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ABSTRACT

The authors consider dimensionality reduction methods used for prediction, such as
reduced rank regression, principal component regression and partial least squares.
They show how it is possible to obtain intermediate solutions by estimating simul-
taneously the latent variables for the predictors and for the responses. They obtain
a continuum of solutions that goes from reduced rank regression to principal com-
ponent regression via maximum likelihood and least squares estimation. Different
solutions are compared using simulated and real data.
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1 INTRODUCTION

The traditional approach to multivariate regression is to estimate the coef-

ficients by ordinary least squares (OLS) and use the resulting estimates for



prediction. In some cases, such as when the number of explanatory vari-
ables is large, possibly with some of them highly correlated with each other,
it may be advantageous to predict the responses with fewer linear combi-
nations of the explanatory variables, called latent variables (lv’s). In other
words, the predictions are obtained from a subspace of the space spanned by
the explanatory variables. Such methods are referred to as dimensionality
reduction methods (DRMs). DRMs build a sequence of orthogonal lv’s and
an optimal number of them will be used for prediction.

The DRMs commonly used for prediction are reduced rank regression
(RRR), principal component regression (PCR) and partial least squares
(PLS). The first one is obtained through the maximization of a certain objec-
tive function of the prediction errors. The latter two are heuristic methods
because the lv’s are obtained by optimizing objective functions that cannot
be related to the prediction of the responses. Burnham, Viveros & MacGre-
gor (1995) discuss a framework for linking these DRMs. Merola (1998) and
Merola & Abraham (1998) give a common objective function from which
the different DRMSs can be obtained.

In this paper, we discuss a joint model for reducing the dimension of the
exploratory and predictive spaces. We obtain the maximum likelihood and
least squares estimates for this model and show how these can be expressed
in a general form that gives a continuum of solutions. This general form
turns out to be the same as principal covariates regression suggested earlier
by de Jong & Kiers (1993).

In Section 2, we briefly discuss the different DRMs. In Section 3, we
derive an alternate class of DRMs. Section 4 contains a simulation study
and an example that compare the different DRMs. Some concluding remarks

are given in Section 5.



2 DIMENSIONALITY REDUCTION METHODS

Let X be an n X p matrix of n independent observations on p explanatory
variables and Y be an n X ¢ matrix of n independent observations on ¢
response variables. We assume that the columns of these matrices are mean
centered. It is also common practice to scale the columns of the data ma-
trices to unit norm (autoscale), although this is not always necessary. Let
ty, = Xay be the Iv’s, where the vectors ax contain unknown coefficients to
be determined subject to some criterion.

Now let us consider the linear regression modelin d1v’stx (k =1,...,d; 1

d < p). Then we have
Y =TQ+E, (2.1)
where T = (¢1,...,t5) = X(ay,...,aq) = X A. That is,
Y =XAQ+E=XBy +E,

where By = AQ is a p X ¢ matrix of rank d. This is known as the reduced
rank regression (RRR) model, and the corresponding residual sum of squares

(RSS) is
Y —TQJ*. (2.2)

Given the matrix T, the matrix @ is taken to be the OLS solution
to model (2.1), i.e., @ = T'T~'T'Y. Hence, the RRR matrix of regression
coefficients is Bjgy = A(T'T)~'T'Y . Therefore the RRR problem is reduced

to the estimation of the coefficients ay. Since we require that rank(T') = d,
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we can take without loss of generality the lv’s to be mutually orthogonal.
The LS estimates to model (2.1), simply known as RRR estimates, (cf.,
e.g., Izenman 1975), give the principal components of the OLS solutions to
the linear regression model, ¥ = X (X'X)~1X'Y, as Iv’s (Izenman 1975;
Merola 1998). It is then clear that the maximum number of Iv’s in RRR
is min{rank(X),rank(Y)} and that these are contained in the subspace
spanned by the OLS solutions Y. If g = 1, the unique RRR lv is trivially
proportional to y.

As mentioned above, the PCR and PLS solutions cannot be obtained
from the optimization of a function of RSS (2.2). The lv’s used in PCR are

the LS estimates for the model
X=TP+F. (2.3)

Thus, the 1v’s are the first d ordinary principal components of X, which

minimize
| X —TP|* (2.4)

PLS (Wold 1982) is an algorithmic method (for discussion, cf., e.g., Hel-
land 1988; Hoskuldsson 1988; Kourti & MacGregor 1996) whose objective
function cannot be expressed in a closed form. However, the objective func-

tion of a variant of PLS, SIMPLS (de Jong 1993), is the following:

q
'X'YY' Xai) = thy,)2
X, (9 ar) = max ) (Hy.)

' ’ i=1
tktj=0,j<k tktj=0,j<k

Hence, the lv’s of SIMPLS, and approximately those of PLS, have maximal



sum of squared covariances with the responses.

If the full set of lv’s is used, the estimates of the regression coefficients
coincide with the OLS solutions, regardless of the DRM adopted. The op-
timal number of 1v’s is often regarded as an unknown parameter and it is

often estimated by cross-validation (CV) (Stone 1974).

3 WEIGHTED MAXIMUM OVERALL REDUN-
DANCY (WMOR)

Each DRM divides the space spanned by the predictors into a latent sub-
space and its orthogonal complement. RRR tries to maximize the variance
of the responses retained by the latent subspace while PCR that of the pre-
dictors. Clearly there is a trade-off between these two objectives. PLS gives
a compromise between the RRR and the PCA lv’s without asking for any
particular optimality with respect to them. It can be shown (Phatak, Reilly
& Penlidis 1992; Merola 1998) that the PLS Iv’s span the whole X space
and are closer to the principal components of X than the RRR lv’s.

Now let us consider models (2.1) and (2.3) jointly, i.e., the model

{X’:TP+F o

Y =XB+E=TQ+E

such that T = XA, T'T = Iy, T'F = 0 and T'E = 0. For estimat-
ing the coefficients, we consider Least Squares and Maximum Likelihood

approaches.

3.1 Least Squares Estimation.



Earlier we have indicated that (i) the LS estimates of T for model (2.1) are
the RRR solutions, given by the principal components of the projection of
Y onto the column space of X; (ii) the LS estimates of T' for model (2.3)
are the principal components of X.

Let us take Z = (Y, X). Then the LS estimates for model (3.1) are

those that minimize
1Z-T(@Q,P)*=||X-TP|*+|Y - TQ|? (3.2)

with respect to T' = X A subject to T'T = I(4). Merola (1998) has shown

that the solutions are given by
(Y?' + XX’)T(d) = T(d)@(d), (3.3)

where Oy is a diagonal matrix containing the first d eigenvalues taken in
non-increasing order. Thus the resulting lv’s are the eigenvectors corre-
sponding to the d largest eigenvalues of the sum of the matrices which give
the Iv’s in RRR and PCR. This is not surprising; in fact, the objective func-
tion (3.2) is the sum of objective functions (2.2) and (2.4). It should be
noted that the latent subspace would be uniquely determined even if X'X

were singular.
3.2 Mazimum Likelihood Estimation.

For this approach, we assume that A, P and @ are fixed constants, that
the rows of E are ¢.t.d. N(0,Z,) and those of F are i.i.d. N(0,%Xy), and
that E and F are mutually independent. If we consider models (2.1) and

(2.3) separately, then the RRR solutions are maximum likelihood estimates



(MLE’s) for model (2.1) if ¥, = keI, with k. unknown (Merola 1998),
and that the principal components of X are the MLE’s for model (2.3) for
unstructured Xy (cf., e.g., Seber 1984).

If ¥. and Xy are known, then the MLE’s of T for model (3.1) are given
by the eigen-equation (cf. Merola 1998 for details)

(XX X) "XV + X5 X By =T wda,  (34)

where (X’'X) ™ is any generalized inverse of (X'X) and <i>(d) is a diagonal
matrix containing the first d eigenvalues taken in non-increasing order. If it
is assumed that X, = I, and Xy = I, then the MLE’s in (3.4) are the same
as the LS estimates in (3.3). If it is assumed X, = kI, and Xy = kyI, with
ke and ky unknown, then it can be shown (Merola 1998) that the MLE’s are

-~ trace(Y'Y) .  trace(X'X)
ke =, kf =
ng np

EIX(X'X)" XYY + k7' XX\ Ty =T (@) (3.5)
. f @ = T@)®@)

Since eigenvectors are invariant to scalar multiplication, letting A=

fcf/(fcf+ ke) = (1+ ke/ks)™1, we can rewrite (3.5) as
{XX(X’X)—X'YY' +(1- X)XX'} T = T ),

where 0 < A < 1. This implies that, under the hypothesis stated above, the
MLE’s of model (3.1) can be obtained as eigenvectors of a convex combina-
tion of the matrices generating the MLE’s for the separate models. It is easy
to see that these MLE’s tend to the RRR ones for A — 1 (i.e.,for k./k ¢ —0)

and to the principal components for A — 0 (i.e., for l%e/l}f — 00).



The LS solutions to model (3.1) coincide with the MLE’s obtained under
simplified assumptions. The MLE’s (3.5), however, simplify to ke = IAcf =
n~! when the columns of the data matrices have been scaled to unit norm.
Since these two norms may not be comparable, we consider weighting them,

namely by obtaining the solutions as the first d eigenvectors of the matrix
kXX EIYY (3.6)

Letting A = k;/(k; + ky), these solutions can be expressed as the eigenvec-

tors of a convex linear combination
{(1 ~NXX + n‘f?’} te = drte, 0<A<1 (3.7)

with ¢ > ¢;, 7> k, k=1,...,d. The resulting procedure will be referred
to as WMOR. The same procedure was proposed by de Jong & Kiers (1993)
with the name of principal covariates regression (PrCOVReg). For A = 0,
WMOR reduces to PCR and for A = 1 to RRR; A = 1/2 is equivalent to no
weighting. For large A, the prediction of Y is given more importance.

In their paper, de Jong & Kiers (1993) suggest choosing A by CV. If CV
is also used for choosing the optimal number of components, d, then one has
to cross-validate the pairs (A, d). When the number of observation is large,
repeating the CV can be computationally very demanding. One may think
of adopting a fixed choice for A.

Let x(A,d) = é1+ - - - + ¢a, where ¢; are the eigenvalues in (3.7), LAR’
the singular value decomposition (svd) of Y and UT'V" the svd of X. The



LS solutions (3.3) are obtained by maximizing
d d o
X(d) =) tXX't;+) YVt
=1 =1

If we consider each term separately, we have that

tXX't; < 2% 42 < trace(X'X),

=1

d
0 < 3imi Vi1 S

0< 3¢, 62 i1 < Z:l tYY't; < S°F, 67 < trace(Y'Y) < trace(Y'Y),

~IMe

i=1":

(3.8)

where the eigenvalues 62 and 7?2 are indexed in non-increasing order. One
possible choice for k; and k, would be the upper limits in (3.8). However,
since the number of components to be included in the model is generally
not known beforehand, this choice seems problematic. We consider then the
choice k; = 7% and k, = 6?. These weights render the largest eigenvalues
of the two matrices in (3.6) equal to one and the others comparable, since
each one becomes a ratio in the interval [0,1]. Furthermore ,this choice
penalizes the directions of ill-conditioning in the two matrices. Another
possible choice is the full rank upper limits, k, = trace(X'X) and k, =
trace(Y’Y). With these weights, each matrix is reduced to unit trace and the
respective eigenvalues become the variance explained by each eigenvector.
When the matrices have been autoscaled, these weights become k, = p and
ky=q.
Now let

trace(X'X)
trace(Y’Y) + trace(X’'X)

7
A= and A =
1 712 + 512 2

(3.9)



The procedure corresponding to A; will be referred to as WMOR;, i = 1, 2.
Of course, other choices of the weights are possible, maybe based on some
prior knowledge.

The WMOR 1v’s t;, can be expressed as linear combinations of the prin-
cipal components of X. If we let ¢ = Uay, the coefficients ax = I'V'ay

satisfy
{Q- NP2+ XU'YY'U} ax = argx.

This form can be used in the actual computation. The above equation
expresses the coeflicients of the WMOR 1v’s as coeflicients for the principal
components of X. The coefficients @, depend on the weight A, the eigenvalues
of X'X and the covariance between the responses and the eigenvectors u;’s.

Since the eigenvectors [; are the RRR lv’s, it is possible to appreciate the
role of the weights in determining the WMOR Iv’s as linear combinations
of these and the principal components of X. In fact, the WMOR solutions

are given by
{U diag (v}/ks)t_, U’ + Ldiag (67 /ky){_, L'} tx = ted.

Unlike RRR, WMOR can be applied to univariate regression. However, the
estimates of the coefficients ax, and hence of By, would not be uniquely

determined when X'X is singular.

4 SIMULATION STUDY AND EXAMPLE

We compare the predictive accuracy of various values of A for WMOR and

PLS, on simulated and published datasets. The predictive accuracy for
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different number of lv’s used is measured by the cross-validated prediction
error sum of squares (PRESS). For graphical reasons, we will present the

plots of the PRESS divided by the PRESS of the OLS solutions.
4.1 Simulation Study.

We conducted an extensive simulation study in which sets of n observations
for p explanatory variables and ¢ responses were generated according to the

model

X=TP+FN, Y=TQ+EM (4.1)

where
(i) T is an (n X d) matrix of Iv’s generated as independent N (0, 1);

(ii) P and Q are matrices of loadings of dimension d X p and d X g, re-

spectively, generated as independent U(-1,1);

(ii) F and E are matrices of errors of dimension n X p and n X g, respec-

tively, generated as independent N (0, 1);

(iv) N and M are matrices, of dimension pX p and g X g respectively, which

determine the influence and structure of the errors in the data-sets.

Table 1 summarizes the different cases considered. The first 4 cases involve
no error in the z variables and the signal-to-noise ratios (SNRs) for the
y’s are generated as uniform random variables. Case 5 has random SNRs
also for the z’s while for the rest of the cases the SNRs are constant, as
given in the table. Cases 8-12 involve correlation in the e’s and the f’s (i.e.,

N and M non diagonal). In some cases we varied the number of z’s and

11



Table 1: Different cases considered in the simulations. The symbols refer
to the notation used for model (4.1). The last two columns indicate the
correlation among the errors, whether it is low, high or 0.

case n p ¢ d SNR, SNR, Corr f Corre
1 35 10 5 10 no error U(2,4) -— -

2 3 10 5 10 no error  U(4,6) — -

3 35 10 5 10 no error  U(3,8) — -

4 60 5 12 1,3,5 noerror U(3,8) -— -

5 35 10 5 1,5,10 U(6,10) U(3,5) - -

6 60 10 5 1,5,10 8 3 - -

7 60 5 12 1,3,5 8 3 - -

8 60 10 5,6 1,5,10 9 4 - low
9 60 10 5,6 1,5,10 5 4 - low
10 60 10 5,6 1,5,10 5 4 - high
11 60 10 5,6 1,5,10 5 4 low -
12 60 10 5,6 1,5,10 5 4 low high

y’s. For each case n = 35 or n = 60 observations were generated using
model (4.1); when possible, different values of d were considered. Cross-
validation was carried out leaving out 5 randomly chosen observations at a
time and the PRESS was calculated as the average value per observation on
300 repetitions. Many of the different set-ups gave similar results, hence we

show only a few representative cases.
4.2 No Errors in the © Variables (Cases 1-4).

This set-up reproduces plain regression. We used random uniform SNRs for
the y’s to give more generality to the results. Although the average PRESS
was different, the relative performance of the methods did not change much
in all the cases considered. PCR and PLS gave the best results but other

values of A were also very close.

Figure 1 shows the relative PRESS for different values of A and different
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number of components for Case 2. For this case, the PRESS is already
below 1/10 of that of OLS using one component for values of A less than 0.7
and for PLS. The absolute minimum was reached by PLS and PCR with 8
components. Note that the PRESS for RRR is only shown for number of
components up to 5, since this is the maximum number of 1v’s computable
for this method. W; and W, in Figure 1 refer to the weights suggested in

(3.9). These give reasonable results, being close to the best.

—o— comp 1

1.0
,,,,,,, comp 2 — 2

0.0

T T T T T T T T T T T T
PCR 0.1 0.2 03 04 05 06 07 08 09 RRR W1 w2 PLS
lambda

Figure 4.1. Example of plain regression: cross-validated PRESS relative to
OLS for different weights in WMOR and PLS; 35 observations, 10 z’s, 5 y’s
and real dimension 10; no error in the z’s and U(4,6) SNR’s for the y’s.

4.8 Errors in the x Variables (Cases 5-7).

These cases reproduce the error-in-variables regression. We simulated situ-
ations with high SNR for z and low for y. The results were very similar in
every case. Figures 2, 3 and 4 show the different results for real dimensions

1, 5 and 10, respectively, for Case 5 in Table 1.

13



—C— comp 1 <

0.8

Press

T r T T T T T T T - T T T T
PCR o0.1 0.2 03 04 05 06 07 08 09 RRR W1 W2 PLS
lambda

Figure 4.2. Example of error in variable regression with underlying real
dimension of 1: cross-validated PRESS relative to OLS for different weights
in WMOR and PLS;35 observations, 10 z’s, 5 y’s and real dimension 10;
U(6,10) SNRs for the z’s and U(4,6) SNR’s for the y’s.

1.00
0.95
0.90 -
@
8
a.
0.85
0.80 1
0.75 — T T T T T T T T T T T T T
PCR 0.1 0.2 03 04 05 06 07 08 09 RRR W1 w2 PLS
lambda

Figure 4.3. Example of error in variable regression with underlying real
dimension of 5: cross-validated PRESS relative to OLS for different weights
in WMOR and PLS; 35 observations, 10 z’s, 5 y’s and real dimension 10;
U(6,10) SNRs for the z’s and U(4,6) SNR’s for the y’s.
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For the case with underlying dimension of 1, all methods perform best
with one lv, with best results for 0 < A < 0.8 and the minimum at A = 0.4.
We note how the PRESS for 0 < A < 0.5 and PLS maintains low values
when using up to 5 components, showing that the true predictive space is
captured by these lv’s. For d = 5 and d = 10, PCR and PLS obtain the best
results with 5 dimensions, which is the dimension of the predictive space,
being min(d, ¢). It is interesting to observe the sudden drop of the PRESS
when passing from 4 to 5 components. Both ford =5 and d = 10 increasing
A worsens the predictions, once the optimal number is reached. We observed
the same behaviour for the other cases with different SNRs, sometimes with

a slight edge for intermediate values of A.

—— cOMPp 4
1.t e comp 5

Press

T T T T T T T T T T T T — T
PCR 0.1 02 03 04 05 06 07 08 09 RRR W1 W2 PLS
lambda

Figure 4.4. Example of error in variable regression with underlying real
dimension of 10: cross-validated PRESS relative to OLS for different weights
in WMOR and PLS; 35 observations, 10 z’s, 5 y’s and real dimension 10;
U(6,10) SNRs for the 2’s and U(4,6) SNR’s for the y’s.

4.4 Correlated Noises (Cases 8-12).
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& 1.05

1.00

0.95

T T T T T T T T T T T T T T
PCR 0.1 0.2 03 04 05 06 07 08 09 RRR W1 W2 PLS
lambda

Figure 4.5. Example of error in variable regression with underlying real
dimension of 10 and noises in y mildly correlated: cross-validated PRESS
relative to OLS for different weights in WMOR and PLS; 35 observations,
10 z’s, 5 y’s and real dimension 10; SNRs equal to 5 for the z’s and to 4 for
the y’s.

Figure 5 shows the relative PRESS for Case 9 with d = 10. The cases with
other correlation structure (8, 10-12), gave quite similar results.

The best value of PRESS is obtained by WMOR for A = 0.1 using 8
components. However, PLS and PCR obtain similar values with 7 and 8
components, respectively. In general, it seems that when the errors are cor-
related DRMs need more components for achieving good predictions. Also
the gain over the OLS solutions is lower than for the cases with uncorrelated
€rrors.

In all cases considered in this subsection there was little difference chang-
ing from 5 to 6 responses. In general, the methods with fixed choice of A,
W, and W;, gave intermediate results, in the sense that they were rarely

the best but never the worst.
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4.5 Ezample.

In this section, we compare some of the dimensionality reduction techniques
we discussed on a set of data published in Skagerberg, MacGregor & Kiparis-
sides (1992). The authors applied PLS to these data for implementing mul-
tivariate control charts. The data consist of a simulation of a low-density
poly-ethylene (LDPE) production process. The authors produced a set of
32 in-control observations and a set of 24 out-of-control observations. We
only use the first 32 of these to test our methods. The explanatory variables
consist of 2 input variables and 20 readings of temperatures inside the reac-
tor. Clearly, these last 20 variables are highly correlated. The measurements
on 6 properties of the polymer were used as responses. Figure 6 shows the

leave-one-out cross-validated PRESS for these data.

Relative Press
o [e]
o ®
1

o
>
1

0.2 -

——

0.0 T T T T T T T T T T T T T
PCR 0.1 0.2 03 04 05 06 07 08 09 RRR W1 W2 PLS
lambda

Figure 4.6. Chemical reactor example: cross-validated PRESS relative to
OLS for different weights in WMOR and PLS.

The minimum is achieved by WMOR with A = 0.2 and 8 components.
PLS achieves a minimum very close to this with only 7 components and

RRR gives the worst results. The results for the example are consistent

17



with what we observed in the simulations.

5 CONCLUDING REMARKS

We considered methods that determine a dimensional reduction of the ex-
planatory space from which one or more responses are predicted. Consider-
ing a joint model for X and Y, we showed that both ML estimation and LS
lead to solutions that consist of the sum of the matrices that generate the
RRR solutions and the principal components. Furthermore, we derived a
class of DRMs that yield a continuum of solutions introducing a continuous
parameter A. Comparing the predictive accuracy of this class for various
values of the parameter with that of PCR and PLS, we found that it is
always possible to choose the parameter A so that the predictions obtained
are at least as good as those of these methods. The fixed choices of the A
that we propose seem to yield average results. We also found that DRMs do
yield better predictions than OLS and that PLS and PCR often give good

results.
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