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Abstract—This paper aims at solving two classes of energy
efficiency (EE) maximization problems in multiple channels
wireless communication systems. Firstly, the EE maximization
problem with sum power constraint is solved based on the
geometric water-filling approach; and secondly, the approach is
extended into the EE maximization problem with additional
least throughput requirement constraint. Our proposed
algorithms make use of the water-filling structure of the
optimal solution and provide exact and computation efficient
solution to the energy-efficient power allocation problems. The
proposed algorithms also have excellent scalability, which is
applicable for large scale wireless communication systems.
Optimality of the proposed algorithms is strictly proved, and
the proposed algorithms only require low degree polynomial
computational complexity. Numerical results are presented to
demonstrate the efficiency of the proposed algorithms. To the
best of our knowledge, no prior algorithms in the existing
literature could provide such solutions to the EE maximization
problems under the merit of exactness and the efficiency.
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I. INTRODUCTION

As mobile networks continuously densify, the huge energy
consumption has brought a heavy burden to operators, which
may become the bottleneck of future network development
[1], [2]. Therefore, green communications have drawn
increasing research interests during recent years [3], [4].
Specifically, Energy Efficiency (EE), i.e., the amount of
transmitted data per unit energy consumption, has been
considered as one of the key performance metrics in the
upcoming 5G era and beyond [5], [6], [7].

A fundamental question for green communication is how
to maximize the energy efficiency with sum power constraint
[8], [9]. Conventional radio resource management has
investigated how to maximize the system throughput with
sum power constraint [10]–[13]. Some recent work has also
explored how to minimize the transmit power consumption
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while satisfying throughput requirements [14], [15].
However, the EE maximization problem is of a non-linear
fractional optimization, the objective functions of which own
the numerators of a non-linear function form and the
denominators of a sum power form [16]. Thus, it cannot be
solved directly by the algorithms for the throughput or sum
power optimizations. Also, a set of the Karush-Kuhn-Tucker
(KKT) conditions [17] has not directly been used for solving
these energy efficiency maximization problems, due to the
fractional form of the EE maximization problem. As a result,
existing algorithms seldom directly solve these EE
maximization problems, including the widely-adopted
Dinkelbach method [18], [19].

Some good efforts have been made for EE maximization
from different perspectives [20]–[28] and the references cited
in. A typical approach was to investigate convergence of the
algorithm from the Dinkelbach method [20]–[23]. In [20], a
combinatorial optimization problem was formulated to
maximize the joint transmitter and receiver energy efficiency.
Then a new divide-and-conquer approach was introduced to
find a sub-optimal solution [20, p. 2728] to the energy
efficiency maximization problem with the minimum
throughput constraints. However, these state-of-the-art
algorithms still show the limitations of high complexity and
sub-optimality. In addition, there are other works such as
[27] and [28], proposing different algorithms from
Dinkelbach method with the ε-optimality.

In this paper, we investigate the geometry water-filling
(GWF) approach to maximize EE in wireless systems with
multiple channels, considering that the total power
consumption of all the channels cannot exceed the budget.
By embedding the geometric water-filling approach, a
low-complexity power allocation algorithm, namely
energy-efficient jumping water-filling (EE-JWF), is
developed to obtain the exact solution. In addition, the
algorithm is extended to solving the generalized case, where
the minimal throughput is required as an additional
constraint, considering the quality of service (QoS)
requirements of mobile users. Although the water-filling
approaches have been widely adopted in radio resource
management to maximize the system throughput or minimize
the total power consumption, this is the first exploration to
maximize the energy efficiency. The rationale of the
proposed EE-JWF algorithm is to use the water-filling-like
architecture of the optimal solution, and it can locate the
global optimal water level accurately with low complexity.
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Specifically, the global optimal solution is obtained by first
solving the local optimal ones, where the local optimal
solutions form jumping water levels corresponds to each
channel.

Compared with existing work on energy-efficient power
allocation, the proposed algorithms own two distinct and
important features, “exactness” and “low complexity”.
Exactness in this paper means that the error between our
proposed solutions and the “theoretic” optimal solutions is
the machine zero, no larger than 10−34 based on the
standard of IEEE 754-2008 (for example, we treat
1.41421 · · · with 34 decimal digits as an exact representation
of
√

2). Low complexity means that the proposed algorithms
have low degree polynomial computational complexity with
a concrete upper bound of the number of operations. In
summary, the proposed algorithms can provide exact solution
instead of sub-optimal ones, and with a low degree
polynomial computational complexity. As a side note,
although the proposed problems look simple, the existing
algorithms do not have the mentioned two features to solve
these problems, to the best of the authors’ knowledge. Strict
mathematical proofs and complexity analysis are provided to
validate exactness and the low computational complexity of
the proposed algorithms.

In the remaining of the paper, the statement of the
proposed problem, and a review of our earlier proposed
GWF are discussed in Section II. Section III is focused on
solving the target EE maximizing problem with non-negative
power and a sum power constraints, where the WW-JWF
algorithm is proposed and discussed in details. Section IV
extends the target problem introduced in Section II, with one
more constraint of the throughput requirement, and then
generalizes the proposed approach to compute the optimal
power allocation solution to this extended problem. A review
of the Dinkelbach method, as a comparison reference, and an
analogous comparison, are provided. Section V presents
numerical examples, performance and complexity analysis to
illustrate the steps of the proposed algorithms and the
advantages achieved of the proposed algorithms. Section VI
concludes the paper.

II. PROBLEM STATEMENT

In this section, the target problem is introduced, followed by
a brief review of our earlier proposed geometric water-filling
approach [13] which is presented as a basis of the proposed
method.

A simple form of the energy-efficiency maximization
problems can be described by the following. Denote by P
the total power budget (or upper power bound), s0 > 0 the
circuit power, si and ai the allocated power and channel
power gain of the ith channel 1, respectively, where
i = 1, . . . ,K and K is the total number of the channels.
Letting {ai}Ki=1 be a sorted sequence with strictly
monotonically decreasing (the indexes can be arbitrarily

1We assume perfect knowledge of channel power gain, which can be
obtained by advanced channel estimation technologies.

renumbered to satisfy this condition) without loss of
generality, in which ai > 0,∀i, find a group of power {si}
to satisfy:

max{si}Ki=1

1
2

∑K
i=1 log(1+aisi)

s0+
∑K
i=1 si

subject to: 0 ≤ si, for i = 1, . . . ,K;∑K
i=1 si ≤ P,

(1)

where the logarithm function log is assumed to be base 2
unless specified otherwise.

A. Concept of Water Tank and Geometric Relations of the
Variables

A water tank is shown in Fig.1(a) with K steps/stairs,
corresponding to the K channels. For the equally weighted
case, each step/stair has a unit width. Let di denote the “step
depth” of the ith stair, i.e., the height of the ith step to the
bottom of the tank, given as:

di =
1

ai
, i = 1, 2, . . . ,K. (2)

Since the sequence {ai} is sorted in monotonically decreasing
order, the step depth of the stairs indexed by {1, · · · ,K} is
monotonically increasing. When water (power) P is poured
into the tank, a water level µ is obtained. The throughput-
optimal power allocation to each channel corresponds to the
area above the stair up to the water level2.

GWF (Geometric Water Filling) algorithm was proposed
in [13]. The main idea is summarized as follows. Let k∗ denote
the index of the highest (shallowest) step under water:

k∗ = max
{
k
∣∣∣Pu(k) > 0, 1 ≤ k ≤ K

}
, (3)

where Pu(k) is a function in k, denoting the whole water
volume above the kth step. From the geometric relationship,
Pu(k) can be obtained by

Pu(k) =

[
P −

k−1∑
i=1

(
1

ak
− 1

ai

)]+
, for 1 ≤ k ≤ K. (4)

Then the power allocated to the k∗ step is

sk∗ =
1

k∗
P2(k∗), (5)

and the completed solution is given by

si =

{
sk∗ + 1

ak∗
− 1

ai
, 1 ≤ i ≤ k∗;

0, k∗ < i ≤ K. (6)

The GWF algorithm is denoted by GWF({ak}Kk=1, P ), i.e.,
the mapping from {{ak}Kk=1, P} to {k∗, Pu(k∗)},

For a general weighted case, the objective function of
problem (1) can be rewritten as

max
{si}Ki=1

1
2

∑K
i=1 wi log(1 + aisi)

s0 +
∑K
i=1 si

, (7)

2S3
∗ is denoted by the shadowed area. Since the width of the steps is one,

the area is equivalent as the height as shown. This equivalence of the area
with the corresponding height is used throughput the paper.
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Fig. 1: Illustration for a water tank. (a) Water level step k∗ = 3, allocated power for the third step s∗3, and step/stair depth
di = 1

ai
. (b) The weighted case, the width of the ith step is denoted as wi.

where the weight wi reflects the importance of user/channel
i. In this case, the width of the ith step depicts the weight
wi. The area right above this step to the water surface
denotes the power allocated to the ith step, si. The height of
the step to the water surface is then si/wi. The area below
the ith step to the bottom of the tank is 1/ai, as shown in
Fig. 1(b). The depth of the ith step is then 1/(aiwi).
Equipped with these geometric relations, the
throughput-optimal power allocation can be obtained
following the same idea of the equally-weighted case. Please
refer to [13] for more details.

III. SOLVING EE MAXIMIZATION PROBLEM

In this section, we propose algorithms based on geometry
water filling to solve the energy efficiency maximization
problem. The intuition is that the EE-optimal power
allocation satisfies the water-filling-like structure with the
water tank model, whereas the key is to determine the water
level. In our proposed algorithm, we start from solving local
EE-optimal power allocation when the water level is
constrained between two neighboring step depths. The global
optimal solution, at which the objective function achieves the
global maximum value, can be obtained by selecting the one
from the local optimal solutions. As a side note, here the
mentioned local optimal solution is different from the regular
one discussed in any textbook. It means the global optimal
solution(s) over a compact subset of the feasible set.

A. Local EE Optimal Solution

We still use a water tank with unit width and monotonically
increasing steps to illustrate the geometric relationship of the
variables as in Fig. 2. Let K denote the total number of the
steps in the tank. Assume a certain amount of water is poured
into the tank, making water level µ between the N th and the
(N + 1)th step.

For the ith step (i ≤ N ), the power allocated is si = µ−di.
An auxiliary variable 4s, shown as the shadowed area in Fig.
2, denotes the entire volume of the water (total power) above
the N th step. Since each step is assumed to have a unit width,
the allocated power for the N th step, is

sN =
4s
N
. (8)

µ

µ = dN +
△s

N

sN =
△s

N

△s : shadowed area

di

si

N Ki

Fig. 2: Illustration of geometric relation and auxiliary variable
4s.

From the geometric relationship, 4s has a domain, denoted
by [4smin,4smax], where

4smin = 0, 4smax = N (dN+1 − dN ) . (9)

4smin occurs when the water-level µ is at the N th step, and
4smax happens when the water-level µ reaches the (N +1)th
step. For a given N , we introduce a function g(4s), where
4s is the variable with the geometric meaning shown as Fig.
2,

g(4s) =(4s+ dN ·N) log

(
dN +

4s
N

)
−
(
dN +

4s
N

) N∑
k=1

log(dk)− ST ,
(10)

where si is the allocated power for the ith channel,

si = (dN − di) +
4s
N
, ∀ 1 ≤ i ≤ N, (11)

and ST is the total power allocated plus circuit power
consumption, as

ST = s0 +
N∑
i=1

si. (12)

In Section IV-E, the insights of the function g(4s) will be
further discussed. In Appendix A, it is shown that g(4s)
exhibits a desired monotonically increasing property in the

3
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range of (4smin,4smax). Following Lemma gives the
relation of the local optimal power allocation with the
defined g(4s) function.

Lemma 1: With the domain of 4s, the EE-optimal power
allocation is equivalent to

min |g(4s)|
s.t. 0 ≤ 4s ≤ N (dN+1 − dN ) .

(13)

Proof. See Appendix A, the final three cases of which just
correspond to the relationship of (13).

(13) is applied as a necessary and sufficient condition on the
local optimal solutions to EE-maximization problem, based on
which we can directly calculate the exact solution with high
efficiency of the N loop operations. The function g(4s) is
monotonically increasing, and the optimal solution to (13) is
classified into three cases. In addition, Proposition 1 gives how
to calculate 4s when the optimal solution to (13) is not at the
boundaries. As a reminder, the concept of the mentioned local
optimal solution has been defined in the beginning paragraph
of this section. For example, when minimizing f(x) = x over
[0, 2] with the two compact subsets [0, 1] and [1,2], x = 1
is the local optimal solution corresponding to the subset [1,2],
x = 0 is the local optimal solution over [0,1], and x = 0 is
the global optimal solution.

Fig. 3 depicts the monotonic trend of g(4s) and illustrates
the possible three situations when solving (13). It is noted that
we only need to evaluate the signs of g(4s) at the minimal
and the maximal values of 4s to branch into one of the three
cases below:

(1) If g(0) > 0, as shown in Fig. 3 (a), the solution to
(13) (making g(4s) closest to zero) is 4s = 0, and
the complexity to evaluate g(0) is O(N) according to
Eq. (10);

(2) If g(4smax) < 0, as shown in Fig. 3 (b), the solution
to (13) is 4s = 4smax.

(3) If g(0) < 0 and g(4smax) > 0, as shown in Fig. 3 (c).
The solution is given in Proposition 1 below.

Proposition 1: The solution to (13) when g(0) < 0 and
g(4smax) > 0 is computed through the following iteration,

4sn+1 = 4sn −
g(4sn)

g′(4sn)
, ∀n ∈ Z+, (14)

where Z+ is the set of non-negative integers. The subscript of
4sn is the iteration index. Details of the iteration steps see
Appendix B.

Proof. See Appendix B.

Remark 1. Proposition 1 calculates the local EE-optimal
power level/allocation when the corresponding solution does
not appear at the boundaries at the stairs, with the given
parameters, such as {{dn}, P}, etc.. Here, Proposition 1
applies (14) with Nt (derived in Appendix B) loop
operations, to compute the exact solution to (13). The
formula of Nt(= N1 + N2) implies the low computational
complexity of 5K[max1≤N≤M{dN+1

dN
} + 35] basic

(arithmetic, logical and basic function evaluation) operations,
where 5K means that each of the Nt loops has 5K basic
operations at most, without any exponential level in each of
the system parameters. Therefore, Proposition 1 computing
the local EE-optimal power level/allocation has the
computational complexity of O(K).

B. Global EE-Optimal Power Allocation

By applying Lemma 1, N local EE-optimal power
allocations can be obtained, forming jumping power levels
corresponding to each channel. Then, the global optimal
solution to the target problem (1) can be find within these N
local optimal solutions. The Algorithm EE-JWF is described
as follows.

Algorithm EE-JWF:

0) Pre-processing:

{k∗, Pu(k∗)} = GWF({ak}Kk=1, P ),

k∗ →M and Pu(M)
M + 1

aM
→ 1

aM+1
,

(15)

where the symbol “→” denotes the assignment operation.
1) Input:

s0, {dk = 1/ak}Mk=1, n = 1 and assigning a
K ×K matrix S a zero matrix.

2) Loop for n from 1 to M : for each loop, one of the
following three branches is executed to update the nth
row of the matrix S:

2.1) If g(4smin) = g(0) > 0,

Sn,j =
1

an
− 1

aj
, j = 1, · · · , n, (16)

and then go to Step 3); else
2.2) if g(4smax) = g

(
n
(

1
an+1

− 1
an

))
< 0,

Sn,j =
1

an+1
− 1

aj
, j = 1, · · · , n, (17)

and then go to item 3); else
2.3) if

g(0) · g
(
n

(
1

an+1
− 1

an

))
< 0, (18)

then solve 4s by applying Proposition 1 and

Sn,j =
4s
n

+

(
1

an
− 1

aj

)
, j = 1, · · · , n. (19)

3) If n = M , compute

n∗ = arg max
{n|1≤n≤M}

{
1
2

∑K
i=1 log2(1 + aiSn,i)

s0 +
∑K
i=1 Sn,i

}
,

(20)
and then output Sn∗,k,∀k as solution; else let n+ 1→ n
and go to Step 2).

Proposition 2. EE-JWF outputs the exact optimal solution
to (1) with a finite amount of computation.

Proof. EE-JWF enumerates the K intervals of
{[dn, dn+1]}Kn=1 to compute the local optimums. According

4
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∆s

g(∆s)

∆smax

(a) : g(0) > 0

∆s

g(∆s)
∆smax

(b) : g(∆smax) < 0

0

0

∆s

g(∆s)

∆smax0

(c) : g(0) · g(∆smax) < 0

Fig. 3: Illustration for solving conditions (13).

µ

(a) Step 0)

M = k∗

1

aM+1
=

Pu(M)

M
+

1

aM
1

aM

s∗k =
Pu(M)

M

g(△smax) < 0(c) Step 2.2) : 

1

an−1

Sn,n−1 =
1

an
− 1

an−1

(b) Step 2.1): 

1

an−1

1

an+1

Sn,n−1 =
1

an+1
− 1

an−1

g(0) > 0

(d) Step 2.3) : 

1

an−1

g(0) · g(△smax) < 0

△s solved from Proposition 1

1

an−1

Fig. 4: Illustration for Algorithm EE-JWF.

to Lemma 1, without case 3 appearing, it is easy to see that
K + 1 evaluations, at most, of g(x) in µ are needed. If case
3 appears, Proposition 1 implies that the solution of
g(x) = 0 with the error of machine zero is obtained by a
finite amount of computation. Therefore, the conclusion of
Proposition 2 is true, noting that the solution to (1) exists
and it must satisfy one of the three cases.

In the Pre-processing Step, GWF algorithm solves water
level step, k∗, and assigns it to M . The water level index,
k∗, denotes the maximum number of the channels, we would
consider for power allocation. For those channels with higher
index (i > k∗), the power is allocated with zeros, as illustrated
in Fig. 4 (a). The physical meaning of Pre-process Step is that
only the channels with high channel gains are considered for
power allocation, since allocating power to channels under bad
condition is not energy-efficient. Note that Pre-processing in
EE-JWF assumed all available power being allocated, which

may not be EE-optimal. As a side note, 0 ≤ an ≤ 1,∀n, means
dn ≥ 1. Thus, 0 ≤ dM−d1 = (dM−dM−1)+· · ·+(d2−d1) ≤
P. Then dM ≤ d1 +P implies Nt ≤ d1+P

d1
+ 35 ≤ 36 + dP e,

i.e., Nt = O(1), indeed. Here dxe means the ceiling function,
and the power budget P is given for the proposed problems
in this paper.

The second assignment operation (i.e., Step 2)) further
considers the cases when the available power is not
completely allocated, based on system (13). For any loop
index n in Step 2), it denotes that we only allocate the first
n channels with positive power and assign zeros for the
remaining channels, as illustrated in Fig. 4. Correspondingly,
4s in the function g(4s) ranges as

4smin = 0, 4smax = n

(
1

an+1
− 1

an

)
.

In Step 2, one of the branches is executed depending on

5
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the values of the function g(4s). In Branches 2.1) and 2.2),
the values of g(4smin) = g(0) > 0 or g(4smax) < 0
respectively. In these two cases, there is no solution to
g(4s) = 0 subject to 4s ∈ [4smin,4smax]. The
corresponding 4s selection making g(4s) closest to 0 is
smin = 0 and smax, respectively. The power allocation is
shown as Fig. 4 (b) and (c) respectively. In 2.1), the
water-level µ is at the nth step, and the corresponding
non-zero power from step 1 to step (n − 1) is readily
obtained from (16). In 2.2), the water-level µ is at the
(n + 1)th step, and then the non-zero power for the first n
steps is obtained.

In Branch 2.3), the condition satisfies the existence of the
feasible solution for g(4s) = 0. Based on Proposition 1, the
solution 4s is solved as shown in Fig. 4 (d). From the
geometric relationship, the power allocated to the first n
channels is obtained, as shown in Fig. 4 (d).

In Step 3), when the loop index reaches M , the algorithm
determines the n∗th row from the first M rows of the matrix
S which leads to the maximum objective function value as
the output of the algorithm. This step compares the M
power allocation schemes and selects the one which can
achieve the maximal EE. Based on the proof of Lemma 1,
we can come to the conclusion that the optimal solution to
the EE optimization problem presents water-filling-like
power allocation architecture.

Remark 2. The proposed EE-JWF algorithm makes use of
geometric relationships of the variables. This feature makes
the proposed algorithm easily to be extended to the weighted
EE maximization problem. When the width of the steps is
considered, the water level µ is updated as

µ =
4s∑N
i=1 wi

+ dN . (21)

The corresponding g(4s) is written as

g(4s) = µ

N∑
i=1

log

(
µ

di

)wi
− ST . (22)

Remaining steps follow a similar approach to the unweighted
case discussed above. This also reflects one of the advantages
of using a geometric-based approach method.

Proposition 3: If there exists g(4s) = 0 between steps n
and n+1, Proposition 1 is applied to compute the solution4s.
The corresponding power level µ = (dn +4s/n) determines
the global optimal solution to (1): sj = µ − dj , for j =
1, . . . , n; and sj = 0, for j = n + 1, . . . ,K. Furthermore,
there is at most one interval which needs to apply Proposition
1 to compute 4s.

Proof. Denote by Gmin
n = g(0) and

Gmax
n = g(4smax) = g(n(dn+1 − dn)) for step n, where

n = 1, 2, · · · ,K. Specifically, Gmin
n corresponds to the value

of g(4s) at the lowest water level (µ = dn and 4s = 0),

while Gmax
n corresponds to the value of g(4s) at the highest

water level (µ = dn+1 and 4s = n(dn+1 − dn)). Notice that

Gmin
n = dn

n∑
i=1

log

(
dn
di

)
−
[
s0 +

n∑
i=1

(dn − di)
]

= dn

n−1∑
i=1

log

(
dn
di

)
−
[
s0 +

n−1∑
i=1

(dn − di)
]

= Gmax
n−1.

(23)

Furthermore, g(4s) is a monotone increasing function in
terms of 4s within range [0, n(dn+1 − dn)] at step n, for
n = 1, 2, · · · ,K. Therefore, Eq. (23) indicates that the
minimal value of g(4s) at step n is equal to the maximal
value of g(4s) at step n − 1. Thus, the value of g(4s)
increases with the step index n. In the step 2 of EE-JWF
algorithm, if case 3 holds for step n∗ (i.e.,
g(0) · g

(
n∗
(

1
an∗+1

− 1
an∗

))
< 0), we have Gmin

n∗ < 0 and
Gmax
n∗ > 0. Accordingly, Gmax

n < 0 for n = 1, 2, · · · , n∗ − 1,
and Gmin

n > 0 for n = n∗ + 1, n∗ + 2, · · · ,K. As a result,
step 2.3 appears at most once in the EE-JWF algorithm.

Accordingly, the proposed algorithm obtains the exact
solution with great efficiency. In fact, the rationale of
EE-JWF algorithm is two-fold, (1) the optimal solution
presents water-filling-like power allocation architecture, and
(2) the continuous water level is reduced to N jumping local
optimal water levels, by applying the transformed problem
(13) and the monotone property.

IV. EXTENDED EE MAXIMIZATION PROBLEM

In this section, the EE maximization problem (1) is
extended, adding the throughput (least) requirement, B, as
one more constraint. Firstly, the extended problem statement
is introduced; secondly, our previously proposed geometric
water-filling for the sum power minimization (P-GWF) [15]
is briefly reviewed; then, the algorithm that combines
Algorithm EE-JWF with P-GWF, is proposed, to compute
the solution to the extended problem exactly and efficiently;
and finally, the Dinkelbach approach is reviewed, followed
by an analogous comparison of our proposed algorithm to
clearly illustrate the advantages of the proposed approach.

A. Statement of Extended Problem

Letting all the parameters be assumed the same as those
in the target EE maximization problem (1), find a group of
power {si} to satisfy:

max{si}Ki=1

1
2

∑K
i=1 log(1+aisi)

s0+
∑K
i=1 si

subject to: 0 ≤ si, for i = 1, . . . ,K;∑K
i=1 si ≤ P ;

1
2

∑K
i=1 log(1 + aisi) ≥ B,

(24)

where the non-negative number, B, denotes the minimal
throughput requirement.

6
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The EE maximization problem (24) is an independent
problem on the target problem of (1). At the same time, if
the minimal throughput B is set as zero, this EE
maximization problem is regressed into the target problem
(1). Therefore, (24) is a more general form of EE
maximization.

B. A Concise Review of P-GWF

The P-GWF algorithm has been proposed to compute the
sum power minimization problem with the throughput
requirement constraint [15]. The problem is stated as
follows:

min{si}Ki=1

∑K
i=1 si

subject to: 0 ≤ si, for i = 1, . . . ,K;
1
2

∑K
i=1 wi log(1 + aisi) ≥ B.

(25)

Since (25) may be regarded as a duality of the throughput
maximization problem [13, (1)], there are concepts, like the
duality of those which appear in (2)-(6). Their concrete
expressions may refer to [15, (5), (27)-(30)]. In [15],
Algorithm P-GWF has been proven to provide the optimal
solution to problem (25). It needs 8K operations, which
consist of K basic (elementary) function evaluation
operations (BEs), 5K arithmetic operations (AOs), and 2K
logical operations (LOs), at most. Similarly, Algorithm
P-GWF provides the mapping of ({ak}Kk=1, B) to the exact
solution {si} and k∗.

C. EEE-JWF, Algorithm of Extended Problem

Based on both P-GWF and EE-WF, an algorithm is
proposed to solve the EE maximization problem (24). This
algorithm is denoted by EEE-JWF.

The interesting treatment is reflected on the fact that P-
GWF sets up an updated “stair heights”. Fig. 5(a) shows the
application of P-GWF algorithm, we can have a water level
µ1 and corresponding power allocation to meet the minimum
throughput requirement B. A new index k is used to divide all
the channels into two categories. All the channels with index
smaller than k are treated as one category, whose stair heights
are updated as µ1. Then µ1 is used as the lowest stair height as
shown in Fig. 5(b), where the dashed stairs denote the original
channels; the bold solid stairs denote the updated stairs after
applying P-GWF. In this way, we can guarantee the constraint
in (24) can be satisfied.

Then under these updated stairs, the extended problem could
be solved using algorithm EE-JWF. This method is indeed a
novel approach. Algorithm details is listed below.

Algorithm EEE-JWF:

0) Pre-processing:

{k∗, Pu(k∗)} = GWF({ak}Kk=1, P ),

k∗ →M and Pu(M)
M + 1

aM
→ 1

aM+1
.

{k∗, {sk}Kk=1} = P-GWF({ak}Kk=1, B),
min {k|sk∗ + 1

ak∗
< 1

ak
, 1 ≤ k ≤ K} − 1→ k.

sk∗ + 1
ak∗
→ dk, for 1 ≤ k ≤ k;

while 1
ak
→ dk, for k < k ≤ K.

(26)

1) Input:

Let n = k and assign a
(K + 1− k)×K matrix S a zero matrix.

2) Loop for n from k to M : for each loop, one of the
following three branches being executed to update the
n− k + 1th row of the matrix S:

2.1) If g(4smin) = g(0) > 0,

Sn,j = dn − dj , j = 1, · · · , n, (27)

and then go to Step 3); else
2.2) if g(4smax) = g (n (dn+1 − dn)) < 0,

Sn,j = dn+1 − dj , j = 1, · · · , n, (28)

and then go to item 3); else
2.3) if

g(0) · g (n (dn+1 − dn)) < 0, (29)

then solve 4s by applying Proposition 1 and

Sn,j =
4s
n

+ (dn − dj) , j = 1, · · · , n. (30)

3) If n = M , compute

n∗ = arg max
{n|k≤n≤M}

{
1
2

∑K
i=1 log(1 + aiSn,i)

s0 +
∑K
i=1 Sn,i

}
,

(31)
then output Sn∗,k + dk∗ − 1

ak
, for 1 ≤ k ≤ k, as the

preceding k entries of the solution, and Sn∗,k, for k <
k ≤ K, as the following K − k entries of the solution;
else let n+ 1→ n and go to Step 2).

Proposition 4. EEE-JWF outputs the solution to (24) with
a finite amount of computation.

Proof. Referring to the poof of Proposition 2, and noting
that P-GWF provides the initial interval [dk, dk+1], it is then
trivially seen that Proposition 4 holds.

D. Dinkelbach Approach and Its Iterations

The Dinkelbach approach has been well applied to solve
the energy efficiency maximization problems, e.g., the target
problem (24), by making use of the following equations and
iterations.

Let F be the feasible set of problem (24). This equation,
including a convex optimization operation, in q∗ is:

max{si}Ki=1∈F
{∑K

i=1
1
2 log(1 + aisi)− q∗(s0 +

∑K
i=1 si)} = 0.

(32)

7
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µ1

(a) Apply P-GWF
k

µ1 = s∗k +
1

a∗k
1

a∗k

s∗k

µ1

(b) Updated stair heights

k

dk =
1

ak

d1 = d2 = · · · = dk = µ1

Fig. 5: Illustration of Algorithm EEE-JWF.

If the q∗ is regarded as a parameter, the left hand side (LHS) of
equation (32) is a convex optimization with respect to variables
{si}. Denote by J(q∗) the corresponding maximum value, i.e.,

J(q∗) , max{si}Ki=1∈F
{∑K

i=1
1
2 log(1 + aisi)− q∗(s0 +

∑K
i=1 si)},

(33)

and then equation (32) can be simplified as J(q∗) = 0. The
extended problem (24) can be solved based on equation (32)
and the KKT conditions of (33). Combining equation (32) with
the KKT conditions of (33), we have

∑K
i=1

1
2 log[1 + ai(

ν+1
λ+q∗ − 1

ai
)+]−

q∗[s0 +
∑K
i=1( ν+1

λ+q∗ − 1
ai

)+] = 0,

λ · [P −∑K
i=1( ν+1

λ+q∗ − 1
ai

)+] = 0,∑K
i=1( ν+1

λ+q∗ − 1
ai

)+ ≤ P,
ν ·
[∑K

i=1
1
2 log

(
1 + ai(

ν+1
λ+q∗ − 1

ai
)
)
−B

]
= 0,∑K

i=1
1
2 log(1 + ai(

ν+1
λ+q∗ − 1

ai
)) ≥ B,

λ ≥ 0, ν ≥ 0, q∗ > 0,

(34)

where si = ( ν+1
λ+q∗ − 1

ai
)+, for i = 1, . . . ,K; λ is the optimal

dual variable that corresponds to the sum power constraint of
F ; and ν is the optimal dual variable that corresponds to the
throughput requirement constraint of F 3. The system (34)
consists of three non-linear and non-smooth equalities as well
as five inequalities in λ, ν and q∗. There seems no prior method
in the open literature to compute the solution to (34) or (24),
under the merits of exactness and polynomial computational
complexity.

The Dinkelbach method has been proposed to solve the
non-linear problem (34) based on iteration. The outline is:
(a) Initialize q(0); (b) Assume q(n) to be given, compute

3Here the function of (x)+ is defined by (x)+ = x for x ≥ 0; and
(x)+ = 0 for x < 0.

J(q(n)) and denote the corresponding optimal solution by
{s(n)i }Ki=1; and (c) Update q(n) into q(n+1), where

q(n+1) =

∑K
i=1

1
2 log2(1 + ais

(n)
i )

s0 +
∑K
i=1 s

(n)
i

. (35)

Different from the Dinkelbach method, we proposed
algorithms to directly compute the solution to the target
problems by applying the geometry-based machinery, with
exactness and low-degree polynomial complexity. Following
subsection gives an analogous comparison of these two
methods to demonstrate the advantages of the proposed
method.

E. Analogous Comparison with Dinkelbach Method

For convenience of analogous comparison, assume that
B = 0 in (24) without loss of generality. From analysis of
the Dinkelbach method, solving KKT conditions of (33)
leads to the power allocation solution following a
water-filling like structure. Applying the geometric relation,
considering the fact that only the first N channels out of K
channels are allocated with non-zero power with the water
level µ, we can update the summation range from [1,K] to
[1, N ]. Then the Dinkelbach method (33) can be written as

J(q∗) , max
{si}Ni=1∈F

{
N∑
i=1

1

2
log

(
1 +

si
di

)
− q∗ST

}
(36)

= max
{si}Ni=1∈F

{
N∑
i=1

1

2
log

(
1 +

µ− di
di

)
− q∗ST

}

= max
{si}Ni=1∈F

{
N∑
i=1

1

2
log

(
µ

di

)
− q∗ST

}
, (37)

where we applied si = (µ − di). For easy presentation, we
define Dinkelbach operator, D, as

D =
N∑
i=1

1

2
log

(
µ

di

)
− q∗ST . (38)

Now reviewing g(4s) defined in (10), and using the
concept of the water-level µ, which is equal to (dN + 4s

N ) as
illustrated in Fig. 2, g(4s) can be expressed below with a
better geometric vision as,

g(4s) = µN log(µ)− µ
N∑
k=1

log(dk)− ST (39)

= µ
[
log(µ)N − log(d1d2 · · · dN )

]
− ST

= µ

[
log

µN

d1d2 · · · dN

]
− ST

= µ
N∑
i=1

log

(
µ

di

)
− ST . (40)

Comparing (40) with (38), the relationship between
Dinkelbach operator and g(4s) is given by

g(4s) = 2µ · D|q∗= 1
2µ
. (41)

8
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Thus, the main advantages of our approach over Dinkelbach
method are as follows:

(a) Search range: the Dinkelbach method is to search q∗

through (35). In this search, q∗ cannot be obtained
from a finite discrete point set. On the other hand, in
our proposed approach, we determine the water level
step index, k∗, from GWF. The searching space is
narrowed down to (k∗) intervals, specified by
[d1, d2], [d2, d3], · · · , [dk∗−1, dd∗ ] and [dk∗ , dk∗+1].
This significantly reduces the searching effort.

(b) For a given q, the Dinkelbach method needs to
compute the exact solution to every convex
optimization problem with a “max” operator in (33).
However, it is difficult to obtain an exact solution,
especially remarkable for more complicated constraints
being met in problem (33). This non-exact solution can
impair convergence of the Dinkelbach algorithm (refer
to [18, (B) on p. 495]). On the other hand, in our
proposed approach, for each searching interval, we
solve min |g(4s)|. For all (k∗) intervals, there is at
most one interval which utilizes Proposition 1 to solve
4s. For all other (k∗ − 1) intervals, our algorithm
only needs to execute Step 2.1) or Step 2.2) as shown
in Figs. 3 (a) and (b), or Figs. 4 (b) and (c)
respectively. The computation effort for these (k∗ − 1)
intervals is almost negligible.

V. NUMERICAL RESULTS AND COMPLEXITY ANALYSIS

A few numerical examples are presented in this Section to
illustrate the steps of the proposed algorithms. As a positive
constant factor does not affect the optimal allocation, the
objective functions of the following examples use the natural
logarithm for convenience.

Example 1. Instantiate an EEE-JWF problem:

max{si}2i=1
(η =) log(1+s1)+log(1+0.5s2)

1+s1+s2
subject to: si ≥ 0,∀i;

s1 + s2 ≤ 2.

(42)

The reciprocals {dk = 1
ak
} of initial channel power gains

are shown in Fig. 6 (1.a). The procedures to solve the problem
are illustrated in Table 1, where the first two rows represent
the results for Step 2) in Algorithm EE-JWF. The last row
lists the output by Step 3) of EE-JWF. The column “Branch
in Step 2)” lists the corresponding “If” condition being met
in Step 2) , and the corresponding subfigures in Fig. 6.

In the last row, since η(n = 2) > η(n = 1), the output is
n∗ = 2, and the second row of S as the solution of power
allocation for the two channels.

Note that this example has a unique optimal solution as
the global solution, without any other local or global optimal
solutions.

Example 2. Instantiate another EE-JWF problem:

max{si}2i=1
(η =) log(1+s1)+log(1+0.5s2)

1+s1+s2
subject to: si ≥ 0,∀i;

s1 + s2 ≤ 3.

(43)

TABLE I: Iteration results for Example 1

Iteration Branch in Step 2) S η

n = 1 2.2, Fig. 6 (1.b)
[

1 0
0 0

] [
log(2)

2
0

]
n = 2 2.2, Fig. 6 (1.c)

[
1 0
1.5 0.5

] [
log(2)

2
log(3.125)

3

]
output Fig. 6 (1.c) [1.5 0.5] log(3.125)

3

This example is similar to Example 1, except that the upper
bound of the sum power is 3.

The reciprocals {dk = 1
ak
} of the channel power gains are

the same as those of Example 1 in Fig. 6 (1.a). The solving
procedures are listed in Table 2.

TABLE II: Iteration results for Example 2

n Step 2) Branch S η

1 2.2 Fig. 6 (1.b)
[

1 0
0 0

] [
log(2)

2
0

]
2 2.3, Fig. 6 (2.a)

[
1 0

1.62729 0.62729

] [
log(2)

2
log(3.45133)

3.25458

]
Fig. 6 (2.a) [1.62729 0.62729] 0.38062

With the machine computing, the results are represented by
five decimal digits. Example 2 has a unique global optimal
solution as shown in the third row of Table 2, corresponding
to the maximal value of the objective function. It does not have
any other local or global optimal solutions either. Example 2
indicates that the optimal solution does not always use out
the available total power for allocation. In this example, the
total power used for allocation is 2.25458 with an objective
function value as 0.38062. As a comparison, if we use up
all the available power P = 3, the allocation is illustrated in
Fig. 6 (2.c) as [s1 = 2, s2 = 1], leading to the corresponding
objective function value as 0.3760.

Example 3. Instantiate a weighted case of EE-JWF:

max{si}2i=1
(η =)

2
3 log(1+s1)+log(1+0.5s2)

1+s1+s2
subject to: si ≥ 0,∀i;

s1 + s2 ≤ 2.

(44)

The reciprocals {dk = 1
ak
} are illustrated in Fig. 6 (3.a).

The solving procedure is listed in Table 3. This example also
has the unique global optimal solution.

TABLE III: Iteration results for Example 3

n Step 2) Branch S η

1 2.2 Fig. 6 (3.b)
[

1/3 0
0 0

] [
log(4/3)

2
= 0.14

0

]
2 2.2, Fig. 6 (3.c)

[
1/3 0
1.0 1.0

] [
log(4/3)

2
= 0.14

3 log 3−log 2
9

= 0.29

]
Fig. 6 (3.c) [1.0 1.0] 0.29

Following, we present computational complexity analysis
of the algorithms. Fig. 7 assumes that the number of the
channels, K, changes from 100 to 200. The parameters {ak}

9
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2.5

1.c

2.a 2.b

3.a 3.b 3.c

Example 1

Example 2

Example 3

η∗ = 0.3806

η = 0.3760

Fig. 6: Illustration of optimal power allocation for examples 1-3.

are assigned at random, where the square root of each entry
of {ak} is drawn independently from the standard Gaussian
distribution and then squared (due to ak being a channel
power-gain, ∀k). We use n1 (O(K2), details of which are
provided in the complexity analysis of next section) to
denote the number of basic operations needed by the
proposed algorithm to obtain the global optimal solution to
(1). Fig. 7 compares the achieved EE of the proposed
algorithm (circle marked curve) with those of Dinkelbach
method. The lower two curves are the corresponding EE
values achieved by using Dinkelbach algorithm under the
number of the basic operations (2× n1) and n1 respectively.
Fig. 7 shows that the gain in EE is significant over
Dinkelbach method under the same number of the basic
operations, or doubled the number of the basic operations.

For the EE-JWF Algorithm, we have the following
computational complexity analysis. Steps 2.1) and 2.2) of
EE-JWF has experienced K + 1 evaluations, which need a
total of basic arithmetic, logical and basic function
evaluation operations (BAO, BLO, and BFVO) of 4K2 + 4K
times, at most. Step 2.3), only used once at most, needs
N = N1 + N2 (defined in Appendix B) loops to output the
solution to the system of g(4s) = 0 and
4smin ≤ 4s ≤ 4smax. As the EE-JWF algorithm has K
loops at most, the computational complexity is
5K

[
(max{1≤N≤M}{dN+1

dN
}+ 35)

]
+ [4K2 + 4K] =

O(K) + O(K2) = O(K2). Sorting {dn} needs the
complexity of O(K log (K)). It implies that EE-JWF has the
computational complexity of
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Fig. 7: Maximum energy efficiency by EE-JWF (proposed) vs.
Dinkelbach algorithm.

O(K2) + O(K log (K)) = O(K2). It is a loose result but
clearly expresses the result of the computational complexity:
O(K2). In addition, the computational complexities of
EE-JWF and EEE-JWF are the same, since only O(K)
computational complexity is added. For the Dinkelbach
method, PD-IPM algorithm is utilized. The computational
complexity of running one PD-IPM algorithm is
O(K3.5) log(1/ε) [17], [29]. The proposed approach is to
compute the solution with the error of machine zero,
whereas PD-IPM is to compute an ε-error solution.
Therefore, the proposed approach is a significant stepforward
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Fig. 8: Comparing computational complexity of EE-JWF
(proposed) with that of one iteration of Dinkelbach algorithm.

over the Dinkelbach method, to solve EE maximization
problems. Specifically, we have following proposition.

Proposition 5. For the proposed problems, EE-JWF and
EEE-JWF both output the solutions with errors of machine
zero and the computational complexities of O(K2); while PD-
IPM outputs an ε solution, with the computational complexity
of O(K3.5) log (1/ε).

As discussed before, the weighted cases can be
straightforwardly acquired from the equal weighted cases.
The weighted case is considered in the following figure. The
parameters {ak, wk} are assigned at random, where the
square root of each entry of {ak} is drawn independently
from the standard Gaussian distribution and then squared
(due to ak being a channel power-gain, ∀k), and each entry
of {wk} independently from a uniform distribution of
U [0, 1]. The experiment is conducted based on 100 samples,
with the sum power budget that is set up from 10 dBm to
150 dBm (i.e., 1dBm×the number of the channels). In Fig.
8, the cross marked curve illustrates the corresponding
computational complexity of Dinkelbach algorithm, to
compute an ε solution with ε = 0.01 to one of the mentioned
family of the optimization operation using. The results of
Fig. 8 demonstrate that the computational complexity of one
Dinkelbach iteration is much higher than that of the
proposed EE-JWF algorithm, especially when the number of
channels is large. If accuracy requirement is more strict, the
computational complexity of the Dinkelbach method can be
even higher. Thus, the proposed EE-JWF algorithm can
significantly reduce the complexity to compute the
energy-efficiency optimal power allocation, which is
especially favourable in large scale systems.

The proposed algorithms can compute the exact solutions
with excellent scalability, considering their low
computational complexity. Further, the proposed algorithms
can be computed in a parallel manner. Therefore, EE-JWF
can be applied to solve super-large-scale problems with high
efficiency and exactness, such as the massive Multiple Input

Multiple Output (MIMO) systems.

VI. CONCLUSION

In this paper, we have proposed the algorithms, EE-JWF
and EEE-JWF, to efficiently compute the optimal solutions
to the energy efficiency maximization problems with the sum
power upper bound constraints and the added throughput
requirement constraint, respectively. Compared with existing
energy-efficient power allocation algorithms, the proposed
EE-JWF and EEE-JWF algorithms have common two-fold
benefits of exactness and low complexity. Optimality of the
proposed algorithms has been proved strictly, and the low
computational complexity has been analyzed, proven and
validated through numerical results. As the proposed
algorithms can provide exact solution through low degree
polynomial-complexity parallel computations, they can be
applied to EE-maximal power allocation in large-scale
wireless systems to realize effective green communication.

APPENDIX A
PROOF OF LEMMA 1

It is seen that since the objective function in (1) is
continuous over the feasible set that is compact, there exists
an optimal solution to (1). Let {s∗k}Kk=1 denote an optimal
solution to (1) under the meaning of global optimality. Thus,
there exists n ∈ Z+ with 1 ≤ n ≤ K such that∑n
k=1( 1

an
− 1

ak
) ≤ ∑K

k=1 s
∗
k ≤

∑n+1
k=1( 1

an+1
− 1

ak
). The

optimal solution of {s∗k}Kk=1 implies that it is also the
solution to the following problem:

max{si}Ki=1

1
2

∑K
i=1 log2(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=1 si =

∑K
k=1 s

∗
k.

(45)

Successively, (45) and GWF (refer to (3)-(6) or the details
in [13]) result in the facts that both there exists a 4s∗ with
0 ≤ 4s∗ ≤ 4smax such that s∗k = ( 1

an
− 1

ak
) + 4s∗

n , for
k = 1, . . . , n, and s∗k = 0, for n < k ≤ K if available.

On the other hand, it is seen that the optimal value
1
2

∑K
i=1 log2(1+ais

∗
i )

s0+
∑K
i=1 s

∗
i

of (1) is not less than the optimal value
of the problem:

max{si}Ki=1

1
2

∑K
i=1 log2(1+aisi)

s0+
∑K
i=1 si

subject to: 0 ≤ si, ∀i;∑K
i=1 si = Vn,

(46)

for any Vn where
Vn ∈ [

∑n
k=1( 1

an
− 1

ak
),
∑n+1
k=1( 1

an+1
− 1

ak
)]. An optimal

solution to (46) is denoted by {sk}. Thus, similarly, there
exists sk with 0 ≤ 4s ≤ 4smax such that
sk = ( 1

an
− 1

ak
) + 4s

n , for k = 1, . . . , n, and sk = 0, for
n < k ≤ K if available, from GWF. These are due to {sk}
also being the solution to

max{si}Ki=1

1
2

∑K
i=1 log2(1 + aisi)

subject to: 0 ≤ si, ∀i;∑K
i=1 si = Vn.

(47)
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Due to the mentioned relationship between the two optimal
values of (1) and (46), we have:∑K

i=1 log(1+ais
∗
i )

s0+
∑K
i=1 s

∗
i

≥
∑K
i=1 log(1+aisi)

s0+
∑K
i=1 si

. That is to say, 4s∗ is
the maximum point to the problem:

max4s

∑n
i=1 log[1+ai((

1
an
− 1
ai

)+4sn )]

s0+
∑n
i=1[(

1
an
− 1
ai

)+4sn ]

subject to: 0 ≤ 4s ≤ 4smax,
(48)

interestingly being changed into this optimization problem in
only a single optimization variable. Let us denote the objective
function of (48) by f(4s). The derivative of f(4s), f ′(4s),
is expressed into:

f ′(4s) =
[s0+

∑n
i=1(

1
an
− 1
ai

)+4s]−( 1
an

+4sn )[
∑n
i=1 log (ai)+n log ( 1

an
+4sn )]

( 1
an

+4sn )[s0+
∑n
i=1(

1
an
− 1
ai

)+4s]2 ,

(49)
where 0 ≤ 4s ≤ 4smax. Since the denominator part keeps
the positive sign, the zero and the positive or negative values
of f ′(4s) only depend on the numerator part. Thus, for
convenience and simplification, the numerator part times
“-1” is denoted by g(4s) which is the same as that defined
in Proposition 1, based on the reference being selected by
minimizing −f(4s). Of course, somebody may also choose
the symmetric maximization of f(4s). As mentioned
before, g′(0) ≥ 0, g′(4s) ↑, for 4s ∈ [0,4smax], and then
g′′(4s) > 0, within valid range of 4s. Therefore,

• if g(0) > 0, 4s = 0 and then s∗k = 1
an
− 1

ak
= sk, for

k = 1, . . . , n; while s∗k = 0 = sk, for n < k ≤ K if
available;

• if g(4smax) < 0, 4s = 4smax and then s∗k = 1
an
−

1
ak

+ 4s
n = 1

an+1
− 1

ak
= sk, for k = 1, . . . , n; while

s∗k = 0 = sk, for n < k ≤ K.
• If g(0) · g(4smax) < 0, apply Proposition 1 to calculate
4s, and s∗k = 4s

n + ( 1
an
− 1

ak
) = sk, for k = 1, . . . , n;

while s∗k = 0 = sk, for n < k ≤ K.

Due to the monotonicity of g(4s), the point which satisfies
each of the three cases just mentioned above, must be the local
optimal solution.

Lemma 1 is hence proved.

APPENDIX B
PROOF OF PROPOSITION 1

g(4s) is given in (10), where the other parameters, {dk},
of g(4s) depend on their subscripts k up to N . Its derivative
g′(4s) at 4s = 0 is

g′(0) =

∑N
k=1 log(dNdk )

N
(50)

and then g′(0) ≥ 0. At the same time,

g′′(4s) =
1
N

dN + 4s
N

=
1

µN
> 0 for 4s ∈ (0,4smax).

(51)
Thus, g′(4s) > 0 for 4s ∈ (0,4smax), and it is strictly
monotonically increasing in this 4s range. Therefore, if

g(0) · g(4smax) = 0

as a trivial case, the solution can take 0 or 4smax; and if

g(0) · g(4smax) > 0

then (10) does not have any solution. On the other hand, we
only require to consider the case of g(0) < 0 and g(4smax) >
0. The case of g(0) > 0 and g(4smax) < 0 does not exists,
due to g′(4s) > 0. Therefore, it is seen that the existence of
the solution is guaranteed if g(0) < 0 and g(4smax) > 0.
Also uniqueness of the solution is guaranteed if the condition
above holds.

If g(0) < 0 and g(4smax) > 0, an algorithm is introduced
as follows for the solution.

4sn+1 = 4sn −
g(4sn)

g′(4sn)
,∀n ∈ Z+, (52)

where Z+ is the set of non-negative integers and let us take
any 4s0 from the interval of (4s∗,4smax], i.e.,
g(4s0) > 0 and 4s∗ < 4s0 ≤ 4smax. Here 4s∗ is the
solution to the system (10) and greater than zero. Thus,
0 < 4s∗ ≤ 4sn+1 < 4sn < 4smax,∀n. This point can be
proven through mathematical induction as follows.
According to the definition of 4s0, g(4s0) > 0, and the
properties of both g′(4s) and g′′(4s) mentioned above, it is
seen that 0 < 4s∗ < 4s1 = 4s0 − g(4s0)

g′(4s0) < 4s0. As a
side note, the second and the third inequalities in the family,
just mentioned above, of inequalities result from a fact. This
fact is that there exists η0 ∈ (4s∗,4s0), with 4s∗ being
greater than zero, such that
4s0 −4s∗ > 4s1 −4s∗ = (4s0 −4s∗)[1− g′(η0)

g′(4s0) ] > 0.
Assume that 0 < 4s∗ < 4sn+1 < 4sn < 4smax with
4sn+1 − 4s∗ = (4sn − 4s∗)[1 − g′(ηn)

g′(4sn) ], where
ηn ∈ (4s∗,4sn). The following is to prove that
0 < 4s∗ < 4sn+2 < 4sn+1 < 4smax. This system of
inequalities comes from a similar fact to the one mentioned
above: 4sn+1 − 4s∗ > 4sn+2 − 4s∗ =

(4sn+1 − 4s∗)[1 − g′(ηn+1)
g′(4sn+1)

] > 0, where
ηn+1 ∈ (4s∗,4sn+1). Therefore, the algorithm of (52) with
the corresponding aforementioned assumptions owns the
property of 0 < 4s∗ < 4sn+1 < 4sn < 4smax,∀n. Also
as a by-product, the equations

4sn+1 −4s∗ = (4sn −4s∗)
[
1− g′(ηn)

g′(4sn)

]
,∀n, (53)

have been proven. In (53), since

1− g′(η0)

g′(4s0)
=
g′(4s0)− g′(η0)

g′(4s0)
, (54)

it is seen that

0 <
g′(4s0)− g′(η0)

g′(4s0)
<
g′(4s0)− g′(η0)

g′(4s) , (55)

where
4s =

g(0)N(dN+1 − dN )

g(0)− g(N(dN+1 − dN ))
(56)

and 0 < 4s < 4s∗. In addition, for the equation
g(4s) = 0, first, we may use the bisection method [30] over
the initial interval of [g′(4s), g′(4smax)] repeatedly, and an
interval denoted by [g′(a), g′(b)] is obtained such that this

12
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interval contains g′(4s∗) with
0 < g′(b)− g′(a) < 1

10g
′(4s) (where g′(4s) is given). This

obtaining needs

N1 =

 log [10( g
′(4smax)−g′(0)

g′(4s) )]

log 2

+ 1 (57)

loop operations, at most, i.e., a finite amount of operations.
Here, the notation d·e denotes the ceil function. Then, let
4s0 = b. Thus, stemming from (53), we have:

0 < 4sn −4s∗
= (4s0 −4s∗)Πn

k=1[ g
′(4sk−1)−g′(ηk−1)

g′(4sk−1)
]

< (4s0 −4s)× ( 1
10 )n,∀n,

(58)

with the proven property: 0 < 4s∗ < 4sn+1 < 4sn <
4smax,∀n. Thus, it is seen that, for any ε > 0, there exists

N2(ε) =

⌈
log (4s0−4sε )

log (10)

⌉
+1 =

⌈
lg (
4s0 −4s

ε
)

⌉
+1 (59)

such that as n ≥ N2, 0 < 4sn − 4s∗ < ε, where lg(x) is
the logarithm in x with the base of 10. Thus, through the
mentioned Nt(= N1 + N2) loop operations above, at most,
with letting ε = 10−34, (52) with setting 4s0 computes the
practical exact solution with error of machine zero by a finite
amount of operations. In addition, the practical exact solution
only uses 34 more loops than the case of ε = 1, at most.

Proposition 1 is hence proved.
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