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Abstract
In this paper we give a novel interpretation of the well known dimensionality reduction
method, partial least squares (PLS). Then we propose an alternative method, called PC-
SLS, in which the predictive subspace is obtained from weighted principal components of the

observed regressors. We compare this method with PLS through sets of simulated data.
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1 Introduction

In predicting responses using a multivariate linear regression model involving many (possibly
correlated) explanatory variables and large number of observations sometimes a set of fewer
linear combinations of the observed explanatory variables are used. These linear combina-
tions are called latent variables (LVs) and the methods that generate the LVs take the generic
name of dimensionality reduction methods (DRMs). The use of DRMs for prediction has
been proven successful in fields like Chemometrics (e.g. Gelaldi and Kowalski (1986)), moni-
toring of chemical reactors (e.g. Kourti and MacGregor (1996)) and Quantitative Structure-
Activity Relationships (e.g. Schmidli (1995)). These are contexts in which there are a large
number of explanatory variables that could be highly correlated.

The LVs can be obtained by means of several different methods. The regression of
the responses on the first few principal components of the explanatory variables (PCR) and
Partial Least Squares (PLS) have been proven to yield good predictions in some applications.
However, optimal properties for the predictions obtained with these DRMs are not available.

In particular, PLS was introduced as an algorithm (Wold (1982)) which, in the spirit of
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"soft modelling” | derives the LVs without optimizing an objective function connected to the
predicted responses.

In this paper we give a new interpretation of PLS showing how the LVs are derived using
the simple regressions of the response variables onto each observed explanatory variable.
Our interpretation unifies the univariate and multivariate PLS algorithms. On the basis of
this new interpretation, we derive a new method based on the optimization of an objective
function, that can be used alternative to PLS. We call this method Principal Components
of Simple Least Squares (PCSLS); it can be applied both for univariate and for multivariate
regression. PCSLS amounts to deriving weighted principal components of the explanatory
variables using the coefficients of determination of the simple regressions as weights.

In the next section, after introducing some notation, we briefly discuss Principal Com-
ponent Analysis (PCA). Then we introduce PLS also giving it a new interpretation. We
present PCSLS in the third section. In the fourth section we compare PLS and PCSLS
through simulations showing how the predictions obtained with PCSLS are comparable with

those of PLS. Finally in Section 5 we give some concluding remarks.

2 Dimensionally Reduced Prediction Models

Let Y be an (n x ¢) matrix and X the (n X p) matrix whose columns consist of n independent
observations of the responses and of the explanatory variables, respectively. For univariate
regression we denote with y the vector containing the observations on the response variable.
For simplicity but without loss of generality, we take the variables to be centered to zero-
mean.

DRMs consist of determining d orthogonal LVs t; = Xai, k£ = 1,...,d, where the a;
are p-vectors containing the coeflicients of the LVs. The X space is then partitioned into
two parts: the latent space T(4) = (t1,...,tq) and its orthogonal complement (X L T g)).
The LVs are then used as regressors for the responses and the predicted values are obtained

by OLS as
d
Yig = Tig)(TigT@) " Tl Y = D taltits) 't,Y. (2.1)

k=1



Y[d] denotes the rank d predictions, T4 = XA qg) the (n X d) matrix whose columns are the
latent variables and A (g the (p x d) matrix whose columns are the coefficients of the LVs.

Substituting Ty = XA(g) into (2.1) we obtain
Y = XA{y)(T(yT) ' T(y)Y = XByy

where By = A{ d)(T'(d)T(d))‘lT’( 4)Y Is the rank d estimate of the regression coefficients,
obtained with d LVs.

The approach of estimating the coefficients a; by least squares, that is minimizing the
Euclidean norm |[Y — XBq||, often is not effective. In this approach, called Reduced Rank
Regression (Izenman (1975)), the hypothesis made in ordinary regression that the observed
regressors are the true explanatory variables is carried over to the LVs ti. In fact, for
univariate response the only solution a; is the vector of OLS regression coefficients and for
multivariate responses the LVs are the principal components of the OLS solutions. These
solutions simply minimize the additional error to OLS due to the rank constraints. Methods
that are claimed to yield better predictions do not take the LS approach to estimating the

coefficients. Next we illustrate these methods.

2.1 Principal Component Regression

PCR consists of regressing the responses onto the first d principal components. In PCA
the LVs form a sequence of orthogonal axis of the space spanned by the X variables that
sequentially minimize the norm of the residual orthogonal space. That is the k —th principal

component ty = Xay is the solution of the optimization problem:

min ||X — txt, X|| (2.2)
byt =0k;
where &; is equal to 1 if &k = j and to O otherwise. The solutions ax, k& = 1,...,d are

given by the eigenvectors of the matrix X'X corresponding to the first d eigenvalues taken
in non-increasing order. It is well known that PCA is very sensitive to the variance of the

variables X. Firstly PCA will minimize the variance of the residuals of the variables with



larger variance. Hence the first principal component will be ”closer” to the variables with
larger variance. This property may be undesirable especially when the units of measure
of the variables are not comparable. Furthermore, in a predictive context there is no a-
priori reason for which the regressors with larger variance should be better predictors of the
response than those with smaller variance.

In order to overcome the problem connected with the variance of the explanatory variables
it is customary to standardize them to unit length (autoscale) prior to PCA. That is PCA
is performed on the scaled matrix X. Also autoscaling presents some drawbacks and other
scaling policies may be adopted. In general, PCA performed on the matrix X post-multiplied
by a diagonal positive definite matrix of weights W is called weighted PCA. The solutions
of weighted PCA are the eigenvectors of the matrix W2X'X.

Obviously, the principal components are independent of the responses and PCR can be

applied to univariate and multivariate regression.

2.2 Partial Least Squares

PLS was introduced by Wold (1982) as one of the procedures of “path modelling”. It was
derived from a modification of NIPALS, an algorithm for computing simultaneously the
principal components of two matrices (Gelaldi and Kowalski (1986)). PLS was presented as
an algorithm for prediction without any “hard” modelling behind, hence without any ex-
plicit optimality property. The mathematical functioning of the algorithm was explained by
Hoskuldsson (1988), Helland (1988) and de Jong (1993), Phatak, Reilly and Penlidis (1992)
contributed to explaining its geometry. However, nobody seems to have succeeded in finding
a convincing optimality property for the prediction of the responses or even a rationale for
its use; in the comment to a paper by Stone and Brooks (1990) Helland says: “I have always
had difficulties in understanding the rationale for that method [PLS] ..”. Nonetheless PLS
has been extensively used in many fields such as, for example, chemometrics (e.g. Gelaldi
and Kowalski (1986)) and in statistical process control (e.g. Kourti and MacGregor (1996)).

PLS can be applied to univariate and to multivariate regression but the multivariate

version is not considered a straightforward generalization of the univariate one. We examine



the univariate case first and then the multivariate case.

Univariate partial least squares

A simplified univariate PLS algorithm is outlined in Algorithm 2.1. At step (2) of the
algorithm the matrix of explanatory variables is substituted with the matrix of orthogonal
residuals Fy, called “deflated X matrix”. In this way each latent variable automatically
satisfies the constraint of being orthogonal to the preceding ones. The process is iterated
until the X matrix is exhausted by requiring that ||Fg|| is small enough. The number d of
components used for the prediction of y is generally different from the number of components
that exhaust X and it is chosen independently, usually by cross-validation. It was shown by

Hoskuldsson (1988) that the coefficients a, can be computed directly from the data matrices
as a = F'(k_l))’/HFEk_l)Y||~

Algorithm 2.1 Simplified univariate PLS algorithm.

0]set: Fo=X,ro=yand k=1
1 ] iterate until t; converges

F/ r
_ k—1)F(k-1)
A = T, Tl

tr = Fa_nax

by = b
VYt
ry = yb

2 ] Fk = F(k-l). e tk(t;ctk)_lt;cF(k_l)

3 ]if ||Fe|]|>e k<« k+1,goto1l

d
4 1d + k; yig = Y ta(tit) 'ty
=1

Garthwaite (1994) shows that the PLS LVs are expressible as the weighted averages of

the simple regressions of the response on each explanatory variable as

p p
tioc Y XXy = Y ¥(x;)(xx;) (2.3)
7j=1 7j=1



where y(z;) = x;(xx,)"'xy. However, noting that the X matrix is always autoscaled, the

first PLS LV amounts to the simple average of (y(x1),...,¥(Xp)). If we let

Yo = §(@),... ,3(z,) = XB, (2.4)

A
where B is a diagonal matrix with diagonal elements equal to {X}y}, the first PLS LV can

be expressed as
o LA P
t; « XX'y = XB1, = ) ¥(x;)
Jj=1

where 1, is the p-vector of ones. A well known property of the simple average is that it

minimizes the sum of squared distances of a set of values from a point. That is, the first
PLS LV minimizes the quantity Zp:(jf(:c]) —t1)'(¥(zj) — t1).

In the subsequent iterations tlleldeﬂa,ted matrix Fy is not autoscaled, hence the successive
LVs are weighted averages of the simple regressions with weights proportional to the variances

of the residuals (the proportionality constant is irrelevant for the prediction of y). That is:

P
ti = Fu-nF_ny = >_3(E)EL), k> 1
j=1

where f; is the j-th column of F(_;). It is difficult to find a justification for which these
LVs should be good predictors of the response. The use of weighted averages for the LVs
successive to the first one gives higher weight to the x;’s that have not been well 'explained’
by the previous components, like in PCA. Autoscaling the residuals Fy at each iteration
would render these LVs homogeneous with the first one. We will refer to this modified PLS
procedure as PLSSF.

Multivariate partial least squares

Algorithm 2.2 outlines a simplified multivariate PLS algorithm. Hoskuldsson (1988) shows
that the solutions a; can be computed directly from the matrix sz_ 1)YY' F(x_1) as the eigen-

vector corresponding to the largest eigen-value. Therefore, if we let ¢ be these eigen-values,



at each iteration the coefficients ay satisfy:
Flo-y) YY'Fr_nyar = axdy.

Also the multivariate PLS algorithm can be interpreted using the simple regression of each

response on each X variable.

Algorithm 2.2 Simplified multivariate PLS algorithm.

0 ]setFozfi,rg:ln,a,ndk———l
1 ] iterate until t; converges

Fli_yT(k-1)

Ak = ¥,y rn]l
tr = Fe-nax
— Y’tk
b = e
ry = ka

2 | Fr = Feoyy — te(tite) 't F oy
3 ]if ||[Fel| >e k< k+1,goto 1

. d
4 ] d + k‘; Y[d] = Z ti(t;ti)_lt:Y
=1

Let
Y(5) = F1(x)); .-, ¥a(x;)) = £%;Y = %;b(5) (2.5)

be the (n x ¢) consensus matrices whose ¢-th column is the projection of y; on x;. To each
variable X; corresponds a vector of "weights” b'(j) = X;Y = {X}y;}. PLS determines a
unit-norm vector of g coefficients, ¢ = (¢1,...,¢;)" so that the sum of the squared norms of

the vectors v; = Y( j)c is maximal. That is, c is the solution to

c'ec=1 < c'c=1 <

P P
I NS ol
max E Vv = max E cY'x;x Ye. (2.6)
7=1 71=1

Since ||yi(x;)|| is a measure of predictability, the ¢;’s are coefficients that maximize the



overall prediction of each variable. The solution of (2.6) for ¢ is found by writing:

14
max Z Vv = max cY'XX'Yc (2.7)
J=1

cle=1 4
which is an eigen-problem with solution:
Y'XX'Ye=céy, ¢ >, [ > 1 (2.8)
In terms of the autoscaled variables X the vectors v; are
v; =%,%.Yc = %X,d; (2.9)

where @; = X;Yc. Let t be proportional to the sum of the v; vectors, then we have

1< . .
t o ;Z‘ v;=XX'Yc=Xa (2.10)

7=1

where & = (dy,... ,&,)" = X'Yc. If we premultiply (2.8) by X'Y we have:
X'YY'Xa=ad, ¢ >, 1 >1 (2.11)

which is the PLS solution a; when Fy = X. The successive latent variables are obtained by
applying the PLS algorithm on the unscaled orthogonal residuals Fi. PLS on the unscaled
explanatory variables is not equivalent to that on the scaled variables. It can be explained
by a double weighting.

Consider multiplying (weighting) each vector v; = X;X;Yc by the norm of the corre-

1
sponding x variable, d? = [|x,||, then these are given by:
. 1 -1
vi=Y(x;)dic = x;d; *x;Yc. (2.12)

The squared norm of v; is

viv; =c'Y'x;x[Ye. (2.13)

J



The vector of weights c is again determined as that maximizing the sum of these squared

norms, that is as the solution of

P
I I~ '
max JZ; VjV; = maxc Y'XX'Ye. (2.14)
This is an eigen-problem with solution:
Y'XX'Yc =cby, 6, > 6,1 >1. (2.15)

1
If we take the weighted average of the v; again with the norms d} as weights we have:

p 1 p

t=>» d’v;=) xxYc=XX'Yc=Xa (2.16)

J
7=1 7=1

where a = X'Yc. Substituting this expression of a into the solution (2.15) gives the PLS2

solution:

X'YY'Xa=aby, 6; > 6, 1> 1. (2.17)

Hence the first multivariate PLS LV on the unscaled x variables is obtained weighting twice
the x axis. The first time the norms d? weight the sum of squares of the ¥,(x;) for deter-
mining the coeflicients ¢ and then they weight the vectors v; to obtain the LV as a weighted
average. This double weighting procedure agrees with the geometrical interpretation of the
PLS algorithm given by Phatak et al. (1992), which consists of a double rotation of the LS
solutions Y (X).

Also for the multivariate algorithm, the autoscaling of the x variables gives the plain
average as first LV, which is optimal with respect to minimizing the distances of the projec-
tions y(x;) from one point. The same considerations about the scaling of the residuals Fy
and the optimality of the procedure made for the univariate algorithm can be extended to
the multivariate algorithm.

It is interesting to note that this interpretation of PLS gives univariate PLS as a special

case of the multivariate PLS algorithm. In fact, when there is only one response variable the



vector of coefficients c reduces to a scalar, simply equal to 1. In this light it is possible to

remove the duality between univariate and multivariate algorithms.

3 Principal Components of Simple Least Squares

In this section we present a method, that we name principal components of simple least
squares (PCSLS), which determines the LVs from the simple regressions in an optimal way.
For the univariate case consider the matrix Y, = Xﬁ defined in (2.4). We require that
the LVs are a set of orthogonal linear combinations of the X variables with minimal sum of

squared orthogonal distances from the matrix Y.. That is, we consider the problem

min ||V, — tr(thete) " LYo ||%, thti =0, [ # k. (3.1)

t,=Xa,
. a1
Observing that we can write ty = Y,ck, where ¢y = B &, we have that (3.1) is a weighted

principal component problem, whose solutions are the eigenvectors

2

AC
B X'X3; = ardr, k=1,...,d, ¢ > ¢, | > k. (3.2)

Hence we define the LVs of PCSLS as the weighted principal components of X with weights

!
X3y
TXs
X;X;

proportional to the regression coefficients (=%-). Figure 3.1 shows the geometry of the
construction of the first LV in PLS and in PCSLS for two explanatory variables.

Also for the multivariate regression problem we find the LVs that minimize the sum of
the variances of the orthogonal residuals from the simple regressions of each response. That
is we want to find the vectors a; as solutions of

g p
min Y (Fi(x;) — tetrFi (7)) (Fi(x5) — tetiFi(4))- (3.3)
=1

t) t,;=dil
k=0t % 7=1
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_..£ PCSLS

i f PCSLS

f PLS

Figure 3.1: Construction of the first latent variable in PLS and in PCSLS. x; = tp; + fn;
where t and f are two unitary orthogonal variables. The symbols #; denote the length of
the residuals of the x variables.

Note that we substituted, without loss of generality, the orthogonality constraints with
orthonormality ones. Let us denote the (n X pg) matrix Y., obtained setting next to each

A

other the matrices Y(j), j = 1,...,p, defined in (2.5), as

b(1) o, - 0
. . o b2 --- 0 .
Y,,=X a @) e = XB
0 :
q
0, 0, - P

Then we can express problem (3.3) as a generalized principal components problem as:

min ||V — trth Yol %
t;ctlz(skl

The solutions of this problem are the eigenvectors:

BB/X/Xék = arPr, Pr > R >k (3.4)
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Note that

0 1%
!
BBLj=q
b(G)b(7) = L WG i =7
Hence the matrix W = BB/ is diagonal and the LVs are the weighted principal components
of X and the coefficients are given by

WX'Xa = a¢.

q
The weights w;; = > ||§:(5)]|? for the multivariate PCSLS are the generalization of those of
=1

the univariate case.

4 Simulation Study

We compare the predictive efficiency of PLS with that of PCSLS and PLSSF (with the
autoscaling of the residuals F) on simulated data-sets. Each data-set was generated according

to the following model:

d
T = Ztikpkj+f,~jnj; 1=1,... ,60; j=].,... , P

(4.1)

Yij = Ztiquj—l-eijmj; 1=1,...,60; y=1,...,¢q
k=1

where the variables t;, fi; and e;; are independent standard Normal variables. 50 observa-
tions are used to estimate the coefficients and the remaining 10 to compute and test the pre-
dictions. Sets of 5000 repetitions were performed for different values of the parameters d, N,

M, P and Q. The signal-to-noise-ratios (SNR), are either constant or randomly generated,

. . Tho1Phj The1 b .
and are given by the ratio ==; and ===, We compare the methods by their pre-
J J

dictive efficiency measured by the average prediction error sum of squares (PRESS(met);),
defined as

1 1 .
PRESS(met); = —— Z — Z(yki - yki[j](met))2 (4.2)



where {,[;) is the prediction of the i-th observation in the test sample using rank j predictions

in the k-th run. met refers to which method is used.

4.1 Univariate Prediction

For the univariate case we also considered different summaries related to the predictive

efficiency of PLS and PCSLS; these are:

5000 1 . 2
i = Y e L
5000 i E (yki — Gkif)(PLS))?
| 5o
max.abs.err.j(met) = 5000 kX: t_;{}i’fm {!yki - Qki[j](met)l}
=1

10

1

pos.min.;(met) = nuI. ¢ of t1mes {arg min o E (yki — i (met))? = j}
b 7 _ 1 R 1

(10 1.0 1.0 04 1.0 1.0 1.0 1.0 10 1.0

04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
00 00 00 0.0 40 0.0 00 00 0.0 20
0.0 00 0.0 0.0 00 4.0 00 00 2.0 20
0.0 0.0 0.0 0.0 00 0.0 40 4.0 2.0 0.0
10 1.0 1.0 04 1.0 1.0 1.0 1.0 1.0 1.0
00 04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0 00 0.0 0.0 40 0.0 00 00 0.0 20
0.0 00 0.0 0.0 00 40 00 00 2.0 20

00 00 0.0 00 00 0.0 4.0 40 2.0 0. )
x-variables with full rank (p=d=10). The other parameters were the following:

qd = (30 30 1.0 1.0 1.0 30 3.0 1.0 1.0 1.0) (4.3)
SNRx = (1.0 1.0 1.0 1.0 10.0 10.0 10.0 10.0 10.0 10.0 ) (4.4)

and SNR, = 3. The influence of the noises on the 6 x variables with SNRs equal to 10 is neg-
ligible, on the other hand the other 4 regressors contain equal amounts of error and explana-
tory term. 2980 times (59.6%) PCSLS gave lower PRESS than PLS (regardless of the rank
with which it was achieved), with an average ratio min PRESS(PCSLS)/minPRESS(PLS)
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of 0.9875. However, comparing the average PRESS for fixed rank prediction shown in Fig-
ure 4.1, that of PCSLS is higher than the other two methods. The average PRESS of PLSSF
is very close to that of PLS but it is lower when 3 or more components are used. Other
summaries of the simulations comparing PLS and PCSLS are shown in Table 1. PLS reaches
its minimum PRESS with one component 44% of the times, PCSLS yields a better average
PRESS for more than 3 components and overall. The average number of components for
which the minimum PRESS is achieved is about 3 for PLS and about 5 for PCSLS. Note
how the values of the PRESS are better than those of OLS (rank 10) for both methods.

Table 1 Comparison between PLS and PCSLS with one response and 10 full rank explana-
tory variables. The meaning of the columns is explained above.

Summaries for univariate response and 10 full rank x’s

rank ratio max abs. err. pos. min.
j PCS/PLS | PLS | PCSLS | PCSLS PLS
1 1.202 0.99 | 1.07 633 2200
2 1.129 1.01 1.03 667 933
3 0.990 1.05 | 1.00 717 333
4 0.952 1.06 | 1.00 483 300
5 0.938 1.07 | 1.00 417 283
6 0.916 1.09 | 1.00 533 333
7 0.949 1.09 | 1.04 350 267
8 0.964 1.09 [ 1.05 300 117
9 0.983 1.10 | 1.08 333 84
10 1.000 1.10 | 1.10 567 150

PRESS univariate response, 10 x’s full rank

0.30 g -
N
—— PLS
N e PLSSF

0.28 — . -—-0--- PCSLS -
5
\
\

0.26 —| -

PRESS

0.24 —

0.22 —

0.20 T T T T T T T T T T
9

components

Figure 4.1: Average total PRESS. 10 x variables with underlying dimension of 10.

14



Another set of 5000 repetitions were run with the same parameters as the previous ones
but reducing the rank of the ”true” explanatory variables to 5 (d = 5). Hence the matrix
P is constituted by the first 5 rows of the one above and the vector q consists of the first
5 elements of the one above. In these runs 2880 times (57.6%) PCSLS yielded a minimum

PRESS lower

Table 2 Comparison between PLS and PCSLS with one response and 10 explanatory vari-
ables with underlying rank of 5. The meaning of the columns is explained above.

Summaries for univariate response and 10 x’s of rank 5
rank ratio max abs. err. pos. min.
j PCS/PLS | PLS | PCSLS | PCSLS PLS
1 1.147 1.12 1.19 776 2303
2 1.098 1.12 1.16 842 1120
3 0.967 1.14 | 1.11 609 280
4 0.939 1.15 | 1.10 620 270
5 0.925 1.15 | 1.09 598 282
6 0.904 1.16 | 1.09 842 373
7 0.953 1.16 | 1.13 399 290
8 0.967 1.16 1.14 255 62
9 0.977 1.16 1.14 25 9
10 1.000 1.16 1.16 34 11
PRESS univariate response, 10 xX’'s of rank 5
a
0.28 —| ‘\\. e e——— —
U530 Posis

0.26 —

PRESS

0.24 —

0.22 —

0.20 T T T T T

components

Figure 4.2: Average total PRESS. 10 x variables with underlying dimension of 5.
than that of PLS, with an average ratio minPRESS(PCSLS)/minPRESS(PLS) equal

to 0.9756. Other summary statistics for these runs are shown in Table 2. Also in this case the

two methods have similar behaviours, PLS reaches its lowest values of PRESS (higher than

15



those of PCSLS on average) consistently with a lower number of components. Even if in this
case the real rank of the predictive variables is 5, only 26.4% of the times (less than before)
PLS has its minimum PRESS with one component. Also in this case both methods yield
better predictions than OLS with less than full rank estimates. Figure 4.2 shows the average
PRESS for all methods, including PLSSF, which behaves closely to PLS. The minimum
average PRESS also in this case is that of PLS and PLSSF with one component.

4.2 Multivariate Prediction

For multivariate predictions we generated the elements of the matrices P and Q as indepen-
dent uniform variables in the interval [—1,1] at each repetition. This avoids the problem
of the choice of the model, adding generality to the results. We considered 25 explanatory
variables and 10 responses running simulations for ranks 1, 5 and 10. We repeated the sim-
ulations using fixed SNRs and also generating these randomly at each repetition. The fixed
SNRs were equal to 2 for the explanatory variables and to 4 for the responses. The random
SNRs were generated as uniform variables in the intervals [1, 3] for the explanatory variables

and [3, 5] for the responses. For each case 5000 repetitions were run.

Constant SNRs

For real rank equal to 1 the plot of the average PRESS is shown in Figure 4.3. All methods
give very close minimae using 1 LV but PCSLS gives lower PRESS for all ranks of the
predictions. For real rank of 5 the average PRESS is shown in Figure 4.4. Also in this
case all methods give very close minimae for a number of LVs equal to the real rank of the
data. PCSLS gives lower PRESS than the other methods using a number of LVs higher
than 5. Figure 4.5 shows the PRESS for real rank equal to 10. In this case the PRESS
for PLS and PLSSF are very similar and comparable with those of PCSLS but for the first

two methods PRESS reaches its lower values with a smaller number of LVs.
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Total Press: 25 x’s, 10 y’s, real dimension 1
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Figure 4.3: Average PRESS for different methods with 25 explanatory variables, 10 re-
sponses. Real rank equal to 1 and constant SNRs.

Total Press: 25 x’s, 10 y’s, real dimension 5
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Figure 4.4: Average PRESS for different methods with 25 explanatory variables, 10 re-
sponses. Real rank equal to 5 and constant SNRs.

Note that also in this case PCSLS yields lower PRESS than the other methods for a
number of LVs higher than that which gives the minimum (equal to 11).
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Total Press: 25 x’s, 10 y’s, real dimension 10
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Figure 4.5: Average PRESS for different methods with 25 explanatory variables, 10 re-
sponses. Real rank equal to 10 and constant SNRs.

Random SNRs

Total Press: 25 x’s, 10 y’s, real dimension 1, Random SNR.
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Figure 4.6: Average PRESS for different methods with 25 explanatory variables, 10 re-
sponses. Real rank equal to 1 and random SNRs.
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Total Press: 25 x’s, 10 y’s, real dimension 5, Random SNR
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Figure 4.7: Average PRESS for different methods with 25 explanatory variables, 10 re-
sponses. Real rank equal to 5, random SNRs.

Total Press: 25 x’s, 10 y’s, real dimension 10, Random SNR
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Figure 4.8: Average PRESS for different methods with 25 explanatory variables, 10 re-
sponses. Real rank equal to 10, random SNRs.

The pattern of the PRESS with random SNRs is similar to that obtained with fixed
SNRs. This was expected since the SNRs were generated in small intervals, centered around
the fixed values used before. Differently from before PCSLS gives higher minimum PRESS
for real rank of 5 and lower for real rank of 10 than the other methods. The plots are shown

in Figures 4.6, 4.7 and 4.8.
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5 Conclusions

Based on the simulated results we can conclude that the results of PLS and PCSLS are
comparable. The autoscaling of the deflated matrix in PLS does not seem to change the
overall behaviour. PLS seems to achieve its best performance with a lower number of LVs
than PCSLS. However, PCSLS consistently gave lower minimae of PRESS and showed a
better behaviour for higher number of LVs. The higher methodological simplicity of PCSLS
can ease the interpretation of the results. The computation of the PCSLS solutions is much
less computer intensive than that of PLS which can be an important feature when dealing
with large data-sets. Furthermore, in PCSLS each response can be arbitrarily weighted
(in the sense of re-weighting the matrix that generates the solutions) adding flexibility to
this method. Of course, the distribution of the estimates of these methods depends on the

distribution of the eigenvectors of random matrices and remains an open problem.
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