This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE
Transactions on Cloud Computing

Multi-Objective Service Composition with QoS
Dependencies

Ying Chen, Student Member, IEEE, Jiwei Huang, Member, IEEE, Chuang Lin, Senior Member, IEEE, and
Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Service composition is popular for composing a set of existing services to provide complex services. With the increasing
number of services deployed in cloud computing environments, many service providers have started to offer candidate services with
equivalent functionality but different Quality of Service (QoS) levels. Therefore, QoS-aware service composition has drawn extensive
attention. Most existing approaches for QoS-aware service composition assume a service’s QoS values are not correlated to those
of other services. However, QoS dependency exists in real life, and impacts the overall QoS values of the composite services. In this
article, we study QoS dependency-aware service composition considering multiple QoS attributes. Based on the Pareto set model,
we focus on searching for a set of Pareto optimal solutions. A candidate pruning algorithm for removing the unpromising candidates
is proposed, and a service composition algorithm using Vector Ordinal Optimization techniques is designed. Simulation experiments
are conducted to validate the efficiency and effectiveness of our algorithms. We are the first to take advantage of Vector Ordinal
Optimization techniques to search for Pareto optimal composition solutions with QoS dependency involved. The capturing of QoS
dependency enables us to find truly desirable solutions.

Keywords—service composition; QoS dependency; Pareto optimal solutions; Vector Ordinal Optimization; multiple QoS attributes;
multi-objective optimization; candidate pruning

O

1 INTRODUCTION properties are usually represented by Quality-of-Services
(QoS). Service composition has become QoS-aware [6],
which targets at finding the composition plan with the
optimal end-to-end QoS.

As the usual requirements of QoS involve many
traditional and widely-used QoS attributes, QoS-aware
service composition has to be formulated as a multi-
objective optimization problem. To tackle the tradeoff be-
tween different QoS attributes, some existing approaches
transformed the problem into single-objective optimiza-
tion by a utility function. Then, the problem can be
formulated as a traditional optimization problem, and
solved by some well-studied techniques [7]. The optimal
solution is defined as the one with best utility value.
However, another kind of approach based on Pareto
set model has been investigated recently to solve QoS-
aware service composition [8], [9]. It searches for a set
of Pareto optimal composition solutions instead of a
single solution, representing different tradeoffs between
different QoS attributes.

Some previous approaches assumed the QoS values
offered by a service were independent of other services
[10], [11]. However, in many cases, the QoS of a service

Cloud computing is a new paradigm providing shared
IT resources through the Internet [1], which provides
the respective resources supporting the deployment and
execution of web services. A web service [2] is a pro-
grammable module with standard interface descriptions
providing universal accessibility through standard com-
munication protocols. A comprehensive web service
usually requires a set of services to work together to
accomplish the desired demands, which is well-known
as service composition [3], [4]. Service composition al-
lows developers to compose services into a business
process workflow according to predefined requirements.
For instance, a travelling service is usually composed
of booking flight, booking hotel and renting car ser-
vices. Nowadays, more and more service providers have
started to offer candidate services that are functionally
similar but differ in non-functional properties. Consider
the payment service for booking flight. Both credit card
service and Visa Electron service offer payment services.
However, they charge different fees [5]. Non-functional

o Ying Chen and Chuang Lin are with the Department of Computer Science

and Technology, Tsinghua University, Beijing 100084, China. is correlated to others. For instance, Microsoft sales

E-mail: chenying12@mails.tsinghua.edu.cn, chlin@tsinghua.edu.cn promotion claims to give a discount on the execution
o Jiwei Huang is with the State Key Laboratory of Networking and Switch- cost if two or more services are selected together in

ing Technology, Beijing University of Posts and Telecommunications, . C

Beijing 100876, China. the same workflow [12]. Besides, response time of a

E-mail: héfl}lngiji@élmuil.com - Electrial and C composite service would be reduced if two selected
o Xuemin (Sherman) Shen is with the Department of Electrical and Com- : : :

puter Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Services are_de_rployed on the same P rovider, since the

Canada. data transmission is much faster. For another example,

E-mail: sshen@uuwaterloo.ca if a customer just invokes a service from Amazon, then,

other services from Amazon will become more accessible

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

to him. Thus, QoS dependency need to be considered in
service composition.

In this article, we study multi-objective service com-
position with QoS dependency involved which is largely
unexplored by literature. Based on QoS values, we define
dominance relationship between different workflows
and dominance relationship between different candidate
services. Taking advantage of the Pareto set model,
we search for the set of Pareto optimal composition
solutions. To achieve this, we first propose a candidate
pruning algorithm, which keeps all the correlated and
promising candidate services. It removes the candidates
which can not be part of the optimal composite service.
In this way, the search space can be reduced. We theoreti-
cally prove that the candidate pruning algorithm will not
affect finding the optimal composition solutions. To fur-
ther improve efficiency, we define the layered Pareto opti-
mal composition solutions and the good enough composition
solutions to soften the optimization goals. We propose
tree-based Pareto Layers algorithms to lay the solutions,
which introduce a natural order for the solutions in
search space under multi-objective scenarios. Then, we
extend the Vector Ordinal Optimization techniques [13]
which are useful for dealing with multi-objective and
complex problems. We propose a composition algorithm
called Dependency-Aware Service Composition (DASC).
The DASC algorithm makes use of QoS dependency
information to find sub-optimal composition solutions
efficiently. Furthermore, we conduct simulation experi-
ments to verify the effectiveness of our DASC algorithm.

There have been some existing approaches studying
dependency-aware service composition [5], [12], [14],
[15]. However, multi-objective composition with QoS
dependency to search for a set of Pareto optimal solu-
tions is largely unexplored. Our approach fills this gap.
Furthermore, to the best of our current knowledge, we
are the first to take advantage of Vector Ordinal Opti-
mization techniques to solve dependency-aware service
composition, which explores a way to solve service com-
position problem. Our previous work [16] also studied
QoS-aware service composition. The main differences
from our previous article are listed as follows.

1) In our previous publication, we did not consider
QoS dependency. In this article, we integrate QoS depen-
dency to make our approach more practical and general.

2) In this article, we combine Pareto-based techniques
with Vector Ordinal Optimization (VOO) techniques to
search for Pareto optimal solutions. While in our pre-
vious publication, we did not take advantage of VOO
techniques.

3) We propose the dependency-aware service compo-
sition algorithm in this article, including a candidate
pruning algorithm and tree-based algorithms to obtain
Pareto layers. While in our previous publication, only
a composition algorithm based on partial selection was
proposed.

The remainder of this paper is organised as follows. In
Section 2, we introduce QoS dependency and define the

Pareto optimal composition solutions. In Section 3, we
propose the candidate pruning algorithm prior to service
composition, then, we present the DASC algorithm for
dependency-aware service composition. In Section 4,
we carry out simulation experiments and discuss the
simulation results. We analyze related work in Section 5.
Section 6 concludes the paper and supplies future work
directions.

2 MODEL OF SERVICE COMPOSITION WITH
QoS DEPENDENCY

In this section, we first introduce the motivation scenario
in Sec. 2.1. Section 2.2 introduces QoS attributes and
dependency in service composition. Section 2.3 defines
the objective of our service composition problem which
is to search for the Pareto optimal solutions. Section 2.4
illustrates the difficulty in solving the multi-objective
service composition problem with dependency involved,
and introduces how to obtain the desired solutions effi-
ciently. The latter will be discussed in detail in Sec. 3.

2.1 Motivation Scenario

We take advantage of the example in [5] and use it
as our motivation scenario. Consider a user planning
a holiday service consisting of 3 component services:
booking flights, booking hotel, and booking sightseeing.
There are two QoS attributes, cost and reliability. In
total three companies of A, B and C are involved. The
default QoS values for the candidate services are shown
in Table 1. Suppose company A gives a discount if the
candidates of arInA and htlA are selected together, and
their cost sum would become 580%. Company C also
gives a discount if the candidates of htlB and sigC are
both selected, due to some business cooperation between
company B and C. And the cost sum for htlB and sigC
is 500 $.

If the dependency information is not considered, the
optimal composition solutions should be (arlnA, htlB,
sigA) with QoS values of (650$, 83.03%), (arlnA, htlB,
sigB) with QoS values of (670$, 85.74%), and (arlnA,
htlB, sigC) with QoS values of (690$, 87.54%). However,
when dependency information is considered, (arlnA,
htlA, sigA) with QoS values of (630$, 83.03%) would be
one optimal solution, since its cost is the lowest. Thus,
taking into account QoS dependency is important to find
truly desirable solutions.

2.2 QoS Attributes and QoS Dependency

Suppose a composition request with m tasks is rep-
resented by a set I = {1,2,---,m}. For each task
i, there are m; candidate services able to accomplish
it, denoted by a set C; = {ci1,¢i2,...,Cin, }. The can-
didates can be found by service discovery [17], [18].
Let S, = (c15,¢2j,--.,Cmj) denote a concrete workflow
which fulfills the request, where each ¢;; € C; represents
the candidate service selected to finish task i. The search

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

TABLE 1
Default QoS Values
service | cost($) | relia || service | cost($) | relia
arlnA 150 95% sigA 50 92%
htlA 470 95% sigB 70 95%
htIB 450 95% sigC 90 97%
TABLE 2
Notations and Definitions.
Notation | Definition

m Number of tasks.

n; Number of candidates of task i.

l Number of qos attributes.

I Tasks set.

C; Candidates set of task 1.

Depy Dependency set of the r-th attribute.

Cij The j;-th candidate service of task 1.

Sp A composition solution.

S Original search space.

A QoS attributes vector.

ar The r-th qos attribute.

E’ set of sub-compositions with at least two tasks

(including two).
Variable denoting whether the r-th attribute of
candidate c;; is correlated with others.

br(ciz)

dr(cij) Default value of the r-th attribute of candidate
Cij.
vr(Sp) Value of the r-th attribute of solution S,.
Ssub The sub-composition with dependency in-
volved.
vgub The attribute value of the sub-composition
Ssub,
V(Sp) Value vector of solution Sp.
Ic(cij) Indicator variable denoting whether the candi-
date ¢;; is correlated with other candidates.
Par(S) | The set of Pareto optimal solutions.

space S of all possible service compositions is the carte-
sian product defined by S = C x Cy x. .. x C,. The main
notations in Sec. 2 are listed in Table 2. We only consider
service composition approach for sequential structure
here, and composition approach for other structures will
be studied in our future work.

QoS which describes non-functional properties of ser-
vices is important in service composition. And multiple
criteria of QoS are usually considered together. Let a,
denote the r-th QoS attribute and A = (a1, a9, ...,a;) be
the vector of the QoS attributes in the paper. We present
the formal definitions of QoS attribute, QoS dependency
and QoS as below.

Definition 1: (QoS attribute) QoS attribute a,(1 < r <
l) represents the 7-th non-functional property of services.
In this article, we generalize the concept of QoS attribute
to include not only the classical property such as re-
sponse time, throughput, but also other properties like
cost [5], [12].

Definition 2: (QoS dependency) Dep, = {(S5",v5"")}
represents the set of dependencies of the r-th QoS at-
tribute. Each element in Dep, is a tuple (Sf)“b , v;“b>,
where S50 denotes the sub-composition with depen-
dency involved. Let E’ represent the set of sub-

compositions having at least two tasks (including two
tasks). E’ is the range of S5"*. v5"0 defines the attribute
value of the sub-composition S5"°.

Definition 3: (QoS) QoS is defined by {(d,, Dep,)}._;.
Each element is a tuple (d,, Dep,), where d, stands for
the default value of the r-th attribute of the candidate
service with no dependency involved. And Dep, denotes
the dependency information which has been defined in
Definition 2.

The QoS of a concrete workflow S, depends on the
QoS of each selected candidate service c;;. When there
is no QoS dependency among these candidate services,
the QoS of a composition solution S, can be simply cal-
culated by the corresponding aggregate functions. Some
typical examples of aggregation functions for attributes
in sequential structure are shown in Table 3 [19]. When
there exists QoS dependency, it affects the performance
of the composite service and cannot be neglected. QoS
dependency exists in at least two services (including two
services). In this article, we consider the general case
where QoS dependency can exist in two services and
among more than two services.

Let b,(c;j) = 1 represent the r-th attribute of candi-
date ¢;; has dependency on other services, otherwise
br(cij) = 0. d(c;;) represents the default value of the r-th
attribute of candidate ¢;;. For instance, d; (arlinA) = 1508
in Table 1. The decision variables of the optimization
problem are what candidate services to select for each
task. S, and ¢;;(1 < i < m,1 < j < n;) represent
the decision variables of the optimization problem. The
other symbols are the constants of the problem.

2.3 Optimal Service Composition

Let the QoS values of the composite service S, be
denoted by

V(Sp) = (n (Sp)a e ,U,-(Sp), e 7“1(51)))7 (1)

where v,.(S),) represents the value of the r-th attribute of
Sp. Different attributes may have different optimization
directions. For the attributes to be maximized, we mul-
tiply the attribute values with -1. The objective of our
optimization problem can be expressed as

minimize (v1(Sp),...,vr(Sp), ..., v (Sp)).

P
Then, we present the definition of QoS-aware service
composition problem in Definition 4.

Definition 4: QoS-aware service composition problem
is to select the candidate service for each task to form
composition solutions, so that the overall QoS values for
the composite service are optimized.

Such compositions are called the optimal solutions.
This article focuses on selecting the composition solu-
tions based on obtained QoS information. The detailed
QoS discovery or matching is not the focus of this current
article. To tackle the tradeoff between different objec-
tives, we take advantage of Pareto set model to search for

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

4
TABLE 3
Examples of aggregation functions in sequential workflow.
QoS attribute response time cost availability reliability throughput reputation
Aggregation function | > d(cqy) mod(ey) | TTm, d(eiy) md(ey) | minl™ d(cqy) % S d(ciy)

the Pareto optimal composition solutions. Before describ-
ing the Pareto optimal composition solutions in detail,
we present the definition of dominance in Definition 5,
which is critical in a Pareto set model.

Definition 5: (Dominance) For two composition solu-
tions S), and .5}, their QoS values are denoted by (1) and
(2), respectively. We say that S, dominates S, if both (3)
and (4) are satisfied.

V(S;)) = (vl(SI/)),...,vT(SI/)),...,vl(SI/))). ()
vre{1,2,...,0},v.(Sp) < v (S}); 3)
Ire{1,2,...,1},0,:(Sp) <v.(S,). 4)

For brevity, we use the expression S, > S, to stand
for S, dominates S,,. Once solution S, is dominated, we
can conclude that), cannot be the optimal one. To be
more specific, we present the definition of Pareto optimal
composition solution in Definition 6.

Definition 6: (Pareto optimal composition solution)
Given a workflow consisting of tasks I = {1,2,...,m},
the QoS attributes A = (a1,a2,...,a;), a composition
solution S, is called the Pareto optimal composition
solution if it selects exactly one candidate service c;;
from each candidate set (;, and is non-dominated by
any other solution, i.e., there exists no solution Szl> such
that S}, = 5.

Let Par(S) represent the Pareto optimal solutions of
set S, denoted by

Par(S) = {S, € S | BS, > S,,¥S, € SAS, #5,}. (5)

Due to the tradeoff between different objectives, there
may exist more than one Pareto optimal solution. In this
paper, we focus on searching for the set of Pareto optimal
composition solutions.

2.4 Fine-Grained Model

The optimal selection of composite services is an NP-
hard problem [8]. The introduction of QoS dependency,
however, makes the problem even more complex. In
this case, we can not simply eliminate the correlated
candidates based on their default QoS values. In fact,
to calculate the exact QoS values of each composition
solution, we have to check the dependency information
for each attribute a,. Thus, local optimization of sub-
compositions may not obtain the desired results, and we
have to carry out global optimization with all the de-
pendency information fully considered. In other words,
for each composition solution, to calculate the exact QoS
values, we have to go through all the dependency sets
and use brute-force search to find the exact matched sub-
compositions. We call this model the fine-grained model.

The fine-grained model can guarantee to have the
optimal solutions; however, it suffers from large time
complexity. For a composite service with m tasks, there
canbe () +(3)+...4+ () = 2™ —m—1 ways to combine
them in the worst case. Thus, we focus on obtaining the
desired solutions efficiently, which will be discussed in
Section 3.

3 APPROACH FOR COMPOSITION WITH QOS
DEPENDENCY

3.1 Architecture of the Composition Approach

Our proposed approach consists of two parts, which
are preprocessing of candidates and service composition
with QoS dependency. Preprocessing of candidates is
conducted prior to composition, and it will be intro-
duced in Sec. 3.2. Service composition with QoS depen-
dency is conducted after the preprocessing of candidates
finishes, and it will be introduced in Sec. 3.3. More
specifically, composition with QoS dependency consists
of two parts, ie., softening goals and Vector Ordinal
Optimization based composition.

3.2 Preprocessing of Candidate Service Sets

The composition space grows exponentially with the
number of candidates in each task set. A QoS decom-
position approach can be used to deal with the problem,
and some evolutionary algorithms can also be used [20],
[21]. In our article, we reduce the size of each task
set by pruning uninteresting candidates. Removing one
candidate from the first task set can reduce the search
space by [[\~, n;. However, the pruning process is much
more complex when QoS dependency is introduced.
Nevertheless, for those candidates that are free of corre-
lations, we can still prune the unpromising ones among
them. Let I.(c;;) = 1 represent that the candidate ¢;; is
correlated with other candidates, otherwise I.(c;;) = 0.
I.(c;;) can be calculated by the logical OR of b,(c;5), i.e.,
Ic(cij) = bl(cij) V bQ(Cij) V...V br(cij) V...V bl(cij)-
Alternatively, we could take the sum and check if it
is greater than zero. Recall that b,(c;;) = 1 represents
the r-th attribute of candidate ¢;; is correlated to other
candidates.

For each task i € I, let C; = {cijleij € Ci NIc(ci5) =0}
be the set of candidates with no dependency on others.
Consider two candidates c;;, c,’t-j € C;. Since a candidate
can be viewed as a special workflow with only one
service, the dominance relationship between c;; and cj;
is similar to that of composition solutions. We use the
expression c;; = c;; to represent that ¢;; dominates c;;.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

The candidates in C; that are not dominated by others
are promising ones called optimal candidates.

The dominated candidates can be eliminated to reduce
search space and improve efficiency. Pairwise compar-
isons among the candidates in C; are required to obtain
the optimal candidates and eliminate the dominated
ones. The enumeration order of candidates can affect the
elimination efficiency. Choosing an optimal candidate
to be the first enumerated one can improve efficiency.
We define the grade of candidate ¢;; € C; as g(cij) =
St dy(cij). Tt is easy to see that the candidate with the
smallest grade value must be an optimal candidate, i.e.,
if ¢f; € C; and g(c;‘j) = mNincijeCZ- g(ci;) hold, then ¢ is
an optimal candidate in C;.

We let the optimal candidate cj; be the first one to
be enumerated in C;. For simplicity, the enumeration
process based on the k-th candidate is called the k-th
round, and let ¢, represent the k-th candidate in C;.
The detailed candidate pruning algorithm for each set
C; is shown in Algorithm 1. 72; = |C;| is the number of
initial candidates, and C;-opt represents the set of op-
timal candidates. The variable IsDominated(k) denotes
whether ¢, has been dominated. In the k-th round, ¢, is
pairwise compared with the remaining non-dominated
c; where k < j < ;. For ¢; that has been dominated al-
ready (IsDominated(j)=True), the pairwise comparisons
between ¢;, and ¢; are omitted. Once ¢, is dominated by
¢;, we mark IsDominated(k) with True and the process
of pairwise comparing c; with remaining ¢; (j <t < 7;)
is omitted. Then the (k + 1)-th round begins and the
pairwise comparison processes continue until the last
round finishes.

Note that instead of exhaustive pairwise comparison
of all the candidates, we omit some pairwise comparison
operations in Algorithm 1. By this way, we can not only
reduce execution time but also guarantee the optimal-
ity. Theorem 1 demonstrates that Algorithm 1 can still
guarantee to find all the optimal candidates.

THEOREM 1: Algorithm 1 can guarantee to obtain all
the optimal candidates in C;.

The detailed proof for Theorem 1 has been presented
in Appendix A. Algorithm 1 prunes the unpromising
candidates and keeps the optimal ones. Let C/ represent
the set of kept candidates, expressed in (6).

CZI = Cz — (éz — éi-Opt). (6)

C! contains all the correlated candidates and the opti-
mal ones of non-correlated candidates. The relationship
between sets C;, C;, C’i—opt, and C/ is illuminated by
Fig. 1. Due to space limitation, the analysis for search
space reduction is presented in Appendix B.

We will show that service composition based on set
C; of each task i can obtain the optimal composition
solutions, as presented in Theorem 2.

THEOREM 2: The optimal composition solutions can
be obtained by keeping only set C] for each task i.

Interested readers can refer to Appendix C for detailed
proof for Theorem 2.

Algorithm 1 Candidate Pruning Algorithm

CANDIDATE-PRUNING(C})
Input: Set C; B
Output: Optimal candidates set C;-opt
1: Ci-opt =
2: Obtain the candidate cj; € C; with the smallest grade
value, and let ¢ be the first element in C;
3: count =0
4: for k=1 to n; do
5. IsDominated(k) = False
6: for k=1 to n; do
7. if IsDominated (k) == True then

8: continue;

9. forj=k+1ton; do

10: if IsDominated(j) == True then
11: continue;

12: if ¢, > ¢; then

13: IsDominated(j) = True;

14: count++;

15: else if ¢; > ¢, then

16: IsDominated(k) = True;

17: break;

18: if IsDominated (k) == False then

19: C*Z-—opt.add(ck);

20: if k == 1 and count == 7ni; — 1 then
21: break;

22: return C’i—opt

é
1
{ |

Without QoS Dependency | Pareto Optimal Candidates. | 1 g

Fig. 1. Relationship between sets.

3.3 Dependency-aware Service Composition
3.3.1 Goal Softening

Let 8" = C] x C) x ... x C/, be the new composition
space after candidates pruning. The space size |S’| grows
exponentially with the number of tasks, and can be
still large after candidates pruning. Thus, we soften
the goals by desiring solutions that are approximate to
Pareto optimal composition solutions. To achieve this,
we discuss how to sort or order the solutions for multi-
objective service composition. We will introduce layers to
sort the solutions. Let S; —S5 represent the set containing

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

the elements in set S; but not in set S>. We introduce
layers [22] and present the definition of layered pareto
optimal solutions for service composition, as shown in
Definition 7.

Definition 7: (Layered Pareto optimal composition so-
lutions) For a given solution space S/, let L; = Par(S’)
represent the set of first layer (Layer 1) Pareto optimal
composition solutions. Remind that Par(S’) denotes the
truly Pareto optimal solutions of set S’, according to (5).
Then the e-th layer (Layer e) Pareto optimal composition
solutions are defined by (7), which are the Pareto opti-
mal composition solutions after all the previous layers
(L1, La, ..., Le_1) have been removed.

Le = Par(S" — US_Y Ly). (7)

Insight: The introduction of layered Pareto optimal
composition solutions brings a natural order of the
solutions in search space S’. To be more specific, let
us first consider single-objective situation. For single-
objective optimization problem with S’ representing the
search space, let S,, € S; represent the best solution
optimizing the single objective. Then, we remove S,
from the search space S’, and the new search space
becomes S’ — {S,,}. Let Sp, € 8" — {S,, } represent the
best solution in new search space S’ — {S,, }. Thus, S,
is the second best solution in original search space S’.
Then, we can recursively define the third best, fourth
best solutions in original search space S’.

Similarly, now let us consider the multi-objective opti-
mization situation with search space represented by S’.
The exactly best solutions (may have more than one) are
the Pareto optimal solutions of S". We use L, to represent
the set of these Pareto optimal solutions. We call L, the
first layer. Then, we remove L; from 5’, and we get the
new search space S’ — L. Let Ly represent the set of
Pareto optimal solutions of S’ — L;, and we call Lo the
second layer. We can define the third layer L3, the fourth
layer L, recursively. In this way, we can bring a natural
order for solutions under multi-objective optimization
problem. For the solutions in different layers, the ones
in front layers are superior. However, for the solutions
in the same layer, they cannot dominate each other.

Suppose there are ¢ layers in total. We soften the
optimization goals and focus on layered Pareto optimal
solutions, which are much easier to obtain. For example,
if we randomly pick a composition solution S, € 5,
the probability that S, belongs to the first three layers
is larger than the probability that S, is Pareto optimal.
Moreover, it may be required to obtain more than one
good composition solutions. To better characterize this
kind of requirement, we define the good enough composi-
tions set as

G=U%_Le, 8)

which is the union of the composition solutions in the
first g(1 < g < q) layers. The solutions in G are called
the good enough composition solutions, also called the

desirable solutions. We define selected compositions set SC
as the set of composition solutions chosen based on some
certain mechanism (such as random selection, heuristics
selection). Providers or users are free to decide G and g
based on their requirement.

If G C SC, i.e., all the desirable solutions are covered
in the selected set, then, this would be an ideal case.
However, this is impractical since it requires to enu-
merate all the possible composition solutions and check
global dependency information for each composition.
Instead, we aim to use a coarse-grained model to select
set SC to achieve acceptable matching results with high
efficiency. Let P4 represent the alignment probability [13]
between sets G and SC, i.e., the probability that at least
k1 compositions in SC are good enough solutions. Py is
defined by

P4 =Prob(|GNSC| > ky), 9)

where k; represents the alignment level. Both G and k;
are predefined.

In this article, we focus on how to select SC from
S’ such that we can maintain a satisfactory match be-
tween SC and G with high probability, ie., P4 > a. «
represents the desired alignment probability. Choosing
SC with a larger size can help increase the alignment
probability; however, this would also increase execution
time. Here, we consider a simple mechanism which
chooses SC randomly from S’, providing guidance on
how large enough |SC| should be to achieve satisfactory
results. The closed form expression of the alignment
probability P4 under random selection mechanism is
shown in (10).

P4 =Prob(|GNSC| > k1)
min(>7 _; |Lnl,|SC|) (

>

e:k1

;JL:é ‘Lh‘) (Z?‘ng&r‘l—\jﬂ)

(15¢1)

The detailed proof for (10) has been presented in
Appendix D. Thus, under certain alignment probability
requirement «, given good enough solutions size |G|
and alignment level ki, the size |SC| under random
selection mechanism can be calculated. Then, search of
optimal composition solutions can be done in set SC
instead of S/, improving efficiency greatly. Note that the
size |SC| under random selection mechanism actually
provides an upper bound of selection set size, since
none of the knowledge of QoS attributes and service
composition is made use of. Thus, we expect higher
alignment probability and smaller selected set size when
QoS information is taken advantage of, which will be
discussed in the following parts.

(10)

3.3.2 Background of Vector Ordinal Optimization

We take advantage of Vector Ordinal Optimization
(VOO) techniques [22] to solve the problem. Here, we
present a short introduction of VOO. VOO techniques
are used for multi-objective optimization problem. The

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

goal is to find a set of good enough solutions that
are Pareto optimal or nearly Pareto optimal. Some key
concepts or definitions in VOO are listed as below.

(1) Dominance Relationship. It determines the superior
relationship of one solution over the other solutions.

(2) Pareto Layers. The current Pareto layer includes
the successive Pareto optimal solutions after the previ-
ous layers have been removed from consideration. The
Pareto layers introduce a natural order for solutions in
search space.

(3) Good Enough Set. The true first g layers of solu-
tions. The set is denoted by G. When g = 1, G is the set
of Pareto optimal solutions.

(4) Selected Set. The selected s layers of solutions
based on their estimated performance. The set is denoted
by SC.

(5) Vector Ordered Performance Curve (VOPC). It is a
concept to classify the problem type, i.e., the problem is
relatively easy to solve, or hard to solve, or just normal.

(6) Error Level. It is used for defining the difference
between the estimated performance and the true perfor-
mance. When the error is small, the truly good solutions
are easier to obtain.

Then, the VOO takes the following steps to obtain k;
good enough solutions.

Step 1. Use a crude and computationally fast model to
estimate the performance criteria of the solutions.

Step 2. Estimate the VOPC type and error level.

Step 3. The user specifies the size of good enough set
G, and the required alignment level ;.

Step 4. Use the table presented in [13] to calculate s.

Step 5. Select the estimated first s layers as the selected
set.

Step 6: The theory of VOO ensures at least k; truly
good enough solutions are obtained with probability no
less than 0.95.

3.3.3 Vector Ordinal Optimization based Service Com-
position

In this section, we propose the DASC algorithm which
makes use of QoS information to pick the set SC' effi-
ciently, and obtain satisfactory composition solutions.

(1) Crude Model.

At first, we use a crude but efficient model to reduce
time and space significantly. We pick a set of repre-
sentative composition solutions from search space S’.
Each solution S, € S’ is chosen with equal probability.
According to statistical facts, representative composition
solutions from the space can be obtained [23]. We are
concerned about deciding the number of representative
compositions M < |S’| so as to cover some good enough
solutions from the search space. Let E3 denote the event
that at least one of the M compositions is in the top
&-percentile of the space [24]. Thus, it can be obtained
that Prob(F;) ~ 1 — (1 — ¢%)M. For example, when
¢ = 0.1, M = 10000, we have Prob(FE3;) ~ 1 — (1 —
0.001)10990 ~ 1 — 45173 x 10~°. The probability that the
representative compositions set contains good solutions

is almost 1 in this case. This is our first procedure of
softening optimization goals. In this way, the search
space can be reduced by several orders of magnitudes
[13], improving efficiency significantly.

Let S denote the representative compositions set. To
save execution time, we take advantage of a coarse-
grained but computationally easy model to estimate
the performance of solutions in S. The model ignores
dependency information among services, and simply
uses the aggregate functions to calculate the QoS values
of each composition solution. For brevity, we call this
model the coarse-grained model.

For each composition solution S, € S, let V..(S,)
represent the estimated QoS of S, under our coarse-grain
model, denoted by

che(Sp) = (Ulce(Sp)7 ce 7U'rce(Sp)a ce a'Ulce(Sp))v (11)
where v,..(S;) denotes the r-th attribute value under the

coarse-grain model.

(2) Pareto-optimal Composition Layers

Based on the QoS values V..(S,) of each solution, we
divide the M compositions into Pareto-optimal composi-
tion layers. To make full use of dominance relationship,
we propose Algorithm 3 which finds Pareto layers based
on a tree structure. We build the tree based on the dom-
inance relationship between each pair of composition
solutions. For each composition solution 5, € S, two
arrays which are S, and S, are maintained. S contains
the solutions that dommate S,, while S, 1ncludes the
solutions that are dominated by S,. For brevity, let .S,
represent the i-th composition solution in S. For any two
composition solutions Sy, S,, € S, if Sp, = S, then we
add a directed edge from S, to S, and add S, to
Spj, Sp, to S,,. Pairwise comparison is conducted only
once in this process. The detailed procedure about the
pairwise comparison is shown in Algorithm 2.

We search for the Pareto-optimal layers based on the
constructed tree. At the very beginning, the composition
solutions S, with empty S, are the first layer Pareto-
optimal compositions. Besides, for each current Pareto-
optimal composition S,;, we find the solutions S, in
SpJ Sp,, is dominated by S,.. We delete S, from S,
since S),; will be removed from the remammg set. Then
this process continues and we search for Pareto-optimal
compositions in the next layer. The searching procedure
ends when the remaining set is empty.

(3) Selecting Composition Solutions

Based on VOO techniques, SC = U;_;L. is chosen
as the selected set, i.e., the union of the estimated first
s layers. Here, s will be determined by the DASC al-
gorithm. For practicality we set the required alignment
probability as 0.95, which is a certain high value.

We can make use of L. to have some knowledge of
the problem type, i.e., whether the good enough com-
position solutions are easy to obtain. Let F'(z) represent

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

Algorithm 2 Tree Building Algorithm

TREE-BUILDING(S)

Input: Set S)

Output: S,,,5,, for each S, € S
1. fori=1to M do

2: ‘SA’I)L = (Z)

3: Spl =0

4: fori=1to M do

5. forj=i+1to M do

6: Compare S, and S, based on V,.(S,,) and
che(spj)

7: if S, = Sp, then

8: Sp,-add(S,,)

9: S, .add(S,,)

10: else if S, =S5, then

11: Sp,-add(Sy,)

12: Sp,-add(Sp,)

13: return S, S,

Algorithm 3 Pareto-optimal Composition Layers

Input: Set S
Output: Pareto-optimal Composition Layers L;
1: Tree-Building(S)
2: RemainingSet = S
3 1=0
4: while RemainingSet # () do
5. i=1i+1
6 Li = @
7. for j =1 to |RemainingSet| do
8
9

if S,, = 0 then
L;.add(S,,)

10: for all S,, €S, do

11 Sy .delete(S,;)

12: RemainingSet.delete(S,,)
13: g =1

14: return All layers L;(1 <i < gq)

the cumulative function of Pareto layers.

x

Fla) =Y |Le|.

e=1

(12)

F(z) denotes the number of composition solutions in
the first = layers. Then a Vector Ordered Performance
Curve (VOPC) [22] can be obtained based on F(x). To
be more specific, we plot the values of F'(z) as function
of x, and obtain the graph F(x) vs x. There are generally
three kinds, which are flat, neutral and steep, shown in
Fig. 2. If the VOPC is flat, it can be inferred that few
solutions are in the front layers and the good enough
compositions are hard to obtain. Thus, we need to choose
a larger s (more estimated layers) in order to cover the
good solutions. However, if the VOPC is steep and many
solutions are in the front layers, a smaller s is sufficient
to cover the good compositions.

—neutral —steep

F(X)
F()
F(X)

X X X

Fig. 2. Typical types of VOPCs.

Error level is another factor influencing s determi-
nation. It defines the deviation between estimated QoS
values and true QoS values. The estimated QoS value
means the QoS value without considering dependency
information. The true QoS value means the QoS value
with dependency considered. In this way, we have a
rough idea of how large the noise is, i.e.,, how great
the dependency’s influence is. Under a larger error
level, we need to select a larger s so as to cover the
good solutions, while s can be much smaller when the
error level is smaller. To estimate the error level under
our coarse-grain model, we randomly select M’ < M
solutions in S and obtain the true QoS values by the
fine-grained model. Then we scale the QoS values by
normalization, and calculate the standard deviation of
the M’ solutions. The largest one among the [attribute
deviations is regarded as the error level. Let diff, =
[vre(Sp) — vr(Sp)|/max{v,c(Sp)} represents the normal-
ized difference value for the r-th attribute. The error can
be calculated by

s, (diff,)2

T hr<r<i.

max (13)
If the error level < 0.5, then it is considered as a small
one, and 0.5 < error level < 1 represents a medium one,
while 1 < error level denotes a large one [24].

When VOPC and error level have been obtained, the
number s of estimated layers to select can be calculated
based on VOO techniques. Providers or users are free
to decide g. a is usually set as 0.95 in VOO techniques.
In [22], regression analysis is conducted to derive the
coefficient parameters based on 10,000 solutions with 100
layers and two objectives. It is demonstrated that the
result is upper bound for the selection set size when
more objectives are considered. We borrow such idea
and calculate s as (14)-(17), where 7,6, and 6 are the
corresponding coefficients defined in [22] which are ob-
tained through regression analysis. Eq. (14), (15) and (17)
are used for mapping our parameters to the parameters
in [22] to keep ¢'/100 = g/q, k'/10000 = ki/M, and
s/q = s'/100.

g = max {1, L% I} (14)

k' = max {1, (LAO;O k1], (15)
s'(K,g) =" (k) ()" + 6, (16)
- (1;(’)0 -] 17)

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

We choose SC' = >"°_, L. as the selected compositions
set. The theory of VOO guarantees that SC includes
at least k; good enough composition solutions with
probability to be no less than 0.95. Based on the selected
set SC, we then use the fine-grained model to select the
top k1 good enough composition solutions. The main
steps of our DASC algorithm are shown in Algorithm
4. The complexity analysis of Algorithm 4 is shown in
Appendix E.

Algorithm 4 Dependency-Aware Service Composition
(DASC)

Input: Representative composition set S, number of
good enough solution layers g, alignment level k;
Output: k; good enough composition solutions

1: Calculate the QoS values of all the compositions in
S using coarse-grain model, i.e., ignore the depen-
dency information

2: Estimate the VOPC type, i.e., flat, neutral or steep
based on (12)

3: Estimate the normalized error level, i.e., small,
medium or large based on (13)

4: Calculate the number s of selected layers based on
(14)-(17), and the theory of VOO ensures that the s
layers contains at least k; good enough compositions
with probability no less than 0.95

5. Add dependency information to use the fine-grain
model introduced in Sec 2.4 to calculate the exact
QoS values of the composition solutions in the se-
lected s layers, and choose the top ki compositions

6: return k; good enough composition solutions

4 EVALUATION
4.1 Experiment Setup

We conduct simulation experiments to evaluate the ef-
fectiveness of our DASC algorithm. We focus on sequen-
tial workflows. We adopt the WSDream dataset which
records the values of QoS attributes of response time
and throughput of 5,825 real-world web services from
73 countries [25]. 5,797 services with both valid response
time and throughput data are chosen. These services are
randomly classified into 4 service categories (tasks). The
corresponding aggregate functions of the two attributes
are additive and minimum, while the optimization di-
rections of them are minimization and maximization,
respectively. We let response time be the first attribute,
and throughput be the second attribute. In our algorithm
running process, we negate the throughput values to
transform to minimization. Nevertheless, in the figures
showing the final results, we transform the throughput
values to positive numbers to make the figures clear.
We use the original data as the default QoS values
of candidates. As there is little standard experimental
platform or test data for the QoS dependency data,
most dependency-aware service composition approaches

used synthetic data for evaluation [5]. Therefore, in our
experiment, QoS dependency is randomly generated.
The percentage of services with correlations is set to be
5%. The ratio of the correlated throughput and default
value is generated randomly from 0 to 1, and the ratio
of the correlated response time and default value is
generated randomly from 0 to 1.5 [12]. g is set to be
2, and k is set to be 10 [13], [26].

4.2 Experiment Results

Fig. 3 shows the good enough solutions in the composi-
tion set, presenting readers an intuitive example of lay-
ered Pareto optimal composition solutions. The results
are obtained by the fine-grained model and exhaustive
search method. There are 29 composition solutions in
total. 11 of them are the first layer Pareto optimal
compositions and the rest belong to the second layer.
The first layer solutions are truly Pareto optimal. Each
composition solution in the second layer is dominated
by at least one composition solution in the first layer.

We use the coarse-grain model to estimate the QoS
values of the composition solutions by ignoring the
dependency information. Fig. 4 shows the VOPC type
of the estimated composition solutions, which is neutral.
Thus, the good enough solutions are neither easy nor
hard to obtain. Then, we estimate the error level of the
composition solutions. We randomly select 100 solutions
and calculate the deviation between the estimated QoS
values and the true QoS values. We obtain the normal-
ized error as 0.252 according to (13), which corresponds
to a small error level. After this, we calculate the number
of selected layers s and obtain the composition solutions
to select. Fig. 5 shows the selected and matched solu-
tions. A total of 1,028 composition solutions are selected,
among which 18 solutions belong to the solutions shown
in Fig. 3, i.e., the good enough solutions. 8 out of these
18 solutions are really Pareto optimal, and the rest 10
solutions are near-optimal. All of the 18 solutions are
good enough. It can be seen that the number of matched
composition solutions is larger than the required align-
ment level k, which validates our DASC algorithm.

Next, we validate the actual alignment probability
against required P4 = 095, where ¢ = 2 and k =
4,6,...,20. For each setting, we carry out 1000 exper-
iments. Table 4 shows the fractions of the 1000 ex-
periments in which there are at least & composition
solutions matched. It can be seen that all of the align-
ment probabilities are greater than 0.95. Furthermore, let
|G|QTS|C represent the covering rate of matched solutions
versus good enough solutions, i.e., the percentage of
good enough solutions that are covered in the selected
solutions. We average the results of the 1000 tests. The
covering rate for g = 2,k = 10 is 84%, and the covering
rate for g = 2, k = 16 is 90%.

To evaluate the impact of alignment level k£ on the
number of selected solutions, we vary & from 2 to 20.
For each k, we conduct 1000 experiments, and then

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

10

good enough solutions

220 » 10000
A first layer A %
© O second layer 8000
5 165 A ° 3
= o £ 6000
= c
© 110 o o
2 s € 4000
o =
@ 5 =]
& 55 LA S 2000
A@cD@ k]
0 * 0
0 1 2 3 4 200 400 600
first attribute x,index of the observed layers

Fig. 3. Good enough solu- Fig. 4. VOPC type.
tions.

TABLE 4
Alignment Probabilities with different &
k Py k Py k Py
4 T7.000 10 1.000 16 1.000
6 1.000 ¥ 1.000 18 1.000
8 1.000 4 1.000 20 0.986
TABLE 5
Alignment Probabilities with different task numbers m
m Py m Py m Py
4 T7.000 7 1.000 10 1.000
5 1.000 8 1.000 11 0.992
6 1.000 9 1.000 i 0.983

average the results. We compare our DASC algorithm
with random selection algorithm, where each composi-
tion solution is selected with the same probability. We
calculate the number of selected solutions using random
selection algorithm with requirements of P4 = 0.95 and
P4 = 0.5. Fig. 6 shows the number of selected solutions
with different k. It can be seen that the number of
selected solutions under our DASC algorithm is even
smaller than that of random selection algorithm with P4
= 0.5, which shows the efficiency of our DASC algorithm.

To further evaluate the DPSA approach, we adopt
another dataset, i.e., the QWS dataset [27], which have
a larger number of QoS attributes. We use the data
from the QWS dataset as the default QoS values. The
other settings are the same as in the WSDream dataset.
To evaluate the impact of workflow size on our DPSA
algorithm, we vary the number of tasks m from 4
to 12. For each setting, we conduct 1000 experiments.
Table 5 validates the alignment probability against the
requirement of 0.95. It can be seen that as the workflow
size increases, the alignment probability would tend
to drop slightly. Nevertheless, the requirement that the
alignment probability should be greater than 0.95 is
still guaranteed. Table 6 shows the execution times (in
seconds) of our approach under different workflow sizes.
We average the results of the 1000 experiments. We can
see that as the workflow size rises, the execution time of
our approach also increases.

We also compare with two approaches with respect
to composition time and optimality. The first one is an
exhaustive approach, which can definitely obtain all the

good enough solutions

8000

—6—VOOBC 7
A selected solutions & 7000} | - random selection with AP=0.95
1 random selection with AP=0.5
® O matched solutions 2 6000
3 . 5
g @ 5000
© B 4000
o 3]
5 © 3000
3 @
2 « 2000
© 3
#1000
3 . j
14 21 28 2 5 8 1 14 17 20
first attribute k

Fig. 5. Selected and
Matched solutions.

Fig. 6. Number of selected
solutions VS k.

TABLE 6
Execution time (second) with different task numbers m
m time m time m time
4 0.004 7 1.200 10 4.645
5 0.070 8 1.759 il 19.175
6 0.492 9 2.276 2 40.327

Pareto optimal composition solutions. The second one is
a heuristic approach extended from [28], which obtains
near-optimal Pareto solutions. As there are no concepts
of layered Pareto in the two compared approaches, we
set g = 1 in our DPSA approach. That is to say, the truly
Pareto optimal solutions are desirable. We use covering
rate to evaluate optimality. Covering rate is defined
as the percentage of obtained optimal solutions versus
the total optimal solutions. For our DPSA approach,
we test three settings of k = 5,k = 10 and k£ = 20.
The original search space is varied from 10* to 107.
The exhaustive search (ES) approach cannot output the
optimal solutions within reasonable time if the space size
is increased furthermore. For each setting, we conduct
1000 experiments, and average the results.

Fig. 7 shows the covering rates under different ap-
proaches. It can be seen that the covering rates of the
exhaustive approach are always 1, since this approach
can obtain all the Pareto optimal solutions. The covering
rate of the DPSA approach rises with the increase of k.
The covering rates of our DPSA approach are smaller
than the heuristic approach if we set £ = 5. However, if
we set k = 20, the covering rates of the DPSA approach
would be larger than the heuristic one. Fig. 8 shows
the execution times of these approaches, respectively.
When £ increases, the execution times of our approach
would increase a little. Nevertheless, the execution times
of our DPSA approach are much smaller than the other
two approaches. Together with Fig. 8, it is shown that
our DPSA approach can cover a large portion of Pareto
optimal solutions at acceptable time costs.

The weak points of our approach are two-fold. The
first is that it can not guarantee to obtain all the exactly
Pareto optimal solutions. The second is that our ap-
proach is currently suitable for only sequential workflow.
The best points of our approach are also two-fold. Firstly,
our approach obtains several good enough Pareto opti-
mal solutions with significantly reduced execution time.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

‘ [OPsA k=20 I DPSA k=10 M OPsSAk=5 [JHeuristic [l ES ‘
1 T T

0.8+

covering rate

0.2+

10M 1075 1076 107

search space size

Fig. 7. Covering rates of different approaches.

‘ I DPSA k=20 [DPSA k=10 BB DPSA k=5 [| Heuristic [N ES ‘
10000 T T T T

1000

100

10

1

execution time (s)

0.1

0.01

0.001

1074 1075 106 1007
search space size

Fig. 8. Execution times of different approaches.

Secondly, to the best of our knowledge, we are the first
to apply Vector Ordinal Optimization in dependency-
aware service composition, which explores a way to
solve service composition problem.

5 RELATED WORK

5.1 Multi-objective Optimization in Service Compo-
sition

In the field of cloud computing, QoS has drawn sig-
nificant attention [1], [29], [30]. The QoS-aware service
composition problem has been extensively investigated
[31], which is often formulated as an optimization prob-
lem, with the goal of optimizing the end-to-end QoS
attributes. Some approach studied the problem consid-
ering only one QoS objective, and the solution proposed
was just optimal for one attribute and not all [32]. How-
ever, others had considered more than one QoS criteria
[7], [11], [16], [33], [34], [35], [36], [37], [38]. We classify
and compare the representative approaches according
to a set of criteria, shown in Table 7. Due to space
limitation, we do not elaborate on each of the criteria
of the approaches in detail here. Interested readers can
refer to this comparison table and the corresponding
references for more details. Instead, we focus more on

11

how to handle the tradeoffs between different attributes
which will be discussed in the following paragraphs of
Sec. 5.1, and how to deal with QoS dependency which
will be discussed in Sec. 5.2.

Due to the tradeoffs among different QoS attributes, it
is generally hard to get the best QoS values for all the
attributes [19]. For example, it is hard to select a com-
position solution that minimizes both response time and
price. Because generally speaking, for intra-provider of-
ferings, services with smaller response time usually cost
more. To deal with multiple QoS attributes, some previ-
ous approaches transformed the multi-objective service
composition problem into single-objective optimization
problem. The methods can be classified into 2 categories.
The first one is based on Simple Additive Weight-
ing (SAW) [7], which scales the QoS attribute values
by comparing with the maximum/miminum/average
values, and then aggregates the multiple objectives to
a single one by setting their weights. Then, a utility
function is defined which is used as an optimization
formula for the optimization problem such that the best
solution will have the best solution for it. The SAW
method is easy to apply. However, it simply sums up
the weighted attributes regardless of their different units
and ranges, reducing individual attribute value to an
overall value; therefore, certain QoS information may
be lost [26]. Furthermore, setting weights requires the
knowledge of user preferences and priorities, and it is
not easy for the user to transform the preferences into
exact numeric metrics [9]. The second type of methods
is e-constraint [39], which selects only one attribute as
the optimization objective. The other attributes are then
expressed by constrains, reducing the problem to single-
objective optimization. Then, the problem can be solved
by existing approaches. The e-constraint method is easy;
however, there is no specific approach followed for the
details of setting added constraints bounds.

Besides, another service composition method based
on Pareto set model has been investigated recently. The
basic idea is to find the set of Pareto optimal composition
solutions instead of a single one [28]. Pareto optimal
solutions represent the tradeoffs related to different at-
tributes [19]. Pareto set model is widely used in multi-
objective optimization and multi-criteria decision mak-
ing [40]. It also provides several alternative composition
solutions with the optimal QoS. Yu and Bouguettaya
[33] presented a Bottom-Up algorithm to compute the
Pareto optimal solutions. In our previous work [16], we
demonstrated the general applicability of the Pareto set
model, and showed that finding Pareto optimal compo-
sition solutions could act as preprocessing procedure for
other composition methods. However, the services were
assumed to be independent.

5.2 QoS Dependency in Service Composition

Different kinds of dependencies exist at the service and
QoS levels. For service level, there are flow dependency,

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

12

Transactions on Cloud Computing

TABLE 7

Comparison of different approaches.

Approach QoS Dependency | Multi- Optimization Mode optimality Used Algorithm
attribute
Optimization
RuGQoS [32] not supported not supported global optimal Breadth First Search
AgFlow [7] not supported SAW global optimal Integer Programming
LOEM [11] not supported SAW local+global near-optimal Enumeration
BUA [33] not supported Pareto based local+global optimal Bottom-Up Algorithm
DPSA [16] not supported Pareto based local+global optimal Distributed Partial Selection
SL [34] not supported SAW local+global near-optimal Mixed Integer Programming
QCWS [35] not supported SAW global optimal Branch-and-Bound
NSFEC [36] not supported SAW local+global optimal Dynamic Programming
Gao et al. [37] not supported SAW local+global optimal Dynamic Programming
MOEA [38] not supported Pareto based global approximated Genetic Algorithm
Florian et al. [20] on time Pareto based global approximated Genetic Algorithm
Tao et al. [21] QoS correlation Pareto based global approximated | Particle Swarm Optimization Algorithm
Feng et al. [14] QoS correlation | not supported global optimal Backward, Breadth-First Graph search
Barakat et al. [5] QoS correlation SAW local+global optimal Bellman-Ford Algorithm
Guo et al. [15] QoS correlation SAW global optimal Exhaustive search
CASP [12] QoS correlation not supported local+global optimal Greedy Algorithm
DASC (ours) QoS correlation Pareto based local+global near-optimal Vector Ordinal Optimization

compatibility dependency and statistical cooperate de-
pendency [5], [15], [41]. Flow dependency means one
service should be executed before another due to data
logical dependency. Compatibility dependency has ef-
fect on whether two services can be selected together
in a composition (e.g., these services have compatible
interfaces) [42], [43]. Statistical cooperate dependency
means that two or more services are usually banded in a
composition service. For QoS level, time-dependent QoS
has been studied in related literature [44], [45], [46]. It
means that the QoS values of services evolve with time
and are dependent on the execution time. Here in our
article, we focus on QoS dependency that the QoS values
of a service are not only dependent on itself, but also
correlated to other services. To be more specific, when a
service is selected together with its correlated services,
their QoS values will change. We focus on finding the
Pareto optimal solutions with QoS dependency involved.

Some existing approaches proposed evolutionary al-
gorithms to solve QoS-dependency-aware service com-
position. Florian et al. [20] studied QoS dependency on
the time of the execution or the input data. The authors
proposed a genetic algorithm to obtain approximations
of the Pareto optimal solutions set. We study different
things. Our focus is QoS dependency that the QoS values
of a service are correlated to other services, and when
these services are selected together, their QoS values will
change. Also, we propose a candidate pruning algorithm
prior to selection. Tao et al. [21] used particle swarm
optimization techniques to solve the correlation-aware
resource service composition problem in manufacturing
grid. They looked for approximations of Pareto optimal
solutions. However, they assumed the dependency ex-
isted only in two services. Besides, they only conducted
global optimization in service composition level, and the
search space size was not reduced. Our approach further

improves efficiency by a candidate pruning algorithm to
reduce the search space before global optimization.

Some approaches used graph theory to study service
composition with dependency involved. Feng et al. [14]
presented a graph-based algorithm which dynamically
refined the composed services with QoS dependency.
However, only one QoS attribute was considered, and
their approach returned all available composite services
satisfying the topological constraints. As a result, it may
suffer from efficiency issues. Barakat et al. [5] considered
multiple attributes and used Bellman-Ford algorithm to
solve the problem. There are three main differences be-
tween our approach and theirs. First, our objectives and
goals are different. Their approach used SAW techniques
to transform multiple objectives to a single one, and
then used single-objective optimization to look for one
solution. Our approach uses multi-objective optimiza-
tion techniques, i.e., Pareto-based techniques to look for
the set of Pareto optimal solutions. Second, they used
graph theory to solve the optimization problem while
we make use of Vector Ordinal Optimization techniques
to search for solutions. Third, they assumed dependency
only existed in two services.

Guo et al. [15] studied business entity dependency
meaning that QoS values may change due to the co-
operation between different service providers. There
are several differences between our approach and their
approach. First, our QoS-dependency-aware approach
is more general that we include the case that QoS
dependency also occurs in a single service provider.
Second, they assumed the dependency only existed in
two services. However, our approach can deal with
dependency among even more services. Third, they used
the SAW techniques to transform multi-attributes values
to a single value and obtain one solution, while our
approach takes advantage of Pareto-based techniques

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

Transactions on Cloud Computing

to search for multiple Pareto optimal solutions. Fourth,
they did not prune the unpromising candidates prior to
selection while we propose a candidate pruning algo-
rithm to reduce search space. Deng et al. [12] proposed
two algorithms to solve the service composition problem
with dependency involved. One algorithm was for QoS
dependency in adjacent services, and the other was for
dependency in nonadjacent services. The main differ-
ences between our approach and their approach is two-
fold. First, they assumed the dependency only existed
in two services while our approach is more general to
handle dependency among more services. Second, they
only considered one QoS attribute, making the problem
single-objective optimization problem. However, our ap-
proach focuses on multi-objective optimization problem
and our result is a set of desirable solutions. To the best
of our knowledge, we are the first to take advantage
of Vector Ordinal Optimization techniques to deal with
multi-objective service composition. Besides, we com-
bine candidate pruning to conduct local optimization
which reduces search space size.

6 CONCLUSION

In this article, we have considered multiple QoS at-
tributes and studied the multi-objective service compo-
sition problem. We have introduced QoS dependency,
which is important in real-life service composition. Based
on the Pareto set model, we have defined dominance
relationship, and focused on finding the Pareto optimal
composition solutions efficiently. We first introduced a
candidate pruning algorithm which removes the dom-
inated candidates and keeps only the correlated and
potential ones, reducing search space. We then presented
theoretical analysis which demonstrates that the opti-
mality can still be guaranteed after candidate pruning.
Based on Vector Ordinal Optimization techniques, we
proposed the DASC algorithm for service composition in
the presence of QoS dependency to obtain good compo-
sition solutions with high efficiency. The effectiveness of
our algorithms has been further validated by simulation
experiments.

For our future work, we would consider multi-
objective service composition with incomplete QoS data,
i.e, QoS data missing values in some attributes. Ex-
haustive search method can help to solve this problem;
however, the execution time cost would be high. Thus,
some efficient approaches should be explored. Besides,
domain-specific QoS is also important in service com-
position problems, and we would conduct research on
it in our future work. Another direction of future work
is to study other structured workflows apart from se-
quential workflows. Graph theory may help to solve this
problem. Besides, we would spend efforts to searching
for QoS dependency data and proposing methods to
transform the QoS dependency data to standard input.

13

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (No. 61472199) and the Funda-
mental Research Funds for the Central Universities (No.
2015RC22).

REFERENCES

[1] A. Zhou, S. Wang, Z. Zheng, C. Hsu, M. Lyu, and F. Yang,
“On cloud service reliability enhancement with optimal resource
?sTg%’liEEE Transactions on Cloud Computing, vol. PP, no. 99, pp.

[2] C. Ferris and J. Farrell, “What are web services?” Communications
of the ACM, vol. 46, no. 6, p. 31, 2003.

[3] L.J. Zhang,]. Zhang, and H. Cai, Services Computing. Springer
and Tsinghua University Press, 2007.

[4] H. Q. Yu and S. Reiff-Marganiec, “A backwards composition
context based service selection approach for service composition,”
in 2009 IEEE International Conference on Services Computing, SCC
'09., Sept 2009, pp. 419-426.

[5] L. Barakat, S. Miles, and M. Luck, “Efficient correlation-aware
service selection,” in 2012 IEEE 19th International Conference on
Web Services (ICWS), June 2012, pp. 1-8.

[6] P. Wang, Z. Ding, C. Jiang, and M. Zhou, “Constraint-aware ap-
proach to web service composition,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 44, no. 6, pp. 770-784, 2014.

[7] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composi-
tion,” IEEE Transactions on Software Engineering, vol. 30, no. 5, pp.
311-327, May 2004.

[8] FE Zhang, K. Hwang, S. Khan, and Q. Malluhi, “Skyline discovery
and composition of multi-cloud mashup services,” IEEE Transac-
tions on Services Computing, vol. 9, no. 1, pp. 72-83, Jan 2016.

[91 Q. Yu and A. Bouguettaya, “Computing service skyline from
uncertain qows,” IEEE Transactions on Services Computing, vol. 3,
no. 1, pp. 16-29, Jan 2010.

[10] H. Ma, E Bastani, I.-L. Yen, and H. Mei, “Qos-driven service
composition with reconfigurable services,” IEEE Transactions on
Services Computing, vol. 6, no. 1, pp. 20-34, First 2013.

[11] L. Qi, Y. Tang, W. Dou, and J. Chen, “Combining local optimiza-
tion and enumeration for qos-aware web service composition,”
in 2010 IEEE International Conference on Web Services (ICWS), July
2010, pp. 34-41.

[12] S. Deng, H. Wu, D. Hu, and J. L. Zhao, “Service selection for
composition with qos correlations,” IEEE Transactions on Services
Computing, vol. 9, no. 2, pp. 291-303, March 2016.

[13] Y.-C. Ho, Q.-C. Zhao, and Q.-S. Jia, Ordinal optimization: Soft
optimization for hard problems. Springer, 2008.

[14] Y. Feng, L. D. Ngan, and R. Kanagasabai, “Dynamic service
composition with service-dependent qos attributes,” in 2013 IEEE
20th International Conference on Web Services (ICWS). 1EEE, 2013,

. 10-17.

[15] IRIp Guo, F. Tao, L. Zhang, S. Su, and N. Si, “Correlation-aware
web services composition and qos computation model in virtual
enterprise,” The International Journal of Advanced Manufacturing
Technology, vol. 51, no. 5-8, pp. 817-827, 2010.

[16] Y. Chen,]. Huang, C. Lin, and]J. Hu, “A partial selection
methodology for efficient qos-aware service composition,” IEEE
Transactions on Services Computing, vol. 8, no. 3, pp. 384-397, May
2015.

[17] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Au-
tomated discovery, interaction and composition of semantic web
services,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 1, no. 1, pp. 27 — 46, 2003.

[18] S. Ran, “A model for web services discovery with qos,” SIGecom
Exch., vol. 4, no. 1, pp. 1-10, Mar. 2003.

[19] A. Strunk, “Qos-aware service composition: A survey,” in 2010
IEEE 8th European Conference on Web Services (ECOWS). IEEE,
2010, pp. 67-74.

[20] E. Wagner, A. Klein, B. Klopper, F. Ishikawa, and S. Honiden,
“Multi-objective service composition with time- and input-
dependent qos,” in 2012 IEEE 19th International Conference on Web
Services (ICWS), June 2012, pp. 234-241.

[21] E Tao, D. Zhao, H. Yefa, and Z. Zhou, “Correlation-aware re-
source service composition and optimal-selection in manufactur-
ing grid,” European Journal of Operational Research, vol. 201, no. 1,
pp. 129-143, 2010.

[22] Q. Zhao, Y.-C. Ho, and Q.-S. Jia, “Vector ordinal optimization,”
journal of optimization theory and applications, vol. 125, no. 2, pp.
259-274, 2005.

[23] H. A. David and H. N. Nagaraja, Order statistics.

Wiley Online
Library, 1970.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2607750, IEEE

14

[24]

[25]

[26]

[27]
(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Cloud Computing

T. E. Lau and Y.-C. Ho, “Universal alignment probabilities and
subset selection for ordinal optimization,” Journal of Optimization
Theory and Applications, vol. 93, no. 3, pp. 455-489, 1997.

Z. Zheng, Y. Zhang, and M. Lyu, “Distributed QoS evaluation for
real-world web services,” in 8th IEEE International Conference on
Web Services (ICWS '10), July 2010, pp. 83-90.

D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking and
clustering web services using multicriteria dominance relation-
ships,” IEEE Transactions on Services Computing, vol. 3, no. 3, pp.
163-177, 2010.

QWS dataset. [Online]. Available: http://www.uoguelph.ca/
~qmahmoud/qws/

K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan, “Bi-
criteria workflow tasks allocation and scheduling in cloud com-
puting environments,” in 2012 IEEE 5th International Conference on
Cloud Computing (CLOUD), June 2012, pp. 638-645.

J. Liu, Y. Zhang, Y. Zhou, D. Zhang, and H. Liu, “Aggressive
resource provisioning for ensuring qos in virtualized environ-
ments,” IEEE Transactions on Cloud Computing, vol. 3, no. 2, pp.
119-131, April 2015.

Q. Zhang, M. Zhani, R. Boutaba, and]. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE
Transactions on Cloud Computing, vol. 2, no. 1, pp. 14-28, Jan 2014.
Z. Ding, J. Liu, Y. Sun, C. Jiang, and M. Zhou, “A transac-
tion and qos-aware service selection approach based on genetic
algorithm,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 45, no. 7, pp. 1035-1046, July 2015.

M. Aiello, E. e. Khoury, A. Lazovik, and P. Ratelband, “Optimal
qos-aware web service composition,” in IEEE Conference on Com-
Zzgefe and Enterprise Computing, 2009. CEC "09., July 2009, pp. 491-
Q. Yu and A. Bouguettaya, “Efficient service skyline computation
for composite service selection,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 4, pp. 776789, April 2013.

M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services
for qos-based web service composition,” in Proceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 11-20.
T. Yu, Y. Zhang, and K.-]. Lin, “Efficient algorithms for web
services selection with end-to-end qos constraints,” ACM Trans.
Web, vol. 1, no. 1, May 2007.

Z. Huang, W. Jiang, S. Hu, and Z. Liu, “Effective pruning algo-
rithm for qos-aware service composition,” in IEEE Conference on
glogmgzegce and Enterprise Computing, 2009. CEC "09., July 2009, pp.
Y. Gao, J. Na, B. Zhang, L. Yang, and Q. Gong, “Optimal web
services selection using dynamic programming,” in 11th IEEE
Symposium on Computers and Communications, 2006. ISCC '06.
Proceedings., June 2006, pp. 365-370.

B. Batouche, Y. Naudet, 1. Jars, T. Latour, and F. Guinand, “A
multi-objective evolutionary algorithm to optimize the dynamic
composition of semantic web services.”

K. lMiettinen, Nonlinear multiobjective optimization. Springer, 1999,
vol. 12.

R. E. Steuer, Multiple criteria optimization: theory, computation, and
application. Krieger Malabar, 1989.

D. Romano, M. Pinzger, and E. Bouwers, “Extracting dynamic
dependencies between web services using vector clocks,” in 2011
IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), Dec 2011, pp. 1-8.

L. Ai and M. Tang, “Qos-based web service composition accom-
modating inter-service dependencies using minimal-conflict hill-
climbing repair genetic algorithm,” in IEEE Fourth International
Conference on eScience, 2008. eScience’08. IEEE, 2008, pp. 119-126.
A. Gao, D. Yang, S. Tang, and M. Zhang, “Qos-driven web ser-
vice composition with inter service conflicts,” Frontiers of WWW
Research and Development-APWeb 2006, pp. 121-132, 2006.

Y. Hu, Q. Peng, and X. Hu, “A time-aware and data sparsity
tolerant approach for web service recommendation,” in 2014 IEEE
International Conference on Web Services (ICWS), June 2014, pp. 33—

40.

D. Geebelen, K. Geebelen, E. Truyen, S. Michiels, J. A. Suykens,
J. Vandewalle, and W. Joosen, “Qos prediction for web service
compositions using kernel-based quantile estimation with online
adaptation of the constant offset,” Information Sciences, vol. 268,
pp. 397-424, 2014.

A. M. Ferreira, K. Kritikos, and B. Pernici, “Energy-aware de-
sign of service-based applications,” in Service-Oriented Computing.
Springer, 2009, pp. 99-114.

Ying Chen received the B.Eng. degree in
School of Computer Science from Beijing Uni-
versity of Posts and Telecommunications, Bei-
jing, China, in 2012. She is currently working
towards the Ph.D. degree with the Department
of Computer Science and Technology, Tsinghua
University. She is also a visiting scholar in Uni-
versity of Waterloo. Her research interests are
modeling, performance evaluation and optimiza-
tion of web services, cloud computing and ser-
}/Iizcgé computing. She is a student member of the

Jiwei Huang is an assistant Erofessor in the
State Key Laboratory of Networking and Switch-
ing Technology at Beijing University of Posts
and Telecommunications. He received the Ph.D.
degree and B.Eng. degree both in computer sci-
ence and technology from Tsinghua University in
2014 and 2009, respectively. He was a visiting
scholar at Georgia Institute of Technology. His
research interests are in cloud computing, ser-
vices computing and performance evaluation.
He has published more than 20 papers in inter-
national journals and conference proceedings,

e.g., IEEE Transactions on Services Computing, SIGMETRICS, ICWS,
SCC, etc. He is a member of the IEEE.

Chuang Lin is a professor of the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China. He received the Ph.D.
degree in Computer Science from the Tsinghua
University in 1994. His current research inter-
ests include computer networks, performance
evaluation, network security analysis, and Petri
net theory and its applications. He has pub-
lished more than 300 papers in research jour-
nals and IEEE conference proceedings and has
published five books. He is a member of ACM
Council, a senior member of the IEEE and the

Chinese Delegate in TC6 of IFIP. He serves as the Associate Editor of
IEEE Transactions on Vehicular Technology, the Area Editor of Journal

of Computer Networks and the Area Editor of Journal of Parallel and

Distributed Computing.

Xuemin (Sherman) Shen received the B.Sc.
degree from Dalian Maritime University, Dalian,
China, in 1982, and the M.Sc. and Ph.D. de-
grees from Rutgers University, New Brunswick,
NJ, USA, in 1987 and 1990, respectively, all in
electrical engineering. He is a Professor and
University Research Chair with the Department
of Electrical and Computer Engineering, Univer-
sity of Waterloo, Waterloon, ON, Canada. He
was the Associate Chair for Graduate Studies
from 2004 to 2008. His research focuses on
resource management in interconnected wire-

less/wired networks, wireless network security, wireless body area net-
works, and vehicular ad hoc and sensor networks.He is a Distinguished
Lecturer of the IEEE Communications Society. He received the Excellent
Graduate Supervision Award in 2006 and the Outstanding Performance
Award in 2004 and 2008 from the University of Waterloo, the Premiers
Research Excellence Award (PREA) in 2003 from the Province of
Ontario, Canada, and the Distinguished Performance Award in 2002
and 2007 from the Faculty of Engineering, University of Waterloo. He
is a registered Professional Engineer of Ontario, Canada, a fellow of
the IEEE, a fellow of Canadian Academy of Engineering and a fellow of
Engineering Institute of Canada.

