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Abstract—In this paper, we study sustainable resource allo-
cation for cloud radio access networks (CRANs) powered by
hybrid energy supplies (HES). Specifically, the central unit (CU)
in the CRANs distributes data to a set of radio units (RUs)
powered by both on-grid energy and energy harvested from
green sources, and allocates channels to the selected RUs for
downlink transmissions. We formulate an optimization problem
to maximize the net gain of the system which is the difference
between the user utility gain and on-grid energy costs, taking into
consideration the stochastic nature of energy harvesting process,
time-varying on-grid energy price, and dynamic wireless channel
conditions. A resource allocation framework is developed to
decompose the formulated problem into three subproblems, i.e.,
the hybrid energy management, data requesting, and channel and
power allocation. Based on the solutions of the subproblems, we
propose a net gain-optimal resource allocation (GRA) algorithm
to maximize the net gain while stabilizing the data buffers and
ensuring the sustainability of batteries. Performance analysis
demonstrates that the GRA algorithm can achieve close-to-
optimal net gain with bounded data buffer and battery capacity.
Extensive simulations validate the analysis and demonstrate that
GRA algorithm outperforms other algorithms in terms of the net
gain and delay performance.

Index Terms—Cloud radio access network, energy harvesting,
hybrid energy supplies, resource allocation, stochastic optimiza-
tion

I. INTRODUCTION

The global mobile data traffic in the coming 5G era is
predicted to increase by eightfold in the next five years [2]. To
cater such intense demand, traditional cellular networks urge
densified deployments of base stations (BSs) to improve the
spatial spectral efficiency. However, the large number of BSs
requires high expenditure on both infrastructure construction
and operation maintenance. Alternatively, the cloud-assisted
radio access network (CRAN) has been envisioned as a cost-
efficient solution for future cellular network architecture [3].
A typical CRAN divides the function of a BS into two parts,
i.e., a cloud-based central unit (CU) which accumulates the
baseband signal processing and control functions, and the
radio unit (RU) which provides radio access for mobile users.
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Taking advantage of cloud computing technology, the mobile
operator only needs to enhance the CU and deploy low-cost
RUs to boost the network capacity. Furthermore, the overall
knowledge available at the CU enables the CRAN to timely
assign radio resources to RUs according to the changes in user
demand and mobility.

Despite these advantages, the densely deployed RUs con-
sume considerable amount of energy and lead to a surge
of carbon footprints [4]. To address this issue, it is highly
desirable to incorporate the energy harvesting (EH) capability
into RUs, which enables RUs to scavenge energy from the
ambient energy sources, e.g., solar and wind [5]–[8]. It is
reported in [9] that 20% greenhouse gas emission can be
reduced by powering cellular networks with harvested energy.
Unfortunately, the availability of harvested energy is prone
to environmental factors such as solar radiation and wind
speed, and thus can be variable and intermittent over time and
locations [10]. As a result, only operating on harvested energy
may degrade the quality of service (QoS) provisioned by the
CRAN. To enhance the stability, RUs can be powered by both
green energy and power grid, i.e., hybrid energy supply.

Although more energy efficient, the hybrid energy supplies
powered CRANs (referred to as HES-CRANs hereafter) still
face several new challenges. First, the dynamics in EH process
and on-grid energy price make the energy management chal-
lenging. The EH process is generally time-varying and exhibits
strongly stochastic behavior [1], [11]. In addition to the EH
process, the price of on-grid energy also changes in reality,
which introduces a new dimension of resource management
in HES-CRANs. Specifically, RUs can purchase more on-
grid energy during low-price period and store in battery for
future use, to reduce the total expenditure on on-grid energy.
Furthermore, the scalability of the designed resource allocation
algorithm is also a critical issue, especially under the dense
scenario with a large number of RUs. Research works in the
literature mainly focus on energy efficient operation in CRANs
without considering the stochasticity in EH process and on-
grid energy price [12]–[16]. In addition, the proposed solutions
in the literature is designed for a network with a limited
number of BSs [17]–[22], which may not be applicable for
a CRAN with a large number of RUs. To fill the research gap,
we make an effort to efficiently allocate resource in HES-
CRANs while considering the dynamics in EH process and
on-grid energy price, and the scalability of the solution to
desified HES-CRANs.

To address the above challenges, this paper develops a
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resource allocation framework that jointly considers renewable
and on-grid energy management, transmission power control,
and channel allocation in an HES-CRAN, where a CU and
numerous RUs are linked through the fronthaul links. Specif-
ically, an optimization problem is formulated to maximize
the net gain, i.e., the difference between the utility gain of
users and cost of on-grid energy purchase, of an HES-CRAN.
The developed framework captures the randomness in the EH
process, on-grid energy price, and wireless channel fading.
Based on the framework, we propose an online algorithm to
strike the balance between user gain and the cost on on-grid
energy purchase, while maintaining the data queue stability
and energy sustainability at RUs. Notably, the computational
complexity of the proposed algorithm does not rely on the
number of RUs, and thus guarantees its scalability in HES-
CRANs with densely deployed RUs. The main contributions
are summarized as follows:

1) We formulate a stochastic optimization problem to jointly
consider the energy management, channel allocation and
power control in the HES-CRAN, aiming at the net gain
of users under the constraints of data queue stability and
energy sustainability.

2) We develop a resource allocation framework to decom-
pose the stochastic optimization problem to three sub-
problems, i.e., the hybrid energy management, the data
requesting, and the channel and power allocation. The
solutions of these subproblems constitute the net gain-
optimal algorithm which makes control decisions without
a priori knowledge of the stochastic processes.

3) We derive the required data buffer length and battery
capacity for the operation of the proposed algorithm,
which provides important guidelines for the deployment
of an HES-CRAN. Furthermore, we theoretically prove
the bounds of the gap between the net gain achieved by
our algorithm and the optimal solution, which shows that
our algorithm can achieve close-to-optimal solution.

The reminder of this paper is organized as follows: Section II
presents related works in the existing literature. Section III
introduces the system model and the problem formulation.
Section IV proposes the resource allocation framework and
the online resource allocation algorithm. Section V provides
the performance analysis, followed by simulations in Section
VI. Section VII concludes this paper.

II. RELATED WORK

Numerous works in the literature focus on the energy
efficient resource allocation in CRANs [12]–[16]. Dai and Yu
in [12] studied the energy efficiency of data compression in
CRANs, in which the CU performs precoding of the user
messages, before sending user data to RUs. The authors
formulate an optimization problem to minimize the energy
consumption under data rate constraints. In [13], Peng et
al. investigated the user association and power control in a
heterogeneous CRAN with multiple RUs deployed in a macro
cell. The optimal transmission power and user association
were obtained to maximize an energy efficiency metric, by
solving a mixed integer programming problem. In [16], Zuo

et al. proposed multiple algorithms for energy efficient user
association in a CRAN system empowered with Massive
MIMO considering both power consumption at fronthaul links
and the circuit attached to antennas. The aforementioned works
assumed the simple model with sufficient energy supply and
full data buffer without considering the time-varying nature
of wireless channels. Some of the recent studies have taken
the time-varying channel states into consideration [14] [15].
In [14], Li et al. aimed to minimize the consumed energy
to support random traffic arrivals, while considering the time-
varying fading channels. Furthermore, the authors of [15] have
scheduled the resource allocation and admission control of a
CRAN over a long time horizon to maximize the time average
energy efficiency, which could maintain network stability
while optimize the energy usage. The above-mentioned works
only consider the on-grid energy supply, which may not be
applicable in HES-CRANs.

To conserve the on-grid energy consumption, the hybrid
energy-powered cellular networks have drawn increasing at-
tentions recently [17]–[22]. In [21], Sheng et al. investigated
the energy sharing and load shifting among the base stations
(BSs) with EH capability. The authors formulate a NP-hard
optimization problem to minimize the on-grid energy con-
sumption. Chamola et al. in [22] developed a greedy algorithm
to optimize the power control subject to network latency. Refs.
[17], [19], [20] applied the Lyapunov optimization approach
to account for the intermittent arrival of harvested energy. Mao
et al. in [17] investigated user association and power control
between two BSs to minimize the time-average on-grid energy
consumption. Considering the lack of non-causal information
of the EH process, the authors proposed a resource allocation
algorithm which only requires instantaneous information of
the channel fading and EH process. With the same objective
of [17], [19] investigated the power and channel allocations for
one BS. In [20], Yang et al. investigated the tradeoff between
the network throughput and on-grid energy consumption in a
relay network, while considering the stochastic characteristics
of renewable energy and mobile traffic. These works were
mainly designed for conventional cellular networks, which
cannot be applied to CRAN systems due to the different
network architecture. Furthermore, the complexity of the pro-
posed algorithms can increase significantly with number of
BSs, which cannot be applied in practical networks in dense
scenarios.

III. SYSTEM MODEL

In this section, we present the system model of an HES-
CRAN powered by hybrid energy sources and formulate a net
gain maximization problem.

A. Network Model

We consider an HES-CRAN which is composed of a CU
and N radio units (RUs), as shown in Fig. 1. The RUs are re-
sponsible to serve downlink data transmission to M users. The
sets of RUs and users are denoted by N = {1, · · · , n, · · · , N}
and M = {1, · · · ,m, · · · ,M}, respectively. Each RU is
equipped with an EH module including solar panel or wind
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TABLE I
KEY NOTATIONS

Notation Definition
n,N,N The index, the number, and the set of RUs
k,K,K The index, the number, and the set of channels
m,M,M The index, the number, and the set of users
t, T, T The index, the number, and the set of time slots
ikn,m(t) Channel allocation indicator, takes one if chan-

nel k is assigned to link RU n and user m in
time slot t

pkn,m(t) Transmission power of RU n to user m over
channel k in time slot t

dn,m(t) Data requested by RU n for user m from the
CU in time slot t

PT The upper bound of transmission power over a
channel

Fn The fronthaul link capacity of RU n

Am Available data of user m in time slot t the CU
Πn The battery capacity of RU n

φk
n,m(t) The capacity of channel k between RU n and

user m at slot t
ηkn,m(t) The channel condition between RU n and user

m on channel k in time slot t
gn(t) Energy bought by RU n from the power grid in

time slot t
ψn(t) Ambient energy that can be harvested by RU n

in time slot t
α(t) Energy price in time slot t
en(t) Energy harvested by RU n in time slot t
Qn,m(t) The data backlog of RU n for user m in time

slot t
En(t) Energy queue length of RU n in time slot t
ηmax The upper bound on channel conditions
φmax The upper bound of channel capacity
ψmax The upper bound on ψn(t)

Pmax The upper bound of energy consumption of one
RU in each time slot

turbine. Since the renewable energy is sporadic and inter-
mittent by nature, only relying on renewable energy may
hinder the HES-CRAN to provide satisfactory services for
users. Therefore, the RUs can also purchase energy from the
power grid. Each RU has a rechargeable battery and a data
buffer. The downlink data transmission is considered. The CU
firstly transmits data to the RUs through the wired fronthaul
links, and then the RUs transmit data to users wirelessly.
Utilizing the information of RUs’ energy availability and
network topology, the CU can properly distribute data to
various RUs for efficient data transmissions.

The following notations are used throughout this paper.
E[X] stands for the expectation of a random variable X ,
and E[X|A] stands for the conditional expectation of X on
event A. The function [x]+ denotes a non-negative value, i.e.,
max(x, 0). Furthermore, we have [x]ba = min(max(x, a), b).

The HES-CRAN operates over unit time slots denoted as
t ∈ T = {1, 2, · · ·T} [23]. The operating spectrum bandwidth
is equally divided into K orthogonal channels denoted as
K = {1 · · · , k, · · · ,K} [24]. The CU periodically allocates

RU

User

Wireless links

Fronthaul links

Power grid

CU

Fig. 1. HES-CRAN with energy harvesting and on-grid power supply.

channels to RUs for data transmissions. For channel alloca-
tion, we define a 3-dimensional matrix i(t) with elements
ikn,m(t),∀n ∈ N , k ∈ K,m ∈M. ikn,m(t) equals one if RU n
is scheduled to serve user m using channel k in time slot t,
and 0 otherwise. Each channel can be allocated to at most one
user to avoid excessive co-channel interference among users,∑

n∈N

∑
m∈M

ikn,m(t) ≤ 1,∀k ∈ K. (1)

In addition, each user can be served by at most one RU with
one channel in each time slot,∑

n∈N

∑
k∈K

ikn,m(t) ≤ 1,∀m ∈M. (2)

B. Hybrid Energy Supply and Energy Queue Dynamics

RUs can harvest energy from the ambient energy sources
or purchase energy from the power grid. Denote by en(t) the
harvested energy by RU n in time slot t. The following EH
constraint holds in each time slot:

en(t) ≤ ψn(t), (3)

where ψn(t) denotes the ambient energy that can be har-
vested by RU n in time slot t. To capture the impact of
environmental changes on the EH process, the value of ψn(t)
potentially changes across time slots [25], which is upper
bounded by ψmax, i.e., ψn(t) ≤ ψmax,∀n ∈ N . Denote
ψ(t) = (ψ1(t), · · · , ψN (t)) as the vector of available renew-
able energy at all RUs.

Denote gn(t) the amount of energy purchased by RU n in
time slot t, which is bounded by gmax, i.e., the upper bound
of purchased on-grid energy:

0 ≤ gn(t) ≤ gmax. (4)

Let α(t) denote the purchase price of unit on-grid energy in
time slot t, which is constant during one time slot. Due to the
unbalance between energy provision and energy consumption
in power grid, α(t) randomly changes across the time slots,
as in [26].
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Let pkn,m(t) denote the transmission power1 of RU n to
user m over channel k, and matrix p(t) with element pkn,m(t)
denote the transmission power of all RUs. The upper bound
of transmission power on each channel is denoted by PT :

0 ≤ pkn,m(t) ≤ PT ,∀n ∈ N ,m ∈M. (5)

Each RU can serve at most K users in each time slot.
Therefore, the maximum energy consumption of an RU per
time slot can be derived to Pmax = KPT .

Denote En(t) as the available energy of RU n in time
slot t. With the energy from renewable energy sources and
power grid as the input, and the energy consumed by data
transmission as the output, the dynamics of En(t) across time
slots can be expressed by:

En(t+1) = En(t)−
∑
k∈K

ikn,m(t)pkn,m(t)+gn(t)+en(t). (6)

The consumed energy cannot exceed the available energy, i.e.,

En(t) ≥
∑
k∈K

ikn,m(t)pkn,m(t). (7)

Furthermore, the sum of available energy and input energy
is upper bounded by the battery capacity of RUs, i.e.,

En(t) + gn(t) + en(t) ≤ Πn,∀n ∈ N , (8)

where Πn is the battery capacity of RU n.

C. User Data Request and Data Queue Dynamics

The RUs request user data from the CU through the fron-
thaul links. The total amount of data requested by RU n in
time slot t is bounded by the capacity of the fronthaul link
between RU n and the CU. Denote dn,m(t) the amount of
data requested by RU n for user m in time slot t, and d(t)
the matrix of requested data with dn,m(t) as elements. Let
Fn denote the fronthaul link capacity. The fronthaul capacity
constraint can be expressed by:∑

m∈M
dn,m(t) ≤ Fn,∀n ∈ N . (9)

The available data of user m at the CU is denoted by Am.
In any time slot, the data requested for user m cannot exceed
Am, i.e., ∑

n∈N
dn,m(t) ≤ Am,∀m ∈M. (10)

RU stores the requested data in the data buffer. Let Qn,m(t)
denote the data queue length, i.e., the data of user m saved
at RU n in time slot t. The RU transmits the data to users
through the allocated channel. Recalling that pkn,m(t) denotes
the transmission power of RU n to user m over channel k, the
corresponding channel capacity φkn,m(t) can be expressed by
:

φkn,m(t) = W log2

(
1 +

hkn,m(t)pkn,m(t)

l3n,mWN0

)
(11)

1Since the time is slotted with unit size, we omit the multiplication by 1
slot when converting between power and energy in one slot [25].

where hkn,m(t), ln,m, and N0 are the channel gain, the distance
between RU n and user m, and the spectral noise power,
respectively. For simplicity, let ηkn,m(t) =

hk
n,m(t)

l3n,mWN0
denote the

channel condition between RU n and user m over channel k.
Due to the impact of shadowing and multipath fading, ηkn,m(t)
may change over the slots [25]. There exists an upper bound
on the channel gain, and the corresponding upper bound on
the channel capacity, denoted by ηmax and φmax, respectively.

Each RU is equipped with a data queue to save the requested
data for each user. The queue length Qn,m(t) evolves across
time slots as follows:

Qn,m(t+1) =

[
Qn,m(t)−

∑
k∈K

ikn,m(t)φkn,m(t)

]+
+dn,m(t),

(12)
where the input is the requested data and the output is the
transmitted data.

To maintain the network stability, the time-average request-
ed amount of data per slot can not exceed the time-average
transmitted amount of data per slot, i.e.,

lim
T→∞

1

T

T−1∑
t=0

dn,m(t) < lim
T→∞

1

T

T−1∑
t=0

∑
k∈K

ikn,m(t)φkn,m(t).

(13)

D. Net Gain and Problem Formulation

The gain of the HES-CRAN depends on the sum of users’
gain and the cost on energy purchase, which is referred to as
net gain hereafter. The net gain in time slot t can be expressed
by:

U(t) =
∑
m∈M

U

(∑
n∈N

dn,m(t)

)
− β

∑
n∈N

α(t)gn(t), (14)

where β denotes the normalization factor associated with
the cost on energy purchase. U(·) represents a gain func-
tion with finite first-order derivative denoted by %U , which
is non-decreasing, concave, and twice-differentiable w.r.t.∑
n∈N dn,m(t). The concavity of the gain function comes

from the observation that the increasing rate of net gain
decreases as the amount of transmitted data increases [14].
Furthermore, the concavity of the utility function guarantees
the fairness between users, because serving the user with less
amount of transmitted data can gain higher utility. Notably,
given that the network stability constraint (13) is satisfied, all
the requested data can be transmitted to the user eventually.

Based on the aforementioned system models, we formulate
an optimization problem with the objective to maximize the
time-average net gain, i.e.,

Ū = lim
T→∞

1

T

T∑
t=0

E[U(t)]. (15)

where the expectation is taken over variable system parameters
including the EH process ψn(t), channel condition ηkn,m(t),
on-grid energy price α(t), and the potentially random channel
allocation, data requesting, and power control. To simplify the
presentation, let g(t) and e(t) denote the vector of purchased
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energy and harvested energy of all RUs in each time slot,
respectively. Let Ψ(t) = {d(t), i(t),p(t),g(t), e(t)} to rep-
resent all variables to be optimized in each time slot. The user
utility maximization problem can be formulated as:

(UUM) max
Ψ(t)

Ū

s.t. (1) to (13).

As we can see from the formulation of UUM, the decisions
on variables couple on time to impact the net gain of the HES-
CRAN. To solve the problem in an offline manner introduces
infinite number of variables to optimize. Therefore, in the
following section, we transform UUM to several deterministic
subproblems in each time slot to design an online algorithm.

IV. RESOURCE ALLOCATION FRAMEWORK

Based on the system model proposed in Section III, we
observe that the difficulty to solve UUM mainly comes from
two folds. The first one is the lack of future information
regarding the on-grid energy price, channel gain, and EH
process. Since the maximization of time-average net gain relies
on the control decisions over the whole operation time, the lack
of the future information hinders the HES-CRAN to attain
the maximum net gain. Secondly, the energy consumption
and channel capacity are jointly determined by the channel
allocation, i.e., the integer variable i(t), and the power control,
i.e., the continuous variable p(t). Therefore, the optimization
of UUM falls in the category of mixed integer programming,
which is in general difficult to solve. Considering these d-
ifficulties, we pursue a close-to-optimal solution for UUM.
To this end, a resource allocation framework is designed,
which transforms the stochastic problem into deterministic
subproblems subject to the data queue stability and energy
availability, using Lyapunov optimization approach.

A. Problem Transformation

We first use Ω(t) = (Q(t),E(t)) to denote the network
state which captures the data queue length and energy queue
length. Then, a Lyapunov function is defined to measure the
backlogs of data queues and the difference between the energy
queue length and the battery capacity, which is a quadratic
function w.r.t. the queue lengths:

L(t) =
1

2

(∑
n∈N

∑
m∈M

(Qn,m(t))2 +
∑
n∈N

(En(t)−Πn)2

)
(17)

A small value of L(t) implies that the backlogs of data
queue are small and the batteries are almost fully charged.
Furthermore, by carefully determining the value of battery
capacity Πn which will be specified later, we can guarantee
that the RUs always have enough energy for downlink data
service, such that the energy availability constraint (7) is met.

Based on the Lyapunov function, we introduce a Lyapunov
drift to quantify the increase of Lyapunov function in each
time slot, i.e.,

∆(t) = E[L(t+ 1)− L(t)|Ω(t)]. (18)

Suppose that the data queues of all RUs are initially empty,
we can guarantee the stability of data queues by minimizing
the Lyapunov drift in each time slot [27]. Recalling that the
objective of UUM is to maximize the net gain defined in Eqn.
(15), we insert a weighted version of the net gain into the
Lyapunov drift, which yields the drift-minus-gain:

Γ(t) = E[∆(t)− V U(t)|Ω(t)], (19)

where the weight V is used to strike the balance between
queue stability and net gain maximization. A larger V implies
that we emphasize more on the gain maximization, and vise
versa. By minimizing the right hand side of Eqn. (19), the
one jointly minimizes ∆(t) to guarantee network stability, and
maximizes V U(t) to achieve a higher net gain.

To simplify the minimization of the drift-minus-gain, we
develop the upper bound of Eqn. (19) under any feasible
control action in Theorem 1, which is a linear function w.r.t.
the variables in Ψ(t) and the queue lengths, rather than the
quadratic function in Eqn. (19).

Theorem 1. Under any feasible algorithms, the following
inequality holds:

Γ(t) ≤ B + E[ΘV (t)|Ω(t)] (20)

where

B =
N

2

[
(ψmax + gmax)2 + (Pmax)2

]
+
NM

2

[
(Am)2 + (φmax)2

]
.

(21)

All the variables reside in ΘV (t) given by Eqn. (22).

The proof of Theorem 1 can be found in Appendix A. As
we can see from Eqn. (21), the value of B can be obtained
using the parameters given in the system model. Therefore,
we only need to minimize ΘV (t) by optimizing the requested
data d(t), the harvested energy e(t), the purchased energy
g(t), the channel allocation i(t), and the transmission power
p(t). Notably, except the coupling between i(t) and p(t),
other variables are linearly combined in ΘV (t) and therefore
can be separately optimized. In the following, we propose the
solutions to minimize ΘV (t) in each time slot.

B. Subproblem Solution

The linear structure the RHS of Eqn. (22) enables us to
decompose the minimization of ΘV (t) into three subproblems.
The first one is the hybrid energy management subproblem
which optimizes the harvested energy e(t) and the purchased
energy g(t). Then, the requested data d(t) can be determined
by addressing the data requesting subproblem. Last but not
least, the transmission power p(t) and channel allocation i(t)
are jointly optimized by addressing the power and channel
allocation subproblem. The solutions of the three subproblems
constitute the resource allocation framework.
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ΘV (t) =
∑
n∈N

[(en(t) + gn(t))(En(t)−Πn) + gn(t)V βα(t)]

+
∑
m∈M

[∑
n∈N

Qn,m(t)dn,m(t)− V
∑
m∈M

U

(∑
n∈N

dn,m(t)

)]
+
∑
n∈N

∑
m∈M

∑
k∈K

ikn,m(t)
[
(Πn − En(t))pkn,m(t)−Qn,m(t)φkn,m(t)

] (22)

1) Hybrid Energy Management: Considering the first term
in Eqn. (22), we formulate the hybrid energy management sub-
problem to determine the harvested energy e(t) and purchased
energy g(t):

(HEM) min
e(t),g(t)

∑
n∈N

[en(t)(En(t)−Πn)

+ gn(t)(V βα(t) + En(t)−Πn)]

s.t. (3), (4), (8).

Since e(t) and g(t) are linearly combined in the objec-
tive function, we can optimize them separately. Because the
available energy cannot exceed the battery capacity, i.e.,
En(t) − Πn < 0, it can be found that the objective function
of HEM monotonically decreases with the value of harvested
energy en(t),∀n ∈ N . Therefore, en(t) should be as large
as possible to minimize the objective function of HEM.
Considering constraints (3) and (8), we can find the optimal
harvested energy to be:

e∗n(t) = min[ψn(t),Πn − En(t)],∀n ∈ N . (23)

Eqn. (23) implies that solving HEM requires the RUs to
harvest energy as much as possible for battery recharging,
since the harvested energy is free-of-charge comparing with
the on-grid energy.

Considering the optimization of the purchased energy g(t),
we see that if V βα(t) + En(t)− Πn < 0, then the objective
function of HEM monotonically decreases with the value of
gn(t),∀n ∈ N . Otherwise, the objective function increases
with the value of gn(t). Therefore, the optimal value of
purchased energy can be summarized to

g∗n(t) =

{
0, if En(t)−Πn + βV α(t) ≥ 0

min[gmax,Πn − e∗n(t)− En(t)], otherwise.
(24)

Notably, solving e∗n(t) and g∗n(t) only requires the local
information at each RU. Therefore, HEM can be solved by
each RU distributedly.

2) Data Requesting: To minimize the second term in Eqn.
(22) under constraints (9) and (10), we formulate the following
data requesting subproblem to determine the requested data
d(t):

(DR) min
d(t)

∑
m∈M

∑
n∈N

Qn,m(t)dn,m(t)

− V
∑
m∈M

U

(∑
n∈N

dn,m(t)

)

s.t. (9), (10).

The gain function U(
∑
n∈N dn,m(t)) is a concave function

and the constraints (9) and (10) are both linear w.r.t. the
requested data d(t). Therefore, DR is a convex problem which
can be efficiently solved using a standard convex optimization
tool such as the disciplined convex programming (cvx) [28].

3) Power and Channel Allocation: To minimize the third
term in Eqn. (22), we formulate the power and channel
allocation subproblem to jointly optimize the transmission
power p(t) and the channel allocation i(t):

(PCA) min
p(t),i(t)

∑
n∈N

∑
m∈M

∑
k∈K

ikn,m(t)
[
(Πn − En(t))pkn,m(t)

−Qn,m(t)φkn,m(t)
]

s.t. (1), (2), (5).

The objective function of PCA consists of the product
of pkn,m(t) and ikn,m(t), and the product of ikn,m(t) and
the logarithm function of pkn,m(t), i.e., the channel capacity
φkn,m(t). The coupling of the integer variable i(t) and con-
tinuous variable p(t) makes PCA a difficult mixed integer
programming problem. To address PCA, we transform this
problem into a bipartite matching problem over two steps.

First, we prove that p(t) can be optimized without con-
sidering the value of i(t) in Lemma 1. By inserting the
optimal value of p(t) into the objective function of PCA,
we can transform the problem into a 3-dimensional matching
problem with i(t) as the variable, i.e., the channel allocation
subproblem (CA). Second, Lemma 2 shows that if the optimal
solution of CA assigns RU n to serve user m using channel
k, RU n must be the one with the minimum matching weight,
comparing with other RUs. Therefore, we can further reduce
CA to a bipartite matching problem that can be solved by the
Hungarian algorithm [29].

In the following, we first determine the optimal transmission
power pkn,m(t) in Lemma 1.

Lemma 1. Let i∗(t) and p∗(t) be the optimal solution for
PCA. If ik,∗n,m(t) = 1, i.e., RU n serves user m over channel
k in time slot t in the optimal solution, then the optimal
transmission power is:

pk,∗n,m(t) =

[
WQn,m(t)

ln 2 · (Πn − En(t))
− 1

ηkn,m(t)

]PT

0

. (25)

The proof of Lemma 1 can be found in Appendix B.
Substituting pk,∗n,m(t) into PCA yields the channel allocation
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subproblem to determine i(t):

(CA) min
i(t)

∑
n∈N

∑
m∈M

∑
k∈K

Okn,m(t)

s.t. (1), (2),

where Okn,m(t) = (Πn − En(t))pk,∗n,m(t) − Qn,m(t)φk,∗n,m(t)
denotes the weight of the allocation of RUs and channels to
users, and φk,∗n,m(t) denotes the channel capacity under optimal
transmission power. CA can be considered as a 3-dimensional
matching which is a well-known NP-hard problem. In Lemma
2, we prove that CA is equivalent to a bipartite matching.

Lemma 2. Supposing i∗(t) to be the optimal solution for CA,
if RU n∗ is the optimal RU to transmit data to user m over
channel k, i.e., ik,∗n,m = 1, then we have:

n∗ = arg min
n∈N

Okn,m(t),∀m ∈M, k ∈ K. (26)

The proof of Lemma 2 is provided in Appendix C. Based
on Lemma 2, we can replace Okn,m in the objective function
of CA to the weight of allocating channels to users served by
the optimal RUs

Õkm(t) = min
n∈N

Okn,m(t),∀m ∈M, k ∈ K. (27)

After finding the optimal RU, we modify the CA to a refined
channel allocation (r-CA) problem which allocates channels
to users. To this end, we reduce the 3-dimensional matrix i(t)
to a 2-dimensional matrix ĩ(t) with element ĩkm(t) to indicate
the allocation of channels to users. ĩkm(t) equals one if channel
i is allocated to user m in time slot t and 0 otherwise. We
formulate r-CA under constraints (1) and (2) as follows:

(r-CA) min
i(t)

∑
m∈M

∑
k∈K

Õkm(t)

s.t. (1), (2).

As we can see from the structure of r-CA, it is a bipartite
one-to-one matching problem that can be optimally solved by
the Hungarian algorithm [29].

C. Net Gain-optimal Resource Allocation Algorithm

In this section, we propose a net gain-optimal resource
allocation algorithm (GRA) based on the resource allocation
framework provided in Section IV-B. The GRA algorithm
solves the HES, DR, and PCA subproblems sequentially, then
updates the data queues and energy queues lengths for resource
allocation in the next time slot.

The computational complexity of the GRA algorithm is
discussed as follows. Since the closed-form solution of HEM
are provided in Eqns. (23) and (24), and DR is a convex
problem, the complexities of solving these two subproblems
are negligible. As a result, the computational complexity of the
GRA algorithm mainly depends on the mixed-integer program-
ming PCA. The complexity of the Hungarian algorithm for
r-CA is O(MK2 +M logM) [29]. Combining with solving
the optimal transmission power pk,∗n,m and the optimal RU n∗,
the complexity of PCA is

O(NMK +MK +MK2 +M logM)

= O(NMK +MK2 +M logM),
(28)

where O(NMK) and O(MK) are the complexity to obtain
pk,∗n,m and n∗, respectively. Solving of pk,∗n,m in Eqn. (25) only
requires the local information at each RU. Therefore, the
RUs can compute pk,∗n,m in a parallel manner, and then fuse
the solutions to the CU. It enables us to further reduce the
complexity of PCA to O(MK2 +M logM) that is irrelevant
to the number of RUs N . Therefore, the proposed algorithm
is efficient for the a desified HES-CRSN with a large number
of RUs. Notably, the solution of GRA algorithm requires
the central unit with global network information, including
channel conditions, harvested energy of RUs, etc. It is suitable
for HES-CRANs with central units to make efficient decisions
while adapting to the system dynamics.

Algorithm 1: Net Gain-optimal Resource Allocation Al-
gorithm
Data: Q(t),E(t), ψn(t),∀n ∈ N ,

φkn,m(t),∀n ∈ N ,∀m ∈M,∀k ∈ K.
Result: e∗(t), g∗(t), d∗(t), i∗(t), Q(t+ 1), E(t+ 1).
/* Hybrid Energy Management (HEM) */

1 foreach n ∈ N do
2 e∗n(t) = min(Ωn − En(t), ζn(t));
3 Compute g∗n(t) based on Eqn.(24);

/* Data Requesting (DR) */
4 Solve DR problem and set d∗(t);
/* Power and Channel Allocation (PCA)

*/
5 foreach n ∈ N , m ∈M, k ∈ K do
6 Set pk,∗n,m(t) by solving Eqn. (25);

7 Set ĩ∗(t) by solving the r-CA problem;
8 foreach k ∈ K do
9 if ĩk,∗m (t) == 1,∀m ∈M then

10 n∗ = arg minn∈N O
k
n,m(t);

11 ik,∗n∗,m = 1;

/* Queues Updating */
12 foreach n ∈ N and m ∈M do
13 Compute Qn,m(t+ 1) based on (12);

14 foreach n ∈ N do
15 Compute En(t+ 1) based on (6);

V. PERFORMANCE ANALYSIS

In this section, we further analyze the network stability and
the optimality of the proposed algorithm. First, we derive
the upper bound on the data queue in Proposition 1, and
thereby guarantees the network stability. Then, the required
battery capacity to support the sustainable network operation is
provided in Proposition 2, such that the RUs can only transmit
data to users if they have sufficient energy. At last, we analyze
the performance gap between the net gain achieved by the
GRA algorithm and that achieved by the optimal solution.

A. Upper Bounds on Data queues
Proposition 1 shows the upper bound on the data queues.

Since all data queues are finite in the HES-CRAN, the network
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stability constraint (13) can be satisfied.

Proposition 1. Suppose that V > 0 and all the data queues
are initialized as Qn,m(t) = 0,∀n ∈ N ,m ∈ M, the
following inequality holds over the operation time:

0 ≤ Qn,m(t) ≤ Qmax, 0 ≤ t ≤ T, (29)

where Qmax = V %U +Am denotes the upper bounds of data
queues.

The proof of Proposition 1 is provided in Appendix D.
Proposition 1 demonstrates the necessary data buffer of RUs
to be MQmax, such that the RUs can accommodate the data
queues for M users. Notably, the value of Qmax linearly
increases with parameter V . Recalling that a larger V can
bring higher net gain, Eqn. (29) implies that higher gain can
be achieved at the cost of a larger data buffer.

B. Battery Capacity

Considering the sustainable operation of the HES-CRAN,
we need to guarantee that the energy consumption of each
RU should be upper bounded by its energy queue length, i.e.,
the energy availability constraint (7). Note that RUs tend to
have more available energy to serve users with a larger battery
capacity [25]. With a sufficiently large battery capacity, the RU
can only serve users if its available energy is larger than the
maximum energy consumption of an RU in one time slot, i.e.,
En(t) ≥ Pmax. Therefore, the energy availability constraint
(7) can be satisfied. In Proposition 2, we analyze the required
battery capacity to achieve this goal.

Proposition 2. Suppose that the battery capacity of RU n
satisfies:

Πn = WQmaxηmax/ ln 2 + Pmax, (30)

if the available energy of RU n is less than the maximum
energy consumption, i.e., En(t) < Pmax, then the optimal
transmission power from RU n to users must be zero, i.e.,
pk,∗n,m = 0,m ∈M. Therefore, RU n can have pk,∗n,m > 0,∀m ∈
M if and only if En(t) ≥ Pmax, which makes the energy
availability constraint (7) redundant.

The proof of Proposition 2 can be found in Appendix E.
Substituting the upper bounds on data queues, i.e., Eqn. (29),
into Eqn. (30), we can see that the battery capacity linearly
increases with the value of V . It implies that achieving higher
gain also requires RUs to equip with a larger battery capacity,
in addition to a larger data buffer.

C. Performance Guarantee of the GRA Algorithm

In Theorem 2, we show the gap between the net gain
achieved by the GRA algorithm and that by the optimal
solution.

Theorem 2. Denote Ū and U∗ to be the net gain achieved
by the GRA algorithm and that by the optimal solution,
respectively. Suppose that the EH process φ(t), the channel
condition h(t) and the on-grid energy price α(t) are identical

and independent distributed (i.i.d.) across the time slots. Then
we have the following inequality:

Ū ≥ U∗ −B/V, (31)

where B is given by Eqn. (21).

The proof of Theorem 2 is provided in Appendix F. As we
can see from Eqn. (21), the value of B is irrelevant to that
of V . Therefore, Eqn. (31) shows that the achieved net gain
asymptotically approaches the optimal gain with increasing V .
Furthermore, the increasing rate of the net gain decreases as
V increases. It implies that the HES-CRAN can fully utilize
the harvested and purchased energy for net gain maximization
with a sufficiently large V . In this case, the HES-CRAN needs
extra supply of harvested energy or less expensive on-grid
energy to achieve a higher net gain.

Although Theorem 2 assumes that φ(t), h(t), and α(t)
evolve in an i.i.d. manner over time slots, the conclusions in
the theorem also hold in more general cases where the above-
mentioned processes evolve according to some finite-state irre-
ducible and aperiodic Markov process [25]. The performance
guarantee can be obtained by the so-called delayed Lyapunov
drift method, as shown in Theorem 2 of [30].

VI. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the per-
formance of GRA algorithm in an HES-CRAN. The simulated
HES-CRAN consists of a CU and N = 10 RUs that are
randomly distributed in a circle area with a radius of 100
m [14]. The RUs provide downlink data transmission service
to M = 25 users. The HES-CRAN operates over a 100
MHz spectrum that is equally divided into 32 channels. The
spectral noise power on each channel is N0 = 10−10 W/Hz
[20] and the peak transmission power is PT = 40 W [18].
The channel gain hkn,m(t) is uniformly distributed over [5,
14] and varies across time slots in an i.i.d. manner [18]. The
channel capacity is upper bounded by φmax = 20 Mbps. The
fronthaul link capacity is Fn = 32 Mbps,∀n ∈ N [31], and
the available data is Am = 20 Mbps,∀m ∈ M. Similar to
[20], we adopt the gain function to be a logarithm function
of the amount of downlink data, i.e., U(

∑
n∈N dn,m(t)) =

log(1+
∑
n∈N dn,m(t)), to ensure the fairness between users.

The length of each time slot is 1 min, and the total operating
time is T = 5000 min.

Regarding the parameters related to the harvested energy
and the purchased energy, the following settings are used.
The normalization factor associated with purchased on-grid
energy is set to β = 1

32 [20]. The price of on-grid energy
randomly changes across time slots according to a folded
normal distribution N (3, 3) [32]. The upper bound of on-grid
energy is gmax = 100 J. Furthermore, the harvested energy
ψn,∀n ∈ N uniformly distributes between [0, 90] J [21].

Fig. 2 shows the net gain with the increasing V . Since a
larger V means that the GRA algorithm emphasizes more on
net gain maximization, the net gain monotonically increases
with the value of V . However, the increasing rate decreases
with a higher V . Recalling that a higher V requires a RU
to be equipped with a larger data buffer and energy buffer,
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Fig. 3. Data queue dynamics with different values of V .

the decreasing of the increasing rate implies that the benefits
brought by larger data and energy buffers diminish as V
increases. In this case, the HES-CRAN needs more harvested
energy or low-cost on-grid energy to boost the net gain.
Notably, this is consistent with the Eqn. (31) in Theorem 2,
which shows that the net gain achieved by the GRA algorithm
is a concave function of V .
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Fig. 3 shows the data queue dynamics across the operation
time under different values of V . Since the RUs tend to request
user data from the CU to maximize the net gain and do
not have enough energy for data transmissions in the startup
phase, the data queue length increases at the beginning of the
operation, as we can see from the figure. After the startup
phase, the data queue converges and fluctuates around a time-
average value, which implies the balance between data request-
ing and transmission. Furthermore, the time-average value
increases linearly with the value of V , which is consistent
with Proposition 1.

Similar to the dynamics of data queue, the energy queue
increases at the startup phase and then fluctuates around a
time-average value, as shown in Fig. 4. It indicates that the
RUs tend to charge their batteries, rather than transmit data
at the startup phase. When the battery is charged to a certain
level, the RUs start data transmission to balance the energy
charging and discharging, and thus the fluctuation appears
around the time-average value. Notably, the time-average value
also increases linearly with the value of V , which indicates the
necessity to equip a larger battery capacity to an HES-CRAN
with a higher V .

Fig. 5 shows the time-average on-grid energy consumption
versus different values of V . Since the cost on on-grid energy
becomes dominant in the UUM problem as V increases, the
on-grid energy consumption decreases. However, the decreas-
ing rate decreases when V becomes larger. This is because the
RUs can transmit more data to achieve a higher user gain by
purchasing on-grid energy. Furthermore, since a smaller nor-
malization factor β represents a higher efficiency of achieving
user gain by consuming on-grid energy, the on-grid energy
consumption increases with decreasing β.

A. Performance Comparison

To better investigate the performance of the GRA algorithm,
we compare the GRA algorithm with a baseline algorithm,
which makes greedy decisions to maximize the net gain [33].
In each time slot, the greedy algorithm schedules the data
requesting to maximize the net gain given in Eqn. (14),
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subject to the fronthaul capacity, the user data availability,
and the data buffer length. Considering the channel and power
allocation, the greedy algorithm first arranges the data queues
in a descending order with respect to their lengthes. Secondly,
it assigns the channel with the best condition to the longest
data queue for data transmission using the availably maximum
power (bounded by PT ) in the RU. At last, the data queue
is removed from the arrangement. The channel and power
allocation continues until all the channels are assigned.

We first compares the net gain achieved by the GRA
algorithm and the greedy algorithm versus the maximum EH
rate ranging from 60 W to 100 W in Fig. 6. Although the
greedy algorithm may request more data to maximize the
objective function in Eqn. (14), it does not take the balance
between the queue lengthes and the gain maximization into
consideration. Therefore, it has relatively lower net gain as
compared with the GRA algorithm. Besides, in comparison
with the GRA algorithm, the greedy algorithm only achieve
slightly higher net gain as V increases from 400 to 800,
which implies that the greedy algorithm cannot fully exploit
the benefits brought by a larger data buffer and higher battery
capacity.
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Fig. 7 compares the time-average data queue length of
the two algorithms, taking the data buffer size Qmax as a
benchmark. The results show that the time-average data queue
length of the greedy algorithm is close to the data buffer size,
which is much larger than that of the GRA algorithm. Since
the time-average queue length is proportional to the queueing
delay according to Little’s law, the results in Fig. 7 indicate
that the GRA algorithm outperforms the greedy algorithm in
terms of the delay performance.

In the following, we divide the network operation time into
5 time blocks, each of which is 1000 min long. In Fig. 8, we
compare the GRA algorithm and the greedy algorithm in terms
of the net gain averaged over each time block, which implies
the variation of the net gain achieved by the two algorithms
over the operation time. The net gain of the greedy algorithm
is shown to be high in the first time block, then decreases
drastically to a stable value in the following time blocks.
The reason is that the greedy algorithm motivates the RUs
to request as much as data to maximize the objective function
in Eqn. (14) at the beginning of the operation. However, the
channel allocation and power control in the greedy algorithm
cannot efficiently schedule the data transmission of RUs to
vacate the capacity of data buffers. In comparison, although
the GRA algorithm achieves a relatively lower net gain in the
first time block, the achieved net gain of the GRA algorithm
in the stable state exceeds that of the greedy algorithm.

VII. CONCLUSION

In this paper, we have formulated a net gain optimization
problem to allocate the resources of an HES-CRAN, consider-
ing the stochastic nature of EH process, on-grid energy price,
and wireless channel conditions. By applying the Lyapunov
optimization approach, we have designed a resource allocation
framework which decomposes the stochastic problem into
three subproblems, i.e., the hybrid energy management, the
data requesting, and the channel and power allocation. The
solutions of the subproblems constitute an online and scalable
net gain-optimal resource allocation (GRA) algorithm. Fur-
thermore, we have derived the required data buffer and battery
capacity, and the optimality gap between the GRA algorithm
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and the optimal solution, which provide useful insights into the
design and deployment of practical HES-CRANs. Extensive
simulations have been conducted to validate the superior
performance of the GRA algorithm.

For the future work, the interference management and
delay-sensitive service provisioning in HES-CRANs will be
investigated where channels can be allocated to multiple users
for downlink transmissions. The co-design of the computation
and communication in HES-CRANs is another interesting
problem, which considers the energy consumed by both the
computation at the CU and the data transmissions at the RUs.

APPENDIX A
PROOF OF THEOREM 1

Based on ([Q − b]+ + a)2 ≤ a2 + b2 + 2Q(a − b), we
can obtain Eqns. (32) and (33) by sparing the both sides of
Eqns. (12) and (6), respectively. Rearranging the terms of the
obtained results yields Eqn. (20).

(Qn,m(t+ 1))2 − (Qn,m(t))2

≤

(∑
k∈K

ikn,m(t)φk
n,m(t)

)2

+ dn,m(t)2

+ 2Qn,m

(
dn,m(t)−

∑
k∈K

ikn,m(t)φk
n,m(t)

)

≤(dmax)2 + (φmax)2 + 2Qn,m

(
dn,m(t)−

∑
k∈K

ikn,m(t)φk
n,m(t)

)
.

(32)

(En(t+ 1)−Πn)2 − (En(t)−Πn)2

≤(en(t) + gn(t))2 +

(∑
k∈K

ikn,m(t)pkn,m(t)

)2

+ 2(En(t)−Πn)

(
en(t) + gn(t)−

∑
k∈K

ikn,m(t)pkn,m(t)

)
≤(ψmax + gmax)2 + (Pmax)2

+ 2(En(t)−Πn)

(
en(t) + gn(t)−

∑
k∈K

ikn,m(t)pkn,m(t)

)
.

(33)

APPENDIX B
PROOF OF LEMMA 1

We first show that Eqn. (25) is the optimal transmission if
RU n serves user m over channel k. It can be proved that
Eqn. (25) is the optimal solution for the power allocation
subproblem:

(PA) min
pkn,m(t)

(Πn − En(t))pkn,m(t)−Qn,m(t)φkn,m(t)

s.t. (5).

As shown in Eqn. (11), the channel capacity φkn,m(t) is
concave w.r.t. pkn,m(t), which makes PA a convex problem.
By taking the first order derivative of the objective function
and setting the derivative to zero, we can obtain Eqn. (25).

If the optimal channel allocation ikn,m = 1 and Eqn. (25)
does not hold, the achieved value of the objective function
of PCA must be larger than the one achieved by Eqn. (25).
Therefore, we can prove Lemma 1.

APPENDIX C
PROOF OF LEMMA 2

Lemma 2 can be proved by contradiction. If ikn∗,m = 1 is
the optimal solution to CA and Eq. (26) does not hold, then
there exists another RU ñ and Okñ,m(t) < Okn∗,m(t). If we
change n∗ to ñ, i.e., set ikñ,m = 1, the objective function of
CA problem can be further decreased. This contradicts that
ikn∗,m = 1 is the optimal solution to CA problem. Therefore,
Lemma 2 is proved.

APPENDIX D
PROOF OF PROPOSITION 1

The proof of the upper bound on data queues proceeds
by inductions. Since the data queue length is initially empty
Qn,m(0) = 0, it can be seen that Eqn. (29) holds in time slot
0. In the following, we prove that if Eqn. (29) holds in time
slot t, then it holds in time slot t+ 1.

If Qn,m(t) ≤ V %U , then it is easy to see that Qn,m(t) ≤
V %U +Am according to the data availability constraint (10).

Suppose Qn,m(t) > V %U , we prove Eqn. (29) by showing
that the objective function of the DR problem monotonically
increases with dn,m(t). Therefore, the d∗n,m(t) = 0 is the
optimal solution for the DR problem. Taking derivative of the
objective function in the DR problem w.r.t. dn,m(t) yields
Qn,m(t) − V U ′(

∑
n∈N dn,m(t)). Recalling that %U denotes

the upper bound of the first derivative of the utility, it can be
proved that the derivative of the objective function is larger
than 0. Therefore, minimizing the objective function yields
d∗n,m(t) = 0, which proves Eqn. (29).

APPENDIX E
PROOF OF PROPOSITION 2

Based on Eqn. (25), the optimal transmission power takes
a value of zero if the following inequality holds

WQn,m(t)

ln 2 · (Πn − En(t))
− 1

ηkn,m(t)
< 0 (34)

Resorting Eqn. (34) yields

Πn > WQn,m(t)ηkn,m(t)/ ln 2 + En(t). (35)

To guarantee that the RU does not serve any user when
En(t) ≤ Pmax, we can set the battery capacity to

Πn = WQmaxηmax/ ln 2 + Pmax,

such that Eqn. (35) must hold if the available energy does not
exceed the maximum power consumption of an RU in each
time slot. This concludes the proof of Proposition 2.

APPENDIX F
PROOF OF THEOREM 2

This theorem can be proved by comparing the drift-minus-
gain in Eqn. (19) obtained by the proposed algorithm and a
stationary randomized algorithm denoted by π. dπ(t), iπ(t),
pπ(t), gπ(t), eπ(t) represent the variables optimized by algo-
rithm π. Supposing the channel gain, on-grid energy price, and
EH process change in an i.i.d. manner across the time slots,
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such a algorithm π exists to satisfy the following inequalities
according to Theorem 4.5 in [34] :

E

[ ∑
m∈M

U

(∑
n∈N

dπn,m(t)

)
− β

∑
n∈N

α(t)gπn(t)

]
≤ U∗ + σ,

E

[∑
n∈N

∑
m∈M

(
dπn,m(t)−

∑
k∈K

ik,πn,m(t)φk,πn,m(t)

)]
≤ γ1σ,

E

[∑
n∈N

(
gπn(t) + eπn(t)−

∑
k∈K

ik,πn,m(t)pk,πn,m(t)

)]
≤ γ2σ,

where σ is a arbitrarily small parameter, and γ1 and γ2 are
positive scalars.

In each time slot, the proposed GRA algorithm minimizes
the right hand side (RHS) of Eqn. (20). Therefore, the RHS of
Eqn. (20) achieved by the GRA algorithm is less than any other
algorithm, including algorithm π, which yields the following
inequality

∆(t)− V E [U(t)] ≤B + E
[
ΘGRA
V (t)|Ω(t)

]
≤B + E[Θπ

V (t)]

≤B + (γ1 + γ2 + 1)σ − V U∗,
(36)

where ΘGRA
V and Θπ

V denote the value of ΘV achieved by
the GRA algorithm and algorithm π, respectively. By letting
σ be zero, we have

∆(t)− V E [U(t)] ≤ B − V U∗. (37)

We sum the both sides of Eqn. (37) over time slots t ∈
(0, 1, · · · , T − 1) and divide them by T to obtain

L(T − 1)− L(0)

T
− 1

T

T−1∑
t=0

E [U(t)] ≤ B − V U∗ (38)

Letting T → ∞ and using the fact that both L(T − 1) and
L(0) are finite, we have Ū ≥ U∗−B/V to conclude the proof.

ACKNOWLEDGEMENT

This research work is supported by National Natural Sci-
ence Foundation of China (61702561, 61702562, 61379057),
NSF ECCS-1554576, the Innovation-Driven Project of Central
South University (No. 2016CXS013), International Science
and Technology Cooperation Program of China (No. 2013DF-
B10070), China Hunan Provincial Science and Technology
Program (No. 2012GK4106), and Research Project of the State
Key Laboratory of Industrial Control Technology, Zhejiang
University ,China (No.ICT170318).

REFERENCES

[1] D. Zhang, Z. Chen, L. X. Cai, H. Zhou, J. Ren, and X. Shen, “Resource
allocation for green cloud radio access networks powered by renewable
energy,” in IEEE Global Communications Conference (GLOBECOM),
2016, pp. 1–6.

[2] C. V. N. I. Cisco, “Global mobile data traffic forecast update, 2015–
2020,” white paper, 2016.

[3] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud ran for mobile networksa technology
overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,
2015.

[4] J. Liu, H. Guo, Z. M. Fadlullah, and N. Kato, “Energy consumption
minimization for FiWi Enhanced LTE-A HetNets with UE connection
constraint,” IEEE Commun. Mag., vol. 54, no. 11, pp. 56–62, 2016.

[5] L. X. Cai, H. V. Poor, Y. Liu, T. H. Luan, X. Shen, and J. W. Mark,
“Dimensioning network deployment and resource management in green
mesh networks,” IEEE Wireless Commun., vol. 18, no. 5, pp. 58–65,
2011.

[6] D. Zhang, Z. Chen, J. Ren, N. Zhang, M. K. Awad, H. Zhou, and X. S.
Shen, “Energy-harvesting-aided spectrum sensing and data transmission
in heterogeneous cognitive radio sensor network,” IEEE Trans. Veh.
Technol., vol. 66, no. 1, pp. 831–843, 2017.

[7] J. Ren, Y. Zhang, R. Deng, N. Zhang, D. Zhang, and X. Shen,
“Joint channel access and sampling rate control in energy harvesting
cognitive radio sensor networks,” IEEE Trans. Emerg. Topics Comput.,
to appear, DOI :10.1109/TETC.2016.2555806.

[8] K. Suto, H. Nishiyama, and N. Kato, “Post-disaster user location
maneuvering method for improving the qoe guaranteed service time in
energy harvesting small cell networks,” IEEE Trans. Veh. Technol., to
appear, DOI: 10.1109/TVT.2017.2702750.

[9] G. Piro, M. Miozzo, G. Forte, N. Baldo, L. A. Grieco, G. Boggia, and
P. Dini, “Hetnets powered by renewable energy sources: Sustainable
next-generation cellular networks,” IEEE Internet Comput., vol. 17,
no. 1, pp. 32–39, 2013.

[10] D. Niyato, E. Hossain, and A. Fallahi, “Sleep and wakeup strategies in
solar-powered wireless sensor/mesh networks: Performance analysis and
optimization,” IEEE Trans. Mobile Comput., vol. 6, no. 2, pp. 221–236,
2007.

[11] L. X. Cai, Y. Liu, T. H. Luan, X. S. Shen, J. W. Mark, and H. V.
Poor, “Sustainability analysis and resource management for wireless
mesh networks with renewable energy supplies,” IEEE J. Sel. Areas
Commun., vol. 32, no. 2, pp. 345–355, 2014.

[12] B. Dai and W. Yu, “Energy efficiency of downlink transmission strategies
for cloud radio access networks,” IEEE J. Sel. Areas Commun., vol. 34,
no. 4, pp. 1037–1050, 2016.

[13] M. Peng, K. Zhang, J. Jiang, J. Wang, and W. Wang, “Energy-efficient
resource assignment and power allocation in heterogeneous cloud radio
access networks,” IEEE Trans. Veh. Technol., vol. 64, no. 11, pp. 5275–
5287, 2015.

[14] J. Li, J. Wu, M. Peng, and P. Zhang, “Queue-aware energy-efficient joint
remote radio head activation and beamforming in cloud radio access
networks,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 3880 –
3894, 2016.

[15] J. Li, M. Peng, Y. Yu, and Z. Ding, “Energy-efficient joint congestion
control and resource optimization in heterogeneous cloud radio access
networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9873–9887,
2016.

[16] J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, “Energy efficient user
association for cloud radio access networks,” IEEE Access, vol. 4, pp.
2429–2438, 2016.

[17] Y. Mao, J. Zhang, and K. B. Letaief, “A lyapunov optimization approach
for green cellular networks with hybrid energy supplies,” IEEE J. Sel.
Areas Commun., vol. 33, no. 12, pp. 2463–2477, 2015.

[18] D. Zhai, M. Sheng, X. Wang, and Y. Li, “Leakage-aware dynamic
resource allocation in hybrid energy powered cellular networks,” IEEE
Trans. Commun., vol. 63, no. 11, pp. 4591–4603, 2015.

[19] J. Yang, Q. Yang, Z. Shen, and K. S. Kwak, “Suboptimal online resource
allocation in hybrid energy supplied ofdma cellular networks,” IEEE
Commun. Lett., vol. 20, no. 8, pp. 1639–1642, 2016.

[20] B. Yang, Y. Shen, Q. Han, C. Chen, X. Guan, and W. Zhang,
“Energy-efficient resource allocation for time-varying OFDMA re-
lay systems with hybrid energy supplies,” IEEE Syst. J., to ap-
pear, DOI: 10.1109/JSYST.2016.2551319.

[21] M. Sheng, D. Zhai, X. Wang, Y. Li, Y. Shi, and J. Li, “Intel-
ligent energy and traffic coordination for green cellular networks
with hybrid energy supplies,” IEEE Trans. Veh. Technol., to appear,
DOI: 10.1109/TVT.2016.2554618.

[22] V. Chamola, B. Sikdar, and B. Krishnamachari, “Delay aware re-
source management for grid energy savings in green cellular base
stations with hybrid power supplies,” IEEE Trans. Commun., to appear,
DOI: 10.1109/TCOMM.2016.2629502.

[23] Q. Ye and W. Zhuang, “Token-based adaptive mac for a two-hop
internet-of-things enabled manet,” IEEE Internet Things J., to ap-
pear, DOI: 10.1109/JIOT.2017.2679119.

[24] J. Ren, Y. Zhang, N. Zhang, D. Zhang, and X. Shen, “Dynamic channel
access to improve energy efficiency in cognitive radio sensor networks,”
IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3143–3156, May
2016.



0018-9545 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2017.2754273, IEEE
Transactions on Vehicular Technology

13

[25] L. Huang and M. Neely, “Utility optimal scheduling in energy-harvesting
networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1117–1130, 2013.

[26] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, “Decentralized
coordination of energy utilization for residential households in the smart
grid,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1341–1350, 2013.

[27] D. Zhang, Z. Chen, M. K. Awad, N. Zhang, H. Zhou, and X. S.
Shen, “Utility-optimal resource management and allocation algorithm
for energy harvesting cognitive radio sensor networks,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3552–3565, 2016.

[28] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge
university press, 2004.

[29] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, pp. 83–97, 1955.

[30] R. Urgaonkar and M. Neely, “Opportunistic scheduling with reliability
guarantees in cognitive radio networks,” IEEE Trans. Mobile Comput.,
vol. 8, no. 6, pp. 766–777, 2009.

[31] Y. Jeon, S. H. Park, C. Song, J. Moon, S. Maeng, and I. Lee, “Joint
designs of fronthaul compression and precoding for full-duplex cloud
radio access networks,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp.
632–635, 2016.

[32] X. Wang, Y. Zhang, T. Chen, and G. B. Giannakis, “Dynamic energy
management for smart-grid-powered coordinated multipoint systems,”
IEEE J. Sel. Areas Commun., vol. 34, no. 5, pp. 1348–1359, 2016.

[33] W. Fang, X. Yao, X. Zhao, J. Yin, and N. Xiong, “A stochastic
control approach to maximize profit on service provisioning for mo-
bile cloudlet platforms,” IEEE Trans. Syst., Man, Cybern., Syst., to
appear, DOI: 10.1109/TSMC.2016.2606400.

[34] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Morgan & Claypool Publishers,
2010.


