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The Shainin SystemTM (SS) is the name given to a problem solving system, with its 

associated strategies and tools, developed by Dorian Shainin, and widely used and promoted 

in the manufacturing sector. Dorian Shainin also called this system Statistical Engineering, 

reflecting his engineering education and background. The consulting firm, Shainin LLC, 

offers the system under the trademarked name Red X® Strategy. Much of SS is neither well 

documented, nor adequately discussed in peer-reviewed journals. The goal of this article is 

to provide an overview of SS, a critical assessment, and a brief comparison with other 

industrial problem solving systems. The emphasis is on a discussion of the guiding 

philosophy and principles. Some specific SS tools are examined and compared with 

alternative methods. In our assessment, the Shainin System is valuable for many types of 

problems and many of its elements have been, or should be, incorporated into other process 

improvement methodologies. However, many of the statistical tools and methods promoted 

in conjunction with SS are neither novel nor necessarily the best. 
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Introduction 

The goal of this paper is to provide a critical overview of the Shainin SystemTM (SS) for quality 

improvement, developed over many years under the leadership of the late Dorian Shainin. SS is also 

called Statistical Engineering, by the consulting firm Shainin LLC that holds the trademark, and the Red 

X® strategy in parts of the automotive sector where SS is popular. The overall methodology has not been 

subject to critical review although some of the components have been discussed extensively. Here we 

provide such a review and also compare the Shainin System to other process improvement systems 

including Six Sigma. We also describe a few of the more controversial and widely used SS statistical 

methods.  

 Bhote and Bhote (2000) and Bhote (1991, 1988) give the most complete (although not 

comprehensive) treatment of SS. We agree with reviewers (Nelson 1991, Moore 1993, Hockman 1994 

and Ziegel 2001) that these books make many unsubstantiated, exaggerated claims. What is worse, we 

believe that these books are a disservice to SS, since the hyperbole hides many of the genuinely useful 

ideas. A less technical and less controversial reference that includes many case studies is Traver (1995). 

Overviews of SS have been published in conference proceedings; see Shainin (1992, 1992b, 1993, 1993b, 

1995), Shainin and Shainin (1990) and Shainin et al. (1997). Other review articles include Logothetis 

(1990) and De Mast et al. (2000). Does, Roes and Trip (1999) cover many of the specific tools associated 

with the Shainin System but not the overall strategy. Ledolter and Swersey (1997a, 1997b) review two 

widely heralded SS tools, pre-control and variables search. There may be new developments not yet in the 

public domain. Steiner and MacKay (2005) build on what we think are the best elements of SS.  

The article is divided into two major parts. First, we discuss the basic principles underlying SS, and 

the consequences of applying these principles within the Shainin System. It is the use of these principles 

and algorithm in combination that defines and distinguishes the overall strategy of SS from other 

approaches. Next, we discuss a selection of SS statistical tools used within the algorithm. By “tool”, we 
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mean the data collection plan and the subsequent analysis method. We discuss alternatives to the analysis 

methods where appropriate.  

In assessing the Shainin System, it is important to differentiate between the overall approach that we 

think is strong, and the specific analysis methods that are sometimes weak. 

 

The Guiding Principles of the Shainin System 

We consider the underlying principles of SS in two groups. The first group follows from the idea 

that there are dominant causes of variation. This idea appears in Juran and Gryna (1980), but it is Shainin 

who fully exploits this concept. The second group of principles is embedded in the algorithm, the Shainin 

SystemTM, shown in Figure 1.  
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Figure 1: The Shainin SystemTM for Quality Improvement (from Shainin 1992) 
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Dominant Causes of Variation and Progressive Search 

A fundamental tenet of SS is that, in any problem, there is a dominant cause of variation in the 

process output that defines the problem. This presumption is based on an application of the Pareto 

principle to the causes of variation. Juran and Gryna (1980, page 105) define a dominant cause as “a 

major contributor to the existence of defects, and one which must be remedied before there can be an 

adequate solution.” In SS, the dominant cause is called the Red X®. The emphasis on a dominant cause is 

justified since “The impact of the Red X is magnified because the combined effect of multiple inputs is 

calculated as the square root of the sum of squares” (Shainin, 1995). To clarify, if the effects of causes 

(i.e. process inputs that vary from unit to unit or time to time) are independent and roughly additive, we 

can decompose the standard deviation of the output that defines the problem as: 

stdev(output)  = 2 2stdev (due to cause 1) stdev(due to cause 2) ...+ + .  

We cannot reduce the output standard deviation much by identifying and removing or reducing the 

contribution of a single cause, unless that cause has a large effect. For example, if stdev(due to cause 1) is 

30% of the stdev(output), we can reduce the stdev(output) by only about 5% with complete elimination of 

the contribution of this cause. The assumption that there is a dominant cause (possibly due to an 

interaction between two or more process inputs) is unique to SS, and has several consequences in the 

application of the Shainin System.  

Within SS, there is recognition that there may be a second cause, called the Pink XTM (Shainin, 

1993b) that makes a substantial contribution to the overall variation and must be dealt with in order to 

solve the problem. To simplify the language, we refer to a dominant cause of the problem, recognizing 

that there may be more than one important cause. 

SS uses a process of elimination (Shainin 1993b), called progressive search to identify the dominant 

causes. Progressive search works much like a successful strategy in the game “20 questions,” where we 

attempt to find the correct answer using a series of (yes/no) questions that divide the search space into 
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smaller and smaller regions. To implement the process of elimination, SS uses families of (causes of) 

variation. A family of variation is a group of varying process inputs that act at the same location or in the 

same time span. Common families include within-piece, piece-to-piece (consecutive), time-to-time, 

cavity-to-cavity and machine-to-machine. At any point in the search, the idea is to divide the inputs 

remaining as possible dominant causes into mutually exclusive families, and then to carry out an 

investigation that will eliminate all but one family as the home of the dominant cause. 

Progressive search works in conjunction with the assumption that there are only one or two 

dominant causes. If we can attribute most of the observed variation to one family, we can eliminate all 

varying inputs that act in other families from consideration. For example, in a multivari study (see the 

next section), suppose we find that variation piece-to-piece is much larger than variation time-to-time. 

Then, all varying inputs that change over the longer time frame, such as properties of batches of raw 

material, can be eliminated as possible dominant causes. 

Another consequence of the assumption of a dominant cause is that we can gain a lot of information 

about this cause by comparing units with extreme values of the output. To our knowledge, this explicit 

use of “leveraging” is unique to SS. Shainin et al. (1997) refer to comparing the “best of the best” (BOB) 

and “worst of the worst” (WOW) units. The values of the dominant cause must be substantially                                    

different on these two groups of units and hence be identifiable. One advantage of leveraging is that we 

can often eliminate families of causes using investigations with small sample sizes of extreme units. The 

idea of leveraging is specifically employed in many SS tools, including Component searchTM, Variable 

searchTM and group comparison, discussed later in this article. Note, however, to find a small number of 

extreme units, we may need to measure the output on a large number of units. Also, the terminology can 

cause confusion. For outputs with two sided specifications, none of the extreme units is best of the best.  

SS shuns brainstorming and cause-and-effect diagrams when screening possible causes. Using 

cause-and-effect analysis, once all possibilities are identified, we are forced to look at a large number of 

potential dominant causes one-at-a-time or in some combination. Using progressive search and carefully 
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designed observational investigations, we can rule out large families without ever identifying the 

individual varying inputs that make up the family. In our experience, progressive search is much more 

efficient than brainstorming. Shainin (1993) states, “there is no place for subjective methods such as 

brainstorming or fish bone diagrams in serious problem solving.”  

The success of progressive search depends on our ability to combine empirical knowledge provided 

by process investigations and engineering/scientific knowledge. The need for data from the process is 

emphasized throughout the SS methodology. This emphasis has perhaps led to the misunderstanding (De 

Mast et al. 2000) that qualitative process knowledge is not required in SS. A team must have deep 

understanding of the process to construct appropriate families, plan investigations and identify a particular 

family as the home of a dominant cause. Process knowledge is also essential when determining an 

appropriate change to the product, process, or control plan that will reduce or eliminate the effect of an 

identified dominant cause. The necessity for process knowledge is acknowledged in all process 

improvement systems. However, in SS, there is an increased awareness that in order to progress, 

engineering process knowledge must be combined with empirical knowledge gained by studying the 

process. 

There is a risk that multiple failure modes contribute to a problem, and hence result in multiple 

dominant causes. In one application, a team used SS to reduce the frequency of leaks in cast iron engine 

blocks. They made little progress until they realized that there were three categories of leaks, defined by 

location within the block. When they considered leaks at each location as separate problems, they rapidly 

determined a dominant cause and a remedy for each problem.  

Within SS, there is no explicit consideration of whether the dominant or any other causes are 

common or special. The search strategy is designed to look for causes with a large effect. For variation 

reduction problems, using families of variation and the method of elimination is a more effective way to 

partition the causes than is the classical Statistical Process Control (SPC) division into common and 

special causes. With families defined specifically based on existing process knowledge, there is a broad 
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array of sampling plans and analysis methods, other than control charts, that can be used to eliminate 

families. 

The focus on finding and eliminating a dominant cause is appropriate in many problems, but can be 

restrictive in other cases. There are variation reduction techniques, such as making a process robust to 

noise, 100% inspection and feedback control that do not require knowledge of a dominant cause (Steiner 

and MacKay, 1997-1998 and 2005).  

The use of progressive search is not without difficulties. It can be hard to identify a dominant cause 

that is an interaction between varying inputs in different families. Progressive search requires patience 

since multiple investigations are usually required to isolate dominant causes, and it is innately sequential 

which can be a hard sell in today’s fast paced industrial environment. With small sample sizes and the 

emphasis on extremes, there is a risk of focusing on outliers that are not due to the dominant cause driving 

the overall variation. The definition of “extreme” requires care, especially in the case of two-sided 

specifications. It is possible that different dominant causes are responsible for units with output values on 

opposite sides of the target. In some problems, rare in our experience, there may be no dominant cause, 

i.e. many causes contribute roughly equally to the problem. In these instances, all problem-solving 

systems based on Juran’s diagnostic and remedial journey will have difficulty because the effect of any 

one cause is masked by the variation due to all others.  

 

The Problem Solving Algorithm 

The SS problem solving approach is given in Figure 1. Note that the algorithm is defined for a 

single project, and is designed to fit into a larger project selection and management process. It is divided 

into two parts, the diagnostic and remedial journeys, terminology from Juran and Gryna (1980, p. 104). In 

the diagnostic journey, the problem is defined, the measurement system is assessed, and the dominant 

cause of variation is identified and verified. In the remedial journey, the effect of the dominant cause is 

eliminated or reduced by changing the product design, the process, or the control plan.  
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The purpose of the first stage of the algorithm is to quantify the magnitude of the selected problem. 

To do this we monitor the output of the process using an appropriate sampling scheme for a sufficiently 

long period of time, so that we see the effect of all causes of variation, especially the dominant cause. The 

process variation is then displayed using a histogram or summarized numerically. This baseline histogram 

is called the Green Y® distribution (Shainin et al. 1997) in SS terminology.  

We use the baseline distribution to quantify the problem, to set a goal that has the potential to 

improve the process, and to assess any proposed remedy. The baseline distribution is also used to plan and 

check that a dominant cause exhibited its full effect in each investigation in the progressive search. This is 

important information necessary to keep us from focusing on the wrong family of causes. The idea of 

quantifying the nature of the problem is part of all problem-solving approaches. The unusual feature of SS 

is the explicit link between the search for the dominant cause and the baseline distribution.  

The second stage in the SS algorithm (see Figure 1) involves the quantification and establishment of 

an effective measurement system. Without a good measurement system, it is difficult to learn about and 

improve the process, and the measurement system itself may be home to the dominant cause of the 

problem. Having a separate step in the SS approach devoted to checking the measurement system helps to 

ensure this essential task is not neglected. We look at the recommended plan and analysis for assessing 

the measurement system in the next section. 

In most problems, we need to consider several measurement systems, since we measure not just the 

output but also some inputs. By eliminating families of causes, SS reduces the number of specific inputs 

that are candidates for study. SS emphasizes checking the measurement system for the process output, but 

says little about establishing reliable measurement systems for any measured inputs. 

The goal of the third stage of the SS algorithm is to generate clues about the dominant cause. This is 

the progressive search. At this stage, another key emphasis in SS is to “talk to the parts” (Shainin, 1992). 

In statistical jargon, we use observational rather than experimental plans as much as possible. SS was 

developed for and is best suited to problem solving on operating, medium to high volume processes where 
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data are cheaply available, statistical methods are widely used and intervention into the process is 

difficult. It is difficult to understand claims that SS concepts such as the use of leverage (i.e. comparing 

BOBs and WOWs) can be used effectively in research and development (R&D) situations. To use 

leverage, we must estimate the Green Y distribution and identify extreme units. To do this requires a large 

number of units, unlikely to be available in this context. We do not deny that good engineering can solve 

R&D problems and that statistical tools, such as designed experiments, can be helpful. We do not 

consider this activity as part of SS as defined by the algorithm in Figure 1.  

SS makes heavy use of observational plans such as multivari investigations, stratification, group 

comparison, and scatter (correlation) plots within the progressive search. It is surprising, given the 

availability of statistical software, that analysis of variance and regression techniques are not included. 

Recommended experimental plans, such as swapping components within assemblies are carried out off-

line and avoid disrupting production. The use of observational plans is made explicit and is emphasized in 

SS in the early stages of the search for the dominant cause unlike, for example, any version of Six Sigma 

we have seen. 

The purpose of the fourth and the fifth stages of the algorithm is to confirm the identity of the 

dominant cause. The end result of the progressive search may be a single cause or a short list of suspects. 

With SS, dominant causes are verified using a formal experiment because of concerns about possible 

confounding (due to the earlier use of observational plans) and spurious associations (due to the small 

sample sizes). The suspect dominant causes are the factors that must be held fixed in the experiment. SS 

uses two level designs with the levels set at the ends of the normal ranges of variation of the suspect 

cause(s), so that changing the levels of a dominant cause should produce the full range of the output 

variation in the experiment. Full factorial designs are recommended so that interactions among the 

suspects can be identified. With a single suspect, SS recommends a six run experiment (sometimes called 

B vs. CTM – see the next section) with three replicates for each level.  



 10

A full factorial verification experiment is feasible because the list of suspects is short. Also, because 

the purpose is clear, there is little temptation to mix up the verification of the dominant cause, and the 

search for a remedy. That is, at this stage, inputs that are typically fixed are not changed within the 

experiment.  

We now discuss the steps of the algorithm in the remedial journey. We assume that a dominant 

cause has been identified and verified. The first step in the remedial journey applies to the special case of 

a single dominant cause that is an interaction between two varying inputs. That is, a major component of 

the variation in the response, denoted by y, can be explained by the joint variation of two varying inputs 

denoted by 1x  and 2x . We have an interaction since the relationship between the response and the first 

input depends on the level of the second input. The presence of interaction suggests a non-linear 

relationship 1 2( , )y f x x residual= + , where the residual variation is relatively small, since 1x  and 2x  

together are a domi nant cause. We may be able to exploit this relationship to desensitize the process to 

variation in 1x  and 2x  by changing the set points of 1x , 2x  or both. We can investigate this possibility 

with a series of small experiments with two factors 1x  and 2x . This strategy may or may not be effective. 

It is a special application of parameter design where the experimental factors are limited to the set points 

of the inputs that make up the dominant cause. We can find little evidence (e.g. it is not explicit in the 

algorithm as shown in Figure 1) that SS considers the more general strategy to reduce variation due to an 

identified cause by exploiting interactions with a wider selection of inputs fixed in regular production. 

One of the referees pointed us to the Concept diagram, another SS tool. The only reference that we can 

find (Moore and Butkovitch) gives a Concept diagram that shows the effect of a process change on the 

output. We cannot see that this corresponds to applying parameter design and furthermore, there is no 

indication as to how to identify the necessary interactions within SS.  

The goal of the next stage of the algorithm is to define realistic specifications (tolerance) for the 

input corresponding to the dominant cause. We can establish the specifications based on the specified 

tolerance for the output by quantifying the relationship between the output and the (dominant) cause. In 
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SS, this task is accomplished with a Tolerance Parallelogram TM (Shainin 1993b). We select a number of 

parts with dominant cause and output values that cover the full range of variation. Using a specified 

proprietary procedure, the tolerance limits for the dominant cause are derived from the output 

specifications, taking into account the residual variation in the output. See Figure 2 where we used 

prediction intervals from a simple regression model for this task. The idea is that if we control the 

dominant cause within its tolerance range, the output will be controlled with the desired specifications. At 

this stage, there is no effort to determine how to exert this control. If the residual variation is too high (e.g. 

the cause is not sufficiently dominant), then there will be no tolerance left for the cause. This 

methodology can be extended to the cases where a dominant cause is an interaction between two inputs, 

or where there is more than one dominant cause, using a more complex model.  
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Figure 2: Using Regression to Set Specification Limits (Tolerances) for the Dominant Cause (x)  
Given a Tolerance for the Output (y) 

 

The algorithm splits at the next stage. We take irreversible corrective action to mean that the 

variation in the cause can be eliminated. More interestingly, if this is not possible, then the algorithm 

suggests Process Control. In SS, this means precontrol, not Shewhart control charts. Precontrol is a 

feedback control system applied to the dominant cause to keep its value within the specification limits 

derived in the previous stage. The relative merits of pre-control versus Shewhart control charts have been 

widely discussed – see the next section. Precontrol is a feedback controller designed as part of an 
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adjustment scheme, and hence it should be compared to other feedback controllers, not just control 

charting. Feedback control can be effective only if the dominant cause exhibits structural variation 

(Joiner, 1994). That is, the dominant cause must vary in such a manner that we can predict the future from 

the current and past values, and then have time to make adjustments, as necessary. In SS language, if the 

dominant cause resides in the piece-to-piece family, no form of feedback control can be effective in 

reducing variation. If this is the case, then pre-control will not be effective and the algorithm provides no 

guidance as to how to proceed.  

The final two stages of the algorithm need no further discussion. 

In summary, we think that the algorithm is very strong for the diagnostic journey, but weak and 

incomplete for the remedial journey. We can find no evidence in the literature that strategies such as feed-

forward control, robustness and process desensitization are considered (Steiner and MacKay, 2005). If the 

dominant cause does not exhibit structural variation, then precontrol will fail as a process adjustment 

scheme. 

The use of designed experiments on existing processes is common in all major industrial problem-

solving approaches. However, in comparison to other approaches, in SS, the use of experimentation is 

subordinated to observational investigations. As described earlier, experiments are recommended in the 

diagnostic journey only after the list of suspect dominant causes is short. This is a major advantage of SS 

since observational investigations are typically much cheaper and more easily implemented than 

experimental investigations. SS is weak in its use of experimental plans in the remedial journey. To 

reduce variation, there must be a change in process settings, the control plan, or the product or process 

design; that is, a change to one or more process inputs that are fixed in normal production. These changes 

can be sought and investigated only by using experiments.  

The stress on the importance of the measurement system is a strong point of the SS algorithm, 

shared by most versions of Six Sigma. This discussion of the importance of measurement systems is 



 13

missing or limited, in many well-respected books on Statistical Process Control (SPC) and Design of 

Experiments (DOE), such as Montgomery (1996, 2001), and Ryan (1989). 

The use of a systematic approach to problem solving is not unique to SS. There are many 

competitors such as DMAIC (Define, Measure, Analysis, Improve, Control) in Six Sigma (Harry and 

Schroeder, 2000)  See also Juran’s (1988) Diagnostic and Remedial Journeys Approach, Harry’s twelve-

step Breakthrough Cookbook approach (1997, pp. 21.19), and the Process Improvement and Problem 

Solving Strategies proposed by Hoerl and Snee (2002). Compared to these other systems, the purpose and 

the strategies for the individual stages in SS are more specific. The methodology is prescriptive, going as 

far as to suggestion specific tools that are useful for the different steps. The algorithm is specially 

designed for a medium to high volume manufacturing process in which inputs and outputs can be readily 

measured. Another major difference is that SS does not distinguish between common and special causes.  

 

A Selection of Shainin Tools 

In this section, we describe and critique a selection of the more interesting and controversial tools 

associated with the Shainin System, namely: Isoplot®, multivari chart, Component SearchTM, Variable 

SearchTM, group comparison, B vs. CTM, and precontrol. By tool, we mean both the plan of the 

investigation and the recommended analysis method. See Bhote and Bhote (2000) for a more extensive, 

though not complete, list of SS tools.  

SS tools are generally statistically simple plans with small sample sizes that make extensive use of 

graphical displays and non-parametric tests that can be carried out by hand. Given their purpose, we feel 

that the simple plans are to be highly recommended in most cases. We believe, however, that the non-

parametric analysis methods are weak and non-intuitive. While we are strongly in favor of graphical 

approaches, with today’s widespread availability of statistical software, the ease of calculation does not 

seem to be an issue and we recommend using straightforward standard analyses. For some of the 

discussed SS tools, we suggest alternative analysis methods that are better in most circumstances. 
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Isoplot®  

An Isoplot® study (Traver, 1995, Shainin, 1992) is used to compare the relative size of the process 

and measurement system families of variation. In its simplest form, 30 units are selected, and each unit is 

measured twice. An Isoplot starts with a scatterplot of the two measurements on each unit. On this plot, 

the horizontal variation is the overall process variation as measured by the first reading and the vertical 

variation is the overall process variation as measured by the second reading. The variation in a direction 

perpendicular to the 45-degree line represents the measurement variation and, if all points lie near the 45-

degree line, the measurement system variation is small. Figure 3 provides an example where, while not 

dominant, the variation due to the measurement system is relatively large.  
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Figure 3: Isoplot® Example – Scatterplot of Measurement Results 

 
With appropriately chosen pairs of measurements, we can assess repeatability or systematic 

differences between two operators, gauges etc. Outliers are obvious from the plot. 

 The SS Isoplot analysis includes specific rules for drawing an oval over the plotted points that can 

be used to numerically estimate the ratio of process to measurement variation, called the discrimination 

ratio. While plotting the data is a good idea, an analysis of variance (AIAG, 1995) is the preferred 

standard way to estimate the two variance components.  
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Multivari  

In a multivari investigation, we systematically sample from the process to capture the effect of 

various time and location based families of variation. Seder (1950a, 1950b, 1990) proposed a multivari 

chart to display such data. See also Snee (2001). A multivari is an excellent tool early in the progressive 

search for a dominant cause. Figure 4 shows a multivari chart using the diameter of a shaft as the output. 

The shaft diameters are measured at four locations (left and right sides at different two orientations) for 

three shafts produced consecutively each hour. In Figure 4, we see there is little variation from shaft to 

shaft within an hour, some variation within shafts, and substantial variation from time-to-time, suggesting 

that the dominant cause must be an input that varies slowly, i.e. that acts in the time-to-time family. This 

conclusion may be incorrect if we have not see most of the full range of diameter variation established in 

the baseline investigation (i.e. the Green Y distribution).  
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Figure 4: Multivari Chart For Diameter By Position, Piece and Hour 

A multivari chart provides a visual display of the components of variation associated with each 

family. However, when there is no obvious dominant family, it is useful to augment the plot with an 

analysis of variance to numerically estimate the variance components due to each family (see De Mast et 

al., 2001).  
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Component SearchTM and Variable SearchTM  

Component Search (Shainin and Shainin, 1988) is used when units can be disassembled and 

reassembled without damage or change to any of the components or subassemblies. For ease of 

discussion, we do not distinguish between subassemblies and components. The goal is to compare the 

families of variation defined by the assembly operation and individual components. We start with two 

extreme units, one “best of the best” (BOB) and one “worst of the worst” (WOW) with output values at 

the two extremes of the baseline distribution. We try to find the dominant cause of the difference by 

disassembling and reassembling, and possibly swapping components between the WOW and BOB. 

Applying component search, we first partition causes into two groups, the assembly and components 

families. If the assembly family can be eliminated (i.e. if repeated disassembly and reassembly of the 

BOB and WOW yield consistent results), the remaining causes are further subdivided into families 

defined according to individual components. There is a detailed four-stage investigation (confirmation, 

elimination, capping, and analysis, see Bhote and Bhote, 2000) to sort out which component family (or in 

the case of interactions, sets of families of components) is the home of the dominant cause. Component 

search is an experimental plan because we deliberately manipulate the inputs, i.e. the components. 

However it is carried out off line to avoid disruption of the production process. 

We give an illustration of the results of a component search with four components in Figure 5. On 

the plot, the Xs correspond to the results for Assembly 1 and the Ys to the results for Assembly 2. Two 

extreme units with initial output values, given by the two left-most plotted points, were chosen. Then, the 

team disassembled and reassembled each unit two times. Since little change was observed in the output 

values in either the BOB or WOW, the results suggest that the dominant cause acts in the components 

family and not in the assembly family of causes. The dashed lines in Figure 5 give the performance 

averages for the first three output values. Next, by swapping components between the two assemblies one 

at a time and then pair wise, the dominant cause was identified as an interaction between varying inputs in 

components C and D.  
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Figure 5: Component Swap Results 

 

The graphical analysis is effective when there is a dominant cause. However, since the order in 

which components are swapped is under the control of the investigator, the length of the search depends 

on their judgment regarding which component family is the likely home to the dominant cause. Amster 

and Tsui (1993) provide somewhat extreme artificial examples where component search yields incorrect 

conclusions. An alternative to the component swapping stage of component search is a 2k factorial or 

2k p−  fractional factorial experiment using the components as factors with levels defined by the WOW and 

BOB assemblies. An even more efficient process for eliminating component families, when feasible, is to 

proceed sequentially, that is at each stage divide the remaining suspect components into only two 

subassemblies and swap one of the subassemblies – see Steiner and MacKay (2005). 

Variable search is similar to the component swapping stages in Component Search. It is used to 

identify a dominant cause, when the progressive search produces a list of four or more suspects, and no 

other simple investigation can rule out any of these possible dominant causes. With three or fewer 

suspects, SS recommends a full factorial experiment to identify the dominant cause. In variable search, 

the first steps are to list the suspects in order of expected importance and to determine two levels for each, 

based on their range of variation in normal production. Next, through trial and error, the two levels of 

each input are assigned labels “high” and “low” so that the two runs with all inputs at the same level (all 
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high or all low) produce output levels that are at the extreme ends of the Green Y distribution. Then, the 

levels of each suspect are varied one at a time or pair wise as in component search to find the dominant 

cause.  

Variable search is an online experiment, with all of the difficulties of setting or holding the varying 

inputs at their extreme levels. The ordering of the suspects and the determination of their levels can be 

difficult and take substantial time and effort. The experiment cannot be successful if these levels are not 

correctly determined. It may be difficult to assign the high and low labels, especially if the dominant 

cause is an interaction. The length of the search depends on how well the suspects are ordered and the 

complexity of the dominant cause. See Ledolter and Swersey (1997) for a critical view of variable search. 

We agree with their conclusion that fractional factorial designs are generally a better approach than 

variable search. The situation in which there is a long list of specific suspects seems ideally suited to an 

observational plan that uses multiple regression, a tool that does not appear to be part of SS.  

 

Group Comparison 

Group comparison has two uses. If the problem is defined by a binary output (such as defective or 

not), we can use group comparison to try to identify a continuous output to reformulate the problem. This 

is especially useful if the defect is rare where group comparison is akin to a case control study. We can 

also use group comparison to identify specific suspect causes late in the progressive search, after other 

investigations have eliminated many large families of causes of variation from consideration.  

With group comparison (Bhote and Bhote, 2000), we select two groups of three or more parts with 

different values of the binary output or with extreme values of a continuous output. Note that this is 

another application of leverage. We measure the parts on as many input characteristics as possible, 

consistent with previously generated clues. If a measured input is a dominant cause, the values of this 

input will be very different between the two groups of parts.  

The recommended analysis for each measured input is a two sample nonparametric test that requires 

either complete separation of the BOBs and WOWs or a minimum “endcount” (Bhote and Bhote, 2000) 
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to identify a suspect dominant cause. Endcount is due to Tukey (1959) who dubbed the test “compact” 

because the test statistic can be calculated easily; the critical values are essentially independent of sample 

size and can be carried in the analyst’s head. We suggest a standard analysis based on plots and t-tests. If 

there is a large effect (i.e. one of the inputs measured is a dominant cause), we can find the cause using 

only the plots of the data. Since the comparisons are based on small sample sizes, there is a risk of 

confounding and also a strong possibility of identifying spurious causes, due to the multiple testing.  

Figure 6 illustrates the typical analysis. The data arose from a group comparison to help find a 

dominant cause of leaks in the rear intake wall of engine blocks. The output was binary; there was no 

measure of the size of the leak. Whenever the team found an intake wall leaker, they also set aside a non-

leaking block. They collected 50 leaking and 50 non-leaking blocks. Then, for each of the sampled 

blocks, they measured thickness (in inches) at six locations in the left rear intake wall. To analyze the 

data, we construct side-by-side boxplots of wall thickness at each location for leakers and non-leakers. 

We show the results for two locations in Figure 6. The right-hand plot shows a clear difference in median 

wall thickness between leakers and non-leakers at location four. There was little difference for the other 

locations as in the left-hand plot. The team concluded that wall thickness at location four was a dominant 

cause of rear intake wall leaks. 
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Figure 6: Boxplots of Locations 3 and 4 Wall Thickness By Block Type 

 
A version of group comparison called Paired ComparisonsTM (Shainin, 1993b, and Bhote and Bhote, 

2000) involves pairing or matching of the defective and non-defective units. In the proposed analysis, the 
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BOBs and WOWs are paired, usually based on time of production. Shainin (1993b) writes “Paired 

Comparisons are appropriate when the largest family of variation is piece to piece.” In this context, since 

we are looking for a dominant cause, pairing adds to the complexity of the plan and little value. In 

statistical experiments we use pairing to eliminate the risk of confounding and to increase the precision of 

the conclusions about the experimental factor in the presence of other varying inputs that have a large 

impact on the response. If the dominant cause acts in the piece-to-piece family, paired comparisons will 

produce pairs that are similar only with respect to other inputs that have little influence. Thus, unless a 

Pink X acts time to time, pairing will decrease the precision of the conclusions. This loss may be 

important due the recommended small sample sizes. 

A paired comparison conducted on artificially constructed pairs has been suggested in Bhote and 

Bhote (2000). With artificial pairs, the conclusions of the analysis depend on the way pairs are produced 

and, on average, the sensitivity of the procedure will be lower than that of the unpaired analysis. 

 

B vs. CTM and Factorial Experiments  

B vs. C is a simple experimental plan used to compare two treatments or process conditions represented 

by the letters B and C. One use in SS is to verify that an identified cause is dominant after other clue 

generation tools have lead to a single suspect. A second use is to validate a solution when, for example, 

the goal is to shift the process center or reduce a defect rate. In the validation application, the letters B and 

C denoted the “better” (we hope) and “current” conditions. Note that for verification of a suspect cause, 

the better and current terminology is not appropriate.  

In the simplest recommended plan, three units are produced under treatment B and three under 

treatment C. Bhote and Bhote (2000) call this the “six-pack test.” The levels for the suspect dominant 

cause for the B and C runs are selected at the extremes of the variation of the suspect in normal 

production. The order of the six runs is randomized. The recommended analysis is based on the end count 

scheme discussed in the Group Comparison section. Only if the output values for the three B runs and the 

three C runs separate in the expected direction have we verified the dominant cause. Tukey created this 
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test as a one sided test of hypothesis; no change versus change is a specified direction. A total sample size 

of six units has low power but, by taking larger samples, power can be increased. Since we must also see 

the full range of variation in the response, the formal hypothesis test is essentially irrelevant here.  

When validating a solution, the use of the compact end count test is undesirable since the loss of 

power versus a wide selection of parametric or other non-parametric tests could lead to the abandonment 

of an improved way of operating the process.  

SS makes use of full factorial experiments to isolate a dominant cause among a short list of 

suspects (Shainin and Shainin, 1990). The plan and implementation of the experiment with its careful 

attention to the selection of levels of the suspects and the use of randomization is highly recommended, as 

is the use of plots of the data. Here the formal analysis based on a sequence of end-count tests leaves 

much to be desired. The first step is to calculate the effects, and then examine the significance of the 

largest, ignoring the selection effect, by rank ordering the output based on the levels of the selected factor. 

Next, the second largest effect is formally tested by rank ordering and determining the end count of the 

residuals from the first analysis. In this way, we have removed the effect of the Red X. And so on for the 

smaller effects. This procedure has the colorful name Pink XTM shuffle (see Shainin and Shainin, 1990 for 

a detailed description). It is opaque and suffers from both selection effects and multiple testing issues. At 

each stage, the test is not based on the residual variation as established by the experiment, but also 

includes the variation due to the other factors being studied. This reduces the sensitivity of the method at 

the first step and can be devastating at the second step. To our knowledge, no one has extended the Tukey 

method to factorial experiments. We suggest a standard analysis using effect plots, probability plots of the 

effects and an analysis of variance to complement the excellent design. 

 

Precontrol  

Precontrol (also called stoplight control), first introduced by Satterthwaite (1954), is used to signal 

the need for a process adjustment. In SS, precontrol is applied to the dominant cause using specification 

limits developed with a Tolerance ParallelogramTM as described in the section on the problem solving 
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algorithm. Shainin (1995) writes “If the Red X can’t be controlled with an irreversible corrective action, 

then precontrol needs to be put on the Red X. SPC [Precontrol] is always more effective when it is used 

on the Red X instead of the Green Y.”  

To implement precontrol, one or two parts is sampled and measured according to a periodic 

schedule. The specification range is divided into three zones as illustrated in Figure 7: 

- Green is go, and for a two sided tolerance occupies the middle half of the specification range, 

- Yellow is the warning zone and covers the outside quarters of the specification range, 

- Red is stop and includes anything outside the specification range. 
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Figure 7: An Example of Precontrol Zones 

Precontrol is conducted using the following rules (there are many variations on this theme): 

i. Set-up or after an adjustment: OK to run when five pieces in a row are green. 

ii. Running: Sample and measure two consecutive pieces on a fixed frequency 

- If first piece is green, continue to run 

- If first is yellow, check the second piece - if it is yellow or red, stop and adjust 

- If first is red, stop and adjust process 

Of all the tools prominent within SS, precontrol has received the most attention in the research 

literature. For example, see Shainin (1984), Traver (1985), Salvia (1987, 1988), Shainin and Shainin 
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(1989), Mackertich (1990), Gruska and Heaphy (1991), Ermer and Roepke (1991), Ledolter and Swersey 

(1997), Steiner (1997-1998).  

To be successful, precontrol requires good specification limits, and a process that operates within 

these limits in the short term. Otherwise, it will be difficult to get five parts in a row in the green zone to 

start. Since precontrol is a feedback adjustment scheme, it can only be effective if the process drifts 

slowly or jumps and sticks. Precontrol may result in increased variation if used on a process that has large 

part-to-part variation. Although it is often compared to statistical process control (SPC), the goal of 

precontrol is to identify the need for adjustment. It is not useful for process monitoring nor for the 

identification of the action of special causes. More sophisticated control and feedback schemes, such as 

PID controllers, are alternatives that may yield better results. Note that, while precontrol signals the need 

for an adjustment, it does not include an adjustment rule.  

 

Summary 

The guiding principles of the Shainin System are powerful, and, at least in combination, unique. 

They include the application of Juran’s Pareto principle to the contribution of the causes, the emphasis on 

using observational prior to experimental investigations, and the search for a dominant cause using the 

process of elimination and leveraging. SS deals carefully with the problem of possible confounding of 

suspect causes by conducting a small verification experiment. We think that the principles and tools 

related to the diagnostic journey are generally very strong. Those related to the remedial journey are much 

weaker.  

The Shainin System, as reflected by the genesis of the methodology in manufacturing, is best suited 

for medium to high volume production. Most of the tools implicitly assume that many parts are available 

for study. Even when using leverage, where the investigations involve only a small number of extreme 

parts, there must be a substantial amount of measurement to find the extremes. Like many other systems 
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with strong statistical components, SS does not handle well situations where there are few parts to “talk 

to” such as in the design and development of new products or processes.  

Although our assessment of SS is strongly positive, there are some unfortunate aspects about its 

promotion. Most notably, many of the specific tools and the whole approach have not been subject to a 

peer reviewed public discussion. This may be due to the fact that much of the specific terminology is 

trademarked and is thus legally protected. We feel this is unfortunate since it has reduced the 

dissemination of what we think is an excellent approach. Also, some books that promote the 

methodology, such as Bhote and Bhote (2000), are full of unhelpful hyperbole that limits discussion of 

feasible alternatives. In our experience, there is also a rigidity with which the methodology is presented. 

In many situations, other statistical tools, such as regression, time series, and analysis of variance, could 

be very useful, but are not employed because they are not formally part of the SS tool bag.  
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