi) > p(ĉkx(τ )|Hj)Pr(Hj), ĉkx(τ ) ∈ Ron.
(30)

Remark 2. When using MAP criterion for detecting the
PU’s transmission power level, it is independent with how
Ĥon is made. Hence, we can apply either MAP criterion or
NP criterion in checking whether the PU is present or not in
step one without affecting Eq. (30).

With Eq. (14), we can expand Eq. (30) as

Pr(Hi)
Pr(Hj)

exp


2(P

k/2
i −Pk/2

j )TSCSR

σ2
c

− (Pk
i −P

k
j )|h|2k|cks(τ )|2

σ2
c

 > 1. (31)

Then, we calculate the decision region D(Hi) of hypothesis
Hi from Eq. (31) by converting it into

(P
k/2
i − P k/2j )TSCSR >

σ2
c

2
ln

[
Pr(Hj)
Pr(Hi)

]
+

(P ki − P kj )|h|2k|cks(τ )|2

2
. (32)

Define

Θ(i, j) ,

σ2
c

2 ln
[

Pr(Hj)
Pr(Hi)

]
+

(Pk
i −P

k
j )|h|2k|cks(τ )|2

2

P
k/2
i − P k/2j

. (33)

If i > j, i.e., Pi > Pj , we can derive

TSCSR > Θ(i, j), ∀i > j; (34)

If i < j, i.e., Pi < Pj , then we have

TSCSR < Θ(i, j), ∀i < j. (35)

For 1 < i < L, the lower bound of D(Hi) should be
max
1≤j<i

Θ(i, j) and the upper bound of D(Hi) should be

min
i<j≤L

Θ(i, j). Moreover, the MAP detection is defined on the

domain ĉkx(τ ) ∈ Ron, i.e., TSCSR > θMAP
on/off , and hence

all decision regions of non-zero power levels should stay in
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(θMAP
on/off ,+∞). In summary, the decision regions of hypotheses
Hi’s, i ∈ {1, 2, · · · , L} can be expressed as (36) shown at the
bottom of this page.

For hypothesisH0, the decision region is (−∞, θMAP
on/off ]. De-

fine θi, i ∈ {1, 2, · · · , L} as the threshold between D(Hi−1)
and D(Hi). Obviously, there is θ1 , θMAP

on/off . Moreover,
we define θ0 , −∞, and θL+1 , +∞ for consistence
and completeness. Note that the establishment of the lower
bound and upper bound of Hi’s is not related to the noise
power, hence the proposed SCSR method is robust to noise
uncertainty.

Remark 3. Compared with the traditional spectrum sensing
scheme that has only one threshold, multiple thresholds are
required in the MPTP scenario, to distinguish the different
transmission power levels, as shown in Fig. 1. If the test
statistics is no larger than θ1, the SU declares that the PU
is absent, i.e., the channel is idle. When the test statistics falls
into the decision region (θi, θi+1], the SU claims that the PU
is working on transmission power Pi.

There exists an interesting phenomenon in MPTP scenarios
where some primary power levels could not be detected.
Namely, for a certain decision region D(Hi0), its lower bound
may be greater than the upper bound, i.e.,

max{θMAP
on/off , max

1≤j<i0
Θ(i0, j)} > min

i0<j≤L
Θ(i0, j). (37)

Once this phenomenon happens, the decision region D(Hi0)
is empty and the power level Pi0 can never be detected. We
name this phenomenon as power mask effect. There are many
reasons giving rise to the power mask effect, and we give two
main reasons as follows:

• If the transmission power level Pi0 is seldom used by the
PU, i.e., the priori probability of Pr(Hi0) is very small,
then the power level Pi0 may be easily ignored by the
SU.

• If Pi0 is very close to the adjacent power level Pi0−1 and
Pi0+1, then Pi0 is very likely to be masked by Pi0−1 or
Pi0+1 whenever the instantaneous noise influence is large.

Remark 4. When a special case that Pr(Hi) =
Pr(Hj), ∀i, j ∈ {1, 2, · · · , L} is considered in MPTP sce-
narios, we have

Θ(i, j) = Θ(j, i) =
(P

k/2
i + P

k/2
j )|h|2k|cks(τ )|2

2
, (38)

which is strictly increasing with Pj for any Pi. Then, we have

max
1≤j<i

Θ(i, j) = Θ(i, i− 1) < Θ(i, i+ 1) = min
i<j≤L

Θ(i, j).

(39)

Hence, in this special case, the non-zero power levels cannot
mask each other, and the power mask effect may only happen
when P0 masks the non-zero power levels.

Fig. 2 shows an example to illustrate the power mask effect.
There are three non-zero power levels (i.e., P1, P2, P3), and
the corresponding priori probabilities Pr(Pi), i = 1, 2, 3 are set
as 0.1, 0.3, 0.2, respectively. Therefore, the priori probability
Pr(P0) is 0.4. The decision thresholds and decision regions
for each hypothesis Hi, i = 0, 1, 2, 3 are demonstrated in the
figure. For hypothesis H1, its lower bound θMAP

on/off is calculated
by Eq. (22), and shown in Fig. 2 as the intersection of the
hypothesis H0 and Hon. Its upper bound is derived as Θ(1, 2),
and is shown as the intersection of the hypothesis H1 and H2.
It can be seen that the lower bound of decision region D(H1)
is greater than its upper bound, and hence the transmission
power P1 cannot be detected due to the power mask effect.
When P1 is masked, we set the threshold θ2 = θ1, so the
decision region D(H1) is empty.

Different with the traditional binary hypothesis detection,
it is not adequate to only evaluate the detection probability
Prd in MPTP scenarios. Therefore, we define Pr(Hi|Hj) as
the probability that SU claims PU operating at power level Pi
while PU actually operates at Pj . Then, we have

Pr(Hi|Hj) =

∫ θi+1

θi

p(TSCSR|Hj)dTSCSR

=Q

(
θi − P k/2j |h|2k|cks(τ )|2

|h|k|cks(τ )|σc

)

−Q

(
θi+1 − P k/2j |h|2k|cks(τ )|2

|h|k|cks(τ )|σc

)
. (40)

Additionally, for the MPTP scenario, we introduce a new
probability to describe the discrimination capability of SU,
which should be defined as

Prdis1 =
1

Pr(Hon)

L∑
i=1

Pr(Hi)Pr(Hi|Hi). (41)

Remark 5. Prfa and Prd can also be calculated using the
metric Pr(Hi|Hj):

Prfa = Pr(Hon|Hoff) =

L∑
i=1

Pr(Hi|H0); (42)

Prd = Pr(Hon|Hon) =
1

Pr(Hon)

L∑
i=1

L∑
j=1

Pr(Hj |Hi)Pr(Hi).

(43)

For the computational complexity of SCSR scheme, it
comes from two parts: computation of sample cumulant ĉkxτ

D(Hi) =


TSCSR ∈ (θMAP

on/off , min
1<j≤L

Θ(1, j)] , i = 1;

TSCSR ∈ (max{θMAP
on/off , max

1≤j<i
Θ(i, j)}, min

i<j≤L
Θ(i, j)] , 1 < i < L;

TSCSR ∈ (max{θMAP
on/off , max

1≤j<L
Θ(L, j)},+∞) , i = L.

(36)
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Fig. 1. Multiple thresholds for multiple hypothesis detection.
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and computation of the covariance of the sample cumulant.

For the first part, V (k−1)N multiplications and
V∑
i=1

pi(N−1)

additions are needed, where V is the number of the partitions
of {1, 2, · · · , k}, and pi is the number of the parts in each

partition. For the second part,
V∑
i=1

V∑
j=1

pi∑
l1=1

qj∑
l2=1

[(
pi∑

m1=1
m1 6=l1

µm1
+

qj∑
m2=1
m2 6=l2

µm2)N + (µl1 + µl2)T 2 + 3T ] multiplications

and
V∑
i=1

V∑
j=1

pi∑
l1=1

qj∑
l2=1

((pi + qj − 2)(N − 1) + T (T + 4))

additions are needed, where µi is the size of ith partition of
{1, 2, · · · , k}, and T is the window length of ds(ξ). Note
that the computational complexity of SCSR scheme mainly
depends on the second part. While in the special but realistic
case where Pr(Hi) = Pr(Hj), the covariance of ĉkx(τ ) is
no longer needed when pre-calculating the lower bound and
upper bound of each hypothesis. Hence, the proposed SCSR
scheme has very low computational complexity in this case.

IV. SPECTRUM SENSING AND POWER RECOGNITION
BASED ON MULTIPLE HOCS

In this section, we examine the hybrid multiple high-order
cumulants based spectrum sensing and power recognition
(HCSR) scheme where multiple orders and lags are used. We
choose multiple different orders and time lags to make use of
the rich statistical information contained in the primary signal
so that the HCSR scheme is superior and more flexible. Com-
pared with the SCSR scheme, HCSR method achieves a more
reliable sensing and power recognition performance although

it may increase the computational complexity. Nevertheless,
HCSR method allows us to make a compromise between
performance and complexity. Given {k1, · · · , kM} and M lag
vectors {τ1, · · · , τM} with τi = [τ1, · · · , τki−1], we define
a 1 ×M vector Ckx(T ) , [ck1x(τ1), · · · , ckMx(τM )] and its
estimate Ĉkx(T ) can be written as

Ĉkx(T ) , [ĉk1x(τ1), · · · , ĉkMx(τM )]. (44)

When using multiple different orders and different lags, Eq.
(13) yields

H0 : Ĉkx(T ) = E(N)
kx (T ),

Hi : Ĉkx(T ) = P
k/2
i Cks(T ) + E(N)

kx (T ),
(45)

where Cks(T ) and E(N)
kx (T ) are respectively defined as

Cks(T ) = [ck1s,h(τ1), · · · , ckMs,h(τM )],

E(N)
kx (T ) = [ε

(N)
k1x

(τ1), · · · , ε(N)
kMx(τM )],

and ckis,h(τi) is denoted by |h|kiejφ(2li−ki)ckis(τ1). Notice
that,
√
N [Ĉkx−Ckx] =

√
N [Ĉkx−P k/2i Cks] 3 is asymptotically

normal since
√
N [ĉkx(τ )− ckx(τ )] is asymptotically normal,

and the (m,n)th entry of the covariance matrix Σ of Ĉkx can
be calculated by using Eq. (11). Then, the PDF of Ĉkx can be
expressed as

p(Ĉkx|Hi) =
1

πM |Σ|

× exp

{
−
(
Ĉkx − P k/2i Cks

)
Σ−1

(
Ĉkx − P k/2i Cks

)H}
.

(46)

A. Detection of the PU’s Presence

To find the status whether PU is active on its licensed
spectrum or not, it is necessary to check the following ratio

ψ(Ĉkx) =
Pr(Hon|Ĉkx)

Pr(Hoff |Ĉkx)
=

L∑
i=1

Pr(Hi)p(Ĉkx|Hi)

Pr(H0)p(Ĉkx|H0)

=
L∑
i=1

Pr(Hi)
Pr(H0)

exp

{
P

k
2
i (ĈkxΣ−1CHks + CksΣ−1ĈHkx)

−P ki CksΣ−1CHks

}
.

(47)

Since ψ(Ĉkx) is increasing with ĈkxΣ−1CHks + CksΣ−1ĈHkx,
the decision rule can be

THCSR = ĈkxΣ−1CHks + CksΣ−1ĈHkx
Hon

≷
Hoff

γ, (48)

where γ is the pre-determined threshold. Note that the test
statistic derived here is different from single HOC based sens-
ing and recognition algorithm. Nevertheless, THCSR also obeys
Gaussian distribution under the hypothesisHi, i ∈ 0, 1, · · · , L,
i.e.,

Hi : THCSR ∼ N (2P
k/2
i CksΣ−1CHks, 4CksΣ−1CHks). (49)

3For easy expression, Ĉkx, Ckx and Cks are used to respectively indicate
Ĉkx(T ), Ckx(T ) and Cks(T ) ignoring the delay parameter vector T .
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With Eq. (48) and Eq. (49), the false alarm probability and
detection probability can be derived as

Prfa(γ) = Pr(Hon|Hoff) = Q

 γ

2
√
CksΣ−1CHks

 , (50)

Prd(γ) = Pr(Hon|Hon)

=
L∑
i=1

Pr(Hi)
Pr(Hon)

Q

γ − 2P
k/2
i CksΣ−1CHks

2
√
CksΣ−1CHks

. (51)

If NP criterion is used, we control the false alarm probability
Prfa under certain ε2, and hence the threshold γNP

on/off can be
calculated as

γNP
on/off = 2

√
CksΣ−1CHksQ

−1(ε2). (52)

Then, the detection probability of HCSR method is derived as

Prd =
L∑
i=1

Pr(Hi)
Pr(Hon)

Q

(
Q−1(ε2)− P k/2i

√
CksΣ−1CHks

)
.

(53)
If MAP criterion is used, we will compare the ratio ψ(Ĉkx)

with the value 1, which can be shown as

ψ(Ĉkx) =
Pr(Hon|Ĉkx)

Pr(Hoff |Ĉkx)

Hon

≷
Hoff

1. (54)

With Eq. (49), we can rewrite Eq. (54) as follows:

Φ =
L∑
i=1

Pr(Hi) exp
{
P
k/2
i THCSR − P ki CksΣ−1CHks

}
−Pr(H0)

Hon

≷
Hoff

0. (55)

The threshold γMAP
on/off can be calculated by setting Φ = 0.

As Φ is strictly increasing with THCSR, Φ has at least one
value below 0 as long as Pr(Hoff) is large enough. Similar
to the derivation of θMAP

on/off , the threshold γMAP
on/off can be also

calculated numerically.

B. Recognition of PU’s Transmission Power Level

After PU is detected, power recognition is performed. As
verified in section III-B, from MAP criterion, the optimal
decision is “i” if

p(Ĉkx|Hi)Pr(Hi) > p(Ĉkx|Hj)Pr(Hj), Ĉkx ∈ Ron (56)

Substituting (46) into (56), we have

(P
k/2
i − P k/2j )THCSR > ln

[
Pr(Hj)
Pr(Hi)

]
+ (P ki − P kj )CksΣ−1CHks. (57)

Define

Ξ(i, j) ,
ln
[

Pr(Hj)
Pr(Hi)

]
+ (P ki − P kj )CksΣ−1CHks
P
k/2
i − P k/2j

. (58)

As P1 < P2 < · · · < PL, then for j = 1, · · · , i− 1, Pi > Pj ,
while for j = i + 1, · · · , L, Pi < Pj . According to Eq. (57),
we can derive

max
1≤j<i

Ξ(i, j) < THCSR < min
i<j≤L

Ξ(i, j). (59)

Hence, the decision regions of hypothesis Hi, i ∈
{1, 2, · · · , L} can be calculated as (60) shown at the bot-
tom of this page. For hypothesis H0, the decision region is
(−∞, γMAP

on/off ]. Define γi, i ∈ {1, 2, · · · , L} as the threshold
between R(Hi−1) and R(Hi). Then, we have γ1 , γMAP

on/off .
Moreover, we define γ0 , −∞, γL+1 , +∞ for consistence
and completeness. We can note that the noise power is not
required when establishing the lower bound and upper bound
ofHi’s, hence HCSR method is robust to the noise uncertainty.

The power mask effect still exists when hybrid multiple
HOCs are used to design the sensing algorithm, although the
hybrid multiple HOCs based sensing and power recognition
algorithm can make use of the rich statistical information
of the received signal. When Pr(Hi) = Pr(Hj), ∀i, j ∈
{1, 2, · · · , L} is considered in MPTP scenarios, we have

Ξ(i, j) = Ξ(j, i) = (P
k/2
i + P

k/2
j )CksΣ−1CHks, (61)

which is strictly increasing with Pj for any Pi. Then, we have

max
1≤j<i

Ξ(i, j) = Ξ(i, i−1) < Ξ(i, i+1) = min
i<j≤L

Ξ(i, j). (62)

Hence, the non-zero power levels cannot mask each other, and
the power mask effect may only happen when P0 masks the
non-zero power levels.

To evaluate the performance, we first calculate the decision
probability Pr(Hi|Hj), as follows:

Pr(Hi|Hj) =

∫ γi+1

γi

p(THCSR|Hj)dTHCSR

=Q

γi − 2P
k/2
j CksΣ−1CHks

2
√
CksΣ−1CHks


−Q

γi+1 − 2P
k/2
j CksΣ−1CHks

2
√
CksΣ−1CHks

 . (63)

According to (41), (42) and (51), the recognition probability,
false alarm probability and detection probability of hybrid
multiple HOCs based sensing and power recognition algorithm
can be calculated using the metric Pr(Hi|Hj), given in (63).

R(Hi) =


THCSR ∈ (γMAP

on/off , min
1<j≤L

Ξ(1, j)] , i = 1;

THCSR ∈ (max{γMAP
on/off , max

1≤j<i
Ξ(i, j)}, min

i<j≤L
Ξ(i, j)] , 1 < i < L;

THCSR ∈ (max{γMAP
on/off , max

1≤j<L
Ξ(L, j)},+∞) , i = L.

(60)
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Considering the computational complexity of the

HCSR scheme,
M∑
i=1

Vi(ki − 1)N multiplications and

M∑
i=1

Vi∑
j=1

pj(N − 1) additions are needed to calculate the

sample cumulants Ĉkx(T). Additionally, for calculating the

covariance matrix Σ,
M∑
r=1

M∑
z=1

Vr∑
i=1

Vz∑
j=1

pi∑
l1=1

qj∑
l2=1

[(
pi∑

m1=1
m1 6=l1

µm1
+

qj∑
m2=1
m2 6=l2

µm2)N + (µl1 + µl2)T 2 + 3T ] multiplications and

M∑
r=1

M∑
z=1

Vr∑
i=1

Vz∑
j=1

pi∑
l1=1

qj∑
l2=1

((pi + qj − 2)(N − 1) + T (T + 4))

additions are needed. Notice that the computational complexity
of the HCSR scheme is much higher, nearly M2 fold, than
that of the SCSR scheme. However, the HCSR scheme can
provide a more accurate sensing and recognition performance
than the SCSR scheme, which allows for a compromise
between performance and computational complexity.

V. DISCUSSIONS AND SIMULATIONS

A. Discussions

We first analyze the theoretical statistical values for several
non-Gaussian processes. By setting τ = 0, the theoretical
values are calculated by averaging HOCs under the constraint
of unit energy and noise-free case [36]. Table I gives the the-
oretical values of some typical non-Gaussian processes (e.g.,
digital modulated signals). Note that for the real-valued BPSK
signal, the cumulants presented in Table I are all non-zeros.
Moreover, it can be easily seen that with given k, the changes
of l does not affect the kth-order cumulants for real-valued
signals, which is consistent with the definition of cumulants
Eq. (3). For all the complex-valued modulation schemes listed
in Table I, the cumulants with k = 2, l = 0 and k = 4, l = 1
are zeros. Thus, the PU’s signals and transmission power can
not be recognized if we choose these parameters to perform
the proposed spectrum sensing and power recognition schemes
when the PUs’ signal is complex-valued digital modulated
signal. Therefore, we should choose proper k and l where the
cumulants of the transmitted signal not only exist, but also are
non-zeros. In the following simulations, we choose k = 4 and
l = 2.

TABLE I
SOME THEORETICAL STATISTICAL CUMULANTS VALUES FOR VARIOUS

MODULATION SCHEMES

Cumulant k = 2, l = 0 k = 4, l = 0 k = 4, l = 1 k = 4, l = 2

BPSK 1 -2 -2 -2
QPSK 0 1 0 -1
8PSK 0 0 0 -1

16-QAM 0 -0.68 0 -0.68
64-QAM 0 -0.62 0 -0.62

Given k and l, the time lag τ will also affect the cumu-
lants of the random processes. As an intuitive understanding,
when the time lags are far away from each other, then
x(n), x(n+ τ1), · · · , x(n+ τk−1) will be independent, which
will lead ckx(τ ) tend to zero. According to Eq. (3), moreover,
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Fig. 3. Fourth-order cumulants of various random processes.

cumulants of the complex-valued signals are complex values if
the time lags are not equal to zeros. Fig. 3 shows the real part
and imaginary part of fourth-order cumulants of various digital
modulated signals, white Gaussian noise and colored Gaussian
noise, by setting τ = [0, 0, τ ], τ = 0, · · · , 20. The sampling
frequency adopted is 8 times of symbol rate. It can be seen that
the fourth-order cumulants with small lags for non-Gaussian
signals are not equal to zero, which is different from that of the
Gaussian noise even when the noise is colored. Hence, we can
employ fourth-order cumulants to extract non-Gaussian signal
from Gaussian noise. On the other hand, with the increase of
the time lag τ , fourth-order cumulants of digital modulated
signals tend to zero. Thus, in the following simulations, we
choose τ = [0, 0, 0] to evaluate the proposed SCSR scheme
and τ1 = [0, 0, 0], τ2 = [0, 0, 1] to evaluate the proposed
HCSR scheme. The variances of cumulants estimation ĉk1(τ1),
ĉk2(τ2) and the covariance between them can be estimated as:

Nvar[ĉk1(τ1)] = Q̂4,4(τ1, τ1)− 12Q̂4,2(τ1, 0)m̂2x(0)

+ 36Q̂2,2(0, 0)m̂2x(0)m̂2x(0) (64)

Nvar[ĉk2(τ2)] = Q̂4,4(τ2, τ2)− 6Q̂4,2(τ2, 0)m̂2x(1)

− 6Q̂4,2(τ2, 1)m̂2x(0) + 9Q̂2,2(0, 0)m̂2x(1)m̂2x(1)

+ 18Q̂2,2(0, 1)m̂2x(0)m̂2x(1) + 9Q̂2,2(1, 1)m̂2x(0)m̂2x(0)
(65)

Nvar[ĉk1(τ1), ĉk2(τ2)] = Q̂4,4(τ1, τ2)− 6Q̂4,2(τ2, 0)m̂2x(0)

− 3Q̂4,2(τ1, 0)m̂2x(1)− 3Q̂4,2(τ1, 1)m̂2x(0)

+ 18Q̂2,2(0, 0)m̂2x(0)m̂2x(1) + 18Q̂2,2(0, 1)m̂2x(0)m̂2x(0).
(66)

B. Simulation results

In this subsection, we present simulation results to evaluate
the performance of the proposed SCSR and HCSR schemes.
The PU’s signal considered in the simulation is QPSK signal.
The symbol rate and sampling frequency are set as above in
Section V-A. We consider that PU has four transmission power
levels, and the priori probabilities are set as Pr(H0) = 0.4 and
Pr(Hi) = 0.15, i = 1, 2, 3, 4, respectively. The power levels
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satisfy P1 : P2 : P3 : P4 = 3 : 5 : 7 : 9, and the average
signal-to-noise ratio (SNR) is defined as 1/4

∑4
i=1 Pi/σ

2
w. The

noise w(n) is assumed to be correlated with a = −0.9 and
σ2
w = 1, that is w(n) = 0.9w(n − 1) + u(n), where u(n) is

the WGN with mean zero and unit variance. When there exists
noise uncertainty, noise variance is no longer a constant, but
an uniform distribution random variable in [σ2

w/η, σ
2
wη] where

η is the noise uncertainty factor. Let ρ = 10 log10 η represent
the noise uncertainty factor in dB. All the simulation results
are obtained and averaged from 10000 Monte Carlo runs.
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Fig. 4. Theoretical analysis and numerical results for decision probability of
SCSR and HCSR schemes.

Fig. 4 shows the theoretical analysis and numerical results
for decision probability versus the number of samples with
SNR= −1dB of SCSR and HCSR schemes, respectively. It
can be seen that error detection probabilities for both SCSR
and HCSR schemes are very low for any value of N . The
theoretical curves are slightly higher than the simulated results.
This is probably because the distributions obtained in (14)
are asymptotic results rather than the exact values when the
sample size is not large enough. Note that the gaps between
the theoretical results and simulation results for both schemes
reduce as the number of samples becomes larger, which proves
the asymptotic properties of our proposed schemes.
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Fig. 5. The detection and discrimination probability versus number of samples
of SCSR and HCSR schemes with SNR=-4dB.
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Fig. 6. The detection probability versus SNR of SCSR and HCSR schemes.

Fig. 5 shows the detection and discrimination probability
versus number of samples for SCSR and HCSR schemes,
respectively. It can be seen that both the detection and dis-
crimination performance of HCSR scheme are much better
than that of SCSR scheme, which means that HCSR scheme
is more robust than SCSR scheme. This is because HCSR
scheme exploits rich statistical information of the PU signal.
Note that the detection probability is much higher than the
discrimination probability for these two schemes. The reason
is that even if PU is detected to be present, the SU might
make mistakes in determining the PU’s actual transmission
power level. It can also be seen that the differences of both
detection probability and discrimination probability between
HCSR scheme and SCSR scheme diminish when the number
of samples becomes greater. Nevertheless, both the detection
and discrimination performance improve with the increase of
N .

Fig. 6 shows the performance of detecting the “on/off”
status of PU versus average SNR for both SCSR and HCSR
schemes, respectively. The detection probability follows the
definition in (18) and (51). From Fig. 6, it can be seen that the
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Fig. 7. The discrimination probability versus SNR of SCSR and HCSR
schemes.

detection performance improves dramatically with the increase
of the received SNR in terms of both schemes. Moreover, it can
also be seen that the gap between these two sensing schemes
widens when the SNR becomes higher or the number of
samples becomes greater. This implies that when the sensing
conditions become better, the HCSR scheme is more robust
than the SCSR scheme.

Fig. 7 shows the discrimination probability versus average
SNR for SCSR and HCSR schemes, respectively. It can be
seen that the discrimination probability of both schemes with
1600 samples is a little higher than that with 400 samples
at low SNR condition. It implies that the increase of the
sampling numbers can not attain the performance improvement
effectively at low SNR condition. While the performance of
the HCSR scheme with two different time lags is better than
that of the SCSR scheme with only one time lag. This indicates
that the increase of the number of adopted cumulants with
different time lags can improve the discrimination capability
of both proposed schemes. The amount of discrimination
performance improvement from N = 400 to N = 1600 for
each scheme is about 2dB. Additionally, it can also be seen
that HCSR scheme outperforms SCSR scheme at any number
of samples.

Fig. 8 shows the impact of time lag on the performance
of SCSR scheme in terms of the detection probability and
discrimination probability. In this simulation, we set the time
lags τ = [0, 0, τ ], where τ = 0, 2, 6 respectively. The variance
of cumulant estimate ĉk(τ ) can be calculated by replacing 1
with τ in (65). It can be seen that both the detection probability
and discrimination probability decrease with the increase of
time lag τ . This is because that when the time lags are far from
each other, the received samples will be independent with each
other which leads the cumulants to diminish. This implies that
the non-Gaussian information of the PU’s transmitted signal
can not be extracted effectively with a large time lag.

Fig. 9 shows the impact of noise uncertainty on the detection
and discrimination performance of both SCSR and HCSR
schemes. It is seen that the curves of either the detection prob-
ability or the discrimination probability with and without noise
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Fig. 8. The impact of time lag on the detection and discrimination probability
of SCSR scheme.
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Fig. 9. The detection and discrimination probability versus SNR of SCSR
and HCSR schemes with noise uncertainty.

uncertainty are almost overlapping for both SCSR scheme and
HCSR scheme. It demonstrates that both the SCSR scheme
and HCSR scheme are robust to the noise uncertainty. This
is because that the derivation of the decision thresholds is
not related to noise power. Moreover, we can see that HCSR
scheme outperforms SCSR scheme in terms of both detection
probability and discrimination probability which is consistent
with the demonstration in Fig. 5.

VI. CONCLUSIONS

In this paper, we have proposed HOC based spectrum
sensing and power recognition schemes for hybrid interweave-
underlay spectrum access, considering PU has multiple trans-
mission power levels and primary signals are non-Gaussian
processes. Specifically, for a given HOC order and time lag, a
SCSR scheme with low complexity has been proposed based
on minimum Bayes risk criterion, which can shorten the spec-
trum sensing period and in turn prolong the data transmission
period considerably. In addition, based on hybrid multiple
HOCs, a HSCR scheme has been proposed by exploiting
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the rich statistical information of the primary signal, which
provides more accurate recognition performance to better
protect PU from being harmfully interfered by SUs. We have
discussed the power-mask effect and given new definitions of
the performance metrics to analyze the sensing and recognition
performance comprehensively. Moreover, the establishment of
the decision regions for both SCSR and HCSR schemes do
not depend on the noise power, and thus are robust to noise
variance uncertainty. Finally, extensive simulations have been
carried out to demonstrate that the proposed schemes can
effectively recognize the transmission power level of PU when
the primary signals are non-Gaussian process.

For the future work, we will investigate the decentralized
collaborative spectrum sensing and power recognition in hy-
brid interweave-underlay CR networks, considering the spatial
diversity of the multiple CR sensors.

APPENDIX A
DERIVATION OF THE MAP DECISION RULE

Denote Ri = {ĉkx(τ ); decideHi}, and Ri, i = 1, · · · , L
is the partition of the observation space. Then the Bayes risk
(24) can be expanded as

R =
L∑
i=1

L∑
j=1

Kij

∫
Ri

p(ĉkx(τ )|Hj ; Ĥon)Pr(Hj |Ĥon)dĉkx(τ )

=
L∑
i=1

∫
Ri

L∑
j=1

Kijp(ĉkx(τ )|Hj ; Ĥon)Pr(Hj |Ĥon)dĉkx(τ )

=
L∑
i=1

∫
Ri

L∑
j=1

KijPr(Hj |ĉkx(τ ); Ĥon)p(ĉkx(τ )|Ĥon)dĉkx(τ ).

(67)
Define Ki(ĉkx(τ )) =

∑L
j=1KijPr(Hj |ĉkx(τ ); Ĥon) be the

average cost of deciding Hi if ĉkx(τ ) is observed. Then

R =
L∑
i=1

∫
Ri

Ki(ĉkx(τ ))p(ĉkx(τ )|Ĥon)dĉkx(τ ). (68)

In order to minimize R, we minimize Ki(ĉkx(τ )), i.e., the
decision rule can be conclude as

i∗ = arg min
i
Ki(ĉkx(τ )). (69)

When the particular value of cost (26) is taken into consider-
ation, the average cost can be expressed as

Ki(ĉkx(τ )) =
L∑

j=1
j 6=i

Pr(Hj |ĉkx(τ ); Ĥon)

=
L∑
j=1

Pr(Hj |ĉkx(τ ); Ĥon)− Pr(Hi|ĉkx(τ ); Ĥon). (70)

Since the first term is independent with i, Ki(ĉkx(τ ))
is minimized by maximizing Pr(Hi|ĉkx(τ ); Ĥon). Thus, the
decision rule turns into MAP criterion, i.e.,

i∗ = arg max
i

Pr(Hi|ĉkx(τ ); Ĥon). (71)
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