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Abstract
In this paper we give a novel interpretation of a well known dimensionality
reduction method for prediction, Partial Least Squares (PLS, ). We propose an
alternative method, called PCSLS, in which the predictive subspace is obtained
from weighted principal components of the observed regressors. We compare this
method with PLS through simulated and published data.
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1 Introduction

In the context of a linear regression model involving many (possibly correlated)
explanatory variables sometimes better predictions can be obtained from a set
of fewer linear combinations of the explanatory variables. These linear combi-
nations are called latent variables (Iv’s) and the methods that generate the 1v’s
take the generic name of dimensionality reduction methods (DRMs).

The use of DRMs for prediction has been proven successful in many fields,
such as Chemometrics (e.g. Gelaldi and Kowalski (1986)), monitoring of chem-
ical reactors (e.g. Kourti and MacGregor (1996)), Quantitative Structure Ac-
tivity Relationships (e.g. Schmidli (1995)) and Sensory Analysis (e.g. Nees and
Risvik (1996)).

The 1v’s can be obtained by means of several different methods. The regres-
sion of the responses on the first few principal components of the explanatory
variables (PCR) and Partial Least Squares (PLS) (Wold (1982)) have been re-

ported to yield accurate predictions in several applications. However, model



based justifications and optimal properties for the predictions obtained with
these DRMs are not available. Merola and Abraham (2001) discuss optimal
estimation of DRMs for prediction and suggest a different class of methods.

In the next section, after introducing some notation, we briefly discuss Prin-
cipal Component Regression (PCR). Subsequently we introduce PLS, also giving
a new interpretation of it. Based on this interpretation, in the third section we
introduce a new method called Principal Components of Simple Least Squares
(PCSLS). In the fourth section we compare PLS and PCSLS through simula-

tions and published data. Finally in Section 5 we give some concluding remarks.

2 Dimensionally Reduced Prediction Models

Let Y be an (n x ¢) matrix and X an (n x p) matrix whose columns consist
of n independent observations on ¢ responses and on p explanatory variables
respectively. For univariate regression we denote with y the vector containing
the observations on the response variable while for multivariate responses we
denote with y; the column of Y containing the observations on the j-th response.
For simplicity but without lost of generality, we take all the variables to be
centred to zero-mean. _

DRMs consist of determining d orthogonal Iv’s t; = Xak, k = 1,...,4d,
where the a; are p-vectors containing the coefficients of the 1v’s. The X space
is then partitioned into two parts: the latent space T(q4) = (t1,...,tq) and its
orthogonal complement (X L T(g)). The lv’s are then used as regressors for
the responses and the predicted values are obtained by Ordinary Least Squares
(OLS) as

d
Vg = Ta)(T(g)Ta) " Tig Y = Y tu(titi) 1Y (2.1)
k=1
where Y[d] denotes the predictions obtained using d 1v’s, T(a) = XA(q) the

(n xd) matrix whose columns are the latent variables and A (q) the (px d) matrix
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whose columns are the coefficients of the 1v’s. Substituting T(4) = XA(q) into

(2.1) we obtain
Y[d] = XA(d)(T'(d)T(d))_lT’(d)Y = XBM

where By = A(d)(T'( d)T(,,l))‘lT’( 9Y is the estimate of the regression coeffi-
cients obtained with d 1v’s. Note that when the 1v’s are to be used for prediction
their length is irrelevant, therefore we can, and will occasionally, refer to the
generic direction in the X space rather than to the actual lv, without loss of
generality.

The approach of estimating the coefficients a, by least squares, that is min-
imising the Euclidean norm ||Y —XByq||, often is not effective. In this approach,
called Reduced Rank Regression (RRR) (Izenman (1975)), the solutions are
obtained minimising the residual sum of squares for the ordinary regression
model over the additional rank constraints. In fact, for univariate response the
only solution a; is the vector of OLS regression coefficients and for multivari-
ate responses the 1v’s are the principal components of the OLS solutions (e.g.
Merola (1998)).

Methods that are claimed to yield better predictions do not take the LS ap-
proach to estimating the coefficients. Next we illustrate these methods dropping

the reference to d, as they are invariant to the number of 1v’s computed.

2.1 Principal Component Regression

PCR consists of regressing the responses onto the first d principal components.
The principal components form a sequence of orthogonal axis of the space
spanned by the X variables that sequentially minimise the norm of the residual
orthogonal space. That is the k —th principal component t; = Xay is the
solution of the optimisation problem:

min |]X — txpl| (2.2)

tLt,‘: kj



where Jj; is equal to 1 if k = j and to 0 otherwise and the px’s are vec-
tors of unknown parameters. The solutions ax, k = 1,...,d are given by the
eigenvectors of the matrix X’'X corresponding to the first d eigenvalues taken
in non-increasing order. This procedure is generally referred to as Principal
Components Analysis (PCA).

The resulting latent variables, known as principal components, are the linear
combinations of the z variables that have maximal norm.

It is well known that PCA is very sensitive to the variance of the x variables
and that the first principal component will be “closer” to the variables with
larger variance. This property may be undesirable, especially when the units
of measure of the variables are not comparable. Furthermore, in a predictive
context there is no a-priori reason for which the regressors with larger variance
should be better predictors of the response than those with smaller variance.

In order to overcome the problem connected with the variance of the explana-
tory variables it is customary to standardise them to unit length (autoscale)
prior to PCA. That is, PCA is performed on the scaled matrix X = XD},
where D is a diagonal matrvix with diagonal elements d;; = x}xj, i=1...,p.
Also autoscaling presents some drawbacks and other scaling policies may be
adopted. In general, PCA performed on the matrix X post-multiplied by a
diagonal positive definite matrix of weights W is called weighted PCA. The Iv’s
in weighted PCA are the eigen-vectors of the matrix W2X'X.

Obviously, the principal components are “independent” of the responses and

PCR can be applied to univariate and multivariate regression.

2.2 Partial Least Squares

PLS was introduced by Wold (1982) as an algorithm for prediction without
any “hard” modelling behind, hence without any explicit optimality property.
The mathematical functioning of the algorithm was explained by Hoskulds-
son (1988), Helland (1988) and de Jong (1993); Phatak et al. (1992) and

Merola (1998) contributed to explaining its geometry. However, nobody seems



to have succeeded in finding a convincing optimality property for the prediction
of the responses or even a rationale for its use; nonetheless PLS is extensively
used in many fields.

PLS can be applied to univariate and multivariate regression but the mul-
tivariate version is not considered a straightforward generalisation of the uni-
variate one. We examine the univariate case first and then the multivariate

case.

Univariate partial least squares

A simplified univariate PLS algorithm is outlined in Algorithm A.1 in the ap-
pendix. Hoskuldsson (1988) showed that at each step PLS determines the coef-
ficient as ax = Fiy/||F,y]||, were Fx = (In — tx(tts) " t})F(x—1) is the matrix
of orthogonal residuals, called “deflated X matrix” (F; = X).

Garthwaite (1994) shows that the PLS 1v’s are proportional to the weighted

averages of the simple regressions of the response on each explanatory variable.

That is:

14 P
te o« FeFry = 3 fa)ife)i’y = D 5 Eeys) E)s ) (2.3)

j=1 Jj=1

where f(x); is the j-th column of Fi and y(fix);) = f(k)j(f(’k)jf(k)j)"lf(’k)jy.
However, noting that in PLS the z variables are always autoscaled, the first

PLS lv amounts to the simple average of the projections of y onto the individual

Xj’S, (y(x])’] = 1,, ey P Let
Yu = (9(31)7 cee ai’(mp)) = Xﬁ“ = XBu, (24)

where By is a diagonal matrix with diagonal elements equal to {X;y} and By is

diagonal with diagonal elements equal to {_5;1;‘3(_} Then the first PLS lv satisfies:
& )

P
t1 o Y ¥(x;) = XX'y = Yul,,
j=1



where 1, is the p-vector of ones. A well known property of the simple average
is that it minimises the sum of squared distances of a set of values from a point.

That is, the first PLS lv is along the direction that minimises the quantity
R P
10— 1312 = 35 () — ) (3 (as) - ta). (2.5)
j=1

In the subsequent iterations the deflated matrix Fy is not autoscaled, hence
the successive 1v’s are weighted averages of the simple regressions with weights
proportional to the squared norms of the residuals, as given in equation (2.3).

The use of weighted averages for the 1v’s successive to the first one gives
higher weight to the x;’s that have not been well “explained” by the previous
components, like in PCR. In a predictive context one can see this weighting
policy as the continuous analogue of the “tolerance threshold” in the step-wise
algorithm for selecting regressors, for which the variables that are well explained
by the others in the model are eliminated from the candidates to enter (e.g.
Weisberg (1985)). Autoscaling the residuals F at each iteration would render
these 1v’s homogeneous with the first one. We will refer to this modified PLS
procedure as Partial Least Squared with Scaled F’s (PLSSF).

Multivariate partial least squares

A simplified multivariate PLS algorithm is outlined in Algorithm A.2 in the
appendix. Hoskuldsson (1988) shows that the solutions a; can be computed
directly from the matrix F, YY'F as the eigen-vector corresponding to the
largest eigen-value. Therefore, if we let ¢, be these eigen-values, at each itera-

tion the coefficients aj satisfy:
F.YY'Fia; = apox.

Also the multivariate PLS algorithm can be interpreted using the simple



regressions of the responses on the individual x variables. Let
Y(5) = (107, 92(%5)s -+, Fq(x4)) = %i%;Y = %;'(j) (2.6)

be the (n x ¢) consensus matrices whose i-th column is the projection of y; on x;.
To each variable X; corresponds a vector of g “weights” b'(j) = %Y = {Xjy:}.
PLS determines a unit-norm vector of g coefficients, ¢ = (c1,...,¢q)’ so that
the sum of the squared norms of the vectors v; = ?( j)c is maximal. That is, ¢

is the solution to

r P4
max 2:1 Vivj = max Z Z |9 (%)% = max Y'XX'Ye. (2.7)
J=

c’e=1
Jj=1li=1

Since |[3i(x;)|| is a measure of predictability, the ¢;’s are coefficients that max-
imise the overall prediction of each variable. The solution of (2.7) for ¢ is the

eigen-vector:

Y'XX'Yc =céy, 61> é1, 1> 1 (2.8)

In terms of the autoscaled variables X the vectors v; are
v; =X;X;Ye = X;d; (2.9)

where @; = . Yc. Let t be proportional to the sum of the v; vectors, then we
J J J

have » .
to Y v;=XX'Ye=Xa (2.10)
j=1

where a = (G1,...,8p) = X'Ye. If we pre-multiply (2.8) by X'Y we have:
X'YY'Xa=a¢1, ¢1> ¢, 1 >1 (2.11)

which is the PLS solution a; when Fg = X. The successive latent variables are
obtained by applying the PLS algorithm on the unscaled orthogonal residuals

F.. PLS on the unscaled explanatory variables is not equivalent to that on the



scaled variables. It can be explained by a double weighting.
Consider multiplying (weighting) each vector X;X;Yc by the norm of the

1
H 1 2 — . L2, 3 .
corresponding x variable, d? = ||x;]||, then the v;’s are given by:

v = Y(xj)dj%c = xjdj—%x}Yc. (2.12)

The squared norm of v; is

viv; = cY'x;x;Ye. (2.13)

The vector of weights ¢ is again determined as that maximising the sum of these

squared norms, that is as the solution of

4
max Z vivj = max Y'XX'Ye. (2.14)

c’c=14
Jj=1

This is an eigen-problem with solution:
Y'XX'Ye=chy, 61> 6,1 > 1. (2.15)

1
If we take the weighted average of the v;, taking the norms d; as weights again,

we have:

P P
t o Zd;—\'j = Zij;Yc =XX'Yc=Xa (2.16)
i=1 i=1

where a = X'Yc. Substituting this expression of a into the solution (2.15) gives

the PLS solution:
X'YY'Xa=al, 6; >0,1>1. (2.17)

Hence the first multivariate PLS 1v on the unscaled x variables is obtained
weighting the x axis twice. The first time the norms dJ'?L weight the sum of
squares of the ¥;(x;) for determining the coefficients ¢ and then they weight
the vectors v; to obtain the lv as a weighted average. This double weighting

procedure agrees with the geometrical interpretation of the PLS algorithm given



by Phatak et al. (1992), which consists of a double rotation of the LS solutions
Y(X) When the z variables have been autoscaled, the subsequent lv’s are
obtained as above but substituting the residuals f; for the variables x;.

Also for the multivariate algorithm, the autoscaling of the x variables gives
the plain average as the first lv, which is optimal with respect to minimising
the distances of the projections y(x;) from one point. The same considerations
about the scaling of the residuals Fj, and the optimality of the procedure made
for the univariate algorithm can be extended to the multivariate algorithm.

Tt is interesting to note that this interpretation of PLS gives univariate PLS
as a special case of the multivariate PLS algorithm. In fact, when there is only
one response variable the vector of coefficients ¢ reduces to a scalar, simply
equal to 1. In this light it is possible to remove the duality between univariate

and multivariate algorithms.

3 Principal Components of Simple Least Squares

In this section we present a method, that we name principal components of sim-
ple least squares (PCSLS), which determines the lv’s from the simple regressions
in an optimal way. We propose to use the least squares solutions of the simple
regressions to weight the z variables.

For the univariate case we require that the Iv’s tx = Xa, are a set of or-
thogonal linear combinations of the X variables with minimal sum of squared
orthogonal distances from the matrix Y. defined in (2.4). That is, we consider
optimising:

min ||[Yu — tepil|? 3.1
i 1%~ tepl] .1

where pi is a vector of p unknown coefficients. Note that this is more general
than the objective function of PLS (2.5). Observing that we can write tx =

Y,ci, where ¢y = By~ lay, we have that (3.1) is a principal component problem,



whose solutions are weighted principal components of X, given by:
B.’X'Xay = ardx, k=1,...,d, ¢x > ¢, | > k. (3.2)

Hence the 1v’s of PCSLS are weighted principal components of X with weights
proportional to \/mrj'(_x])' = f)j. Figure 3.1 shows the difference in the
construction of the first lv in PLS and in PCSLS for two explanatory variables.
The PLS lv is proportional to the vector sum of b; = %Sf(xl) and by = %9(xz).
In PCSLS the direction of the lv minimises the sum of the squared distances a;
and ag.

Figure 3.1 Construction of the first latent variable in PLS and in PCSLS.
x; = tp; +fn; where t and f are two unitary orthogonal variables. The symbols
f; denote the length of the residuals of the x variables.

y(ﬁ)_ag__F_APCSLS

...................

f PCSLS

Also for the multivariate regression problem we find the lv’s that minimise
the sum of the variances of the orthogonal residuals from the simple regressions

of each response. That is we want to find the vectors aj as solutions of

g P
min }: Z(f’i(xj) — ki, j) (7 (X5) = trPhi ))- (3.3)

tht;=0;
i i i=1 j=1
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Note that we substituted, without loss of generality, the orthogonality con-
straints with orthonormality ones. Let us denote the (n X pg) matrix Yo,
obtained setting next to each other the matrices Y( i)y i=1,...,p, defined in
(2.6), as

b(1) 0, - 0
] o b(@e - 0
Yo = ! @) Y |=xB
/
Oq
0, 0 - D(p)

Then we can express (3.3) as a principal components problem:
in ||[Ym — tepi| %
R [[Ym — tepil|
The solutions to this problem is given by:
BB'X'Xay = aydi, ¢ > 1, | > k (3.4)

But

0 i#J

{BBI}ij = ) ) q o ) -
b(5)'b(5) = 1§1 AR e

therefore the matrix W? = BB’ is diagonal and the 1v’s solutions to (3.3) are

weighted principal components of X and the coefficients are given by
W2X'Xay = ardr ¢k > b1, 1 > k.

The weights w;; = f: [l¥:(7)]]? for the multivariate PCSLS are the generali-
=1

sation of those of the univariate case.
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4 Simulation Study and Example

We compare the predictive accuracy of PLS with that of PCSLS and PLSSF on
simulated and published data-sets.

4.1 Simulation study

Each data-set was generated according to the following model:

d
Tij = 3 tikprj + fijngs i=1,...,60; j=1,...,p
k=1 (4.1)

d
Yij =k2 tikgrj + €igmy; i=1,...,60; j=1,...,q
=1

where the variables t;x, fi; and e;; are independent standard Normal variables.
50 observations are used to estimate the coefficients and the remaining 10 to
compute the PRESS. Sets of 5000 repetitions were performed for different val-
ues of the parameters d, {n;}, {mi}, {px;} and {gx;}. The signal-to-noise-
ratios (SNRs), given by the ratios -E—:-%?f—ii and -2—"—‘#‘—‘1 for the z;’s and
yi’s tespectively, are either constant or ;andomly generated. The predictive

accuracy of each method is measured by the prediction error sum of squares

(PRESS(met);), defined as

1 & )
PRESS(met); Z 10 Z(yki - ykz'[j](met))z (4.2)
k=1 i=1

v-Q[o—a

where ;] is the prediction of the i-th observation on the k-th response in the
test sample using j 1v’s and met refers to which method is used. The methods

are compared averaging the PRESS over the 5000 repetitions.

4,1.1 Univariate Prediction

A first set of 5000 repetitions were run with a set of 10 x-variables with full
rank latent space (p=d=10). The first 4 =’s had SNR equal to 1 and the last 6
had SNR of 10; the SNR for y was 3. The influence of the noises on the last 6

12



x variables is negligible, on the other hand the other 4 regressors contain equal
amounts of error and explanatory term. Regardless of the number of lv’s used,
PCSLS gave global lower minimum PRESS than PLS 2980 times out of 5000
(59.6%), with an average ratio minPRESS(PCSLS)/minPRESS(PLS) of
0.9875. However, consistently PLS achieved its global minimum average PRESS
with less 1v’s than PCSLS. The average number of components for which the

global minimum PRESS is achieved is about 3 for PLS and about 5 for PCSLS.

Figure 4.1 Average PRESS. 10 x variables with underlying dimension of 10.
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Note how the average PRESS is lower than that of OLS (10 lv’s) for all

methods.
In Figure 4.1 the average PRESS for different number of components is com-

pared. We note that average PRESS of PCSLS is lower than the other two meth-
ods when more than 3 1v’s are used and that PLSSF behaves very similarly to
PLS. Another set of 5000 repetitions were run with the same parameters as the
previous ones but reducing the rank of the "true” explanatory variables to 5 (d =
5). In this case the behaviour of the methods resembles the previous case. PC-
SLS yielded a global minimum PRESS lower than that of PLS 2880 times out of
5000 (57.6%), with an average ratio minPRESS(PCSLS)/minPRESS(PLS)
equal to 0.9756. PLS reaches its lowest value of PRESS consistently with a
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lower number of components but then PCSLS yields better predictions for higher
number of 1v's used. Also in this case all methods yield better predictions than

OLS with fewer lv’s.

4,1.2 Multivariate Prediction

For multivariate predictions we generated the parameters {px;} and {qx;} as
independent uniform variables in the interval [—1, 1] at each repetition. This
avoids the problem of the choice of a fixed model, adding generality to the
results. We considered 25 explanatory variables and 10 responses and d =
1,5,10. We run one set of simulations using fixed SNRs and another generating
the SNRs randomly at each repetitions. The fixed SNRs were equal to 2 for
the explanatory variables and to 4 for the responses. The random SNRs were
generated as uniform variables in the intervals [1, 3] for the explanatory variables
and [3, 5] for the responses. For each case 5000 repetitions were run. We only
report on the random SNRs as the results were almost identical to the fixed
SNR case. For real rank equal to 1 the plot of the average PRESS is shown in
Figure 4.2.

Figure 4.2 Average PRESS for different methods with 25 explanatory vari-
ables, 10 responses. Real rank equal to 1 and random SNRs.

.
=/
£ o J/
S 043.4" I/’
o g
o ,*,
A .
9 E ] 849' <
s ;
(YY) ’
vl ‘/” v
a. v ,
) 8 _° R
A o © ’
g e -
< R L+
N P
3 | o e
P= 6/ P
o e+ o
o ot A SE
- PR + S
& /0 — -
4 o —t
S| T
2 4 6 8 10 12 14 16 18 =20 22 24

components used

14



Figure 4.3 Average PRESS for different methods with 25 explanatory vari-
ables, 10 responses. Real rank equal to 5 and random SNRs.
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In this case all methods give very close minima using 1 Iv but PCSLS gives
lower average PRESS for all number of Iv’s used.

Figure 4.4 Average PRESS for different methods with 25 explanatory vari-
ables, 10 responses. Real rank equal to 10 and random SNRs.
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For real rank of 5 the average PRESS is shown in Figure 4.3. Also in this
case all methods give very close minima when the number of lv’s is equal to

the real rank of the data. PCSLS gives lower PRESS than the other methods

15



when more than 5 1v’s are used. Figure 4.4 shows the average PRESS for real
rank equal to 10. Also in this case PLS and PLSSF have similar behaviour.
The average PRESS for the three methods is comparable but PCSLS gives
lower average PRESS using 10 (real dimension) or more Iv’s and it achieves the
overall minimum with 11 lv’s. However, PLS and PLSSF give a lower average

PRESS for lower number of 1v’s.

4.2 Example

In this section we compare some of the dimensionality reduction techniques we
discussed on a set of data published in Skagerberg et al. (1992). The data
consist of a simulation of a Low-Density Poly-Ethylene (LDPE) production
process. The authors produced a set of 32 in-control observations and a set
of 24 out-of-control observations. We only use the first 32 of these to test
our methods. The explanatory variables consist of 2 input variables and 20
readings of temperatures inside the reactor. Clearly these last 20 variables are
highly correlated. The measurements on 6 properties of the polymer were used

as responses.

Figure 4.5 Chemical reactor example. Cross-validated PRESS for different
number of components relative to the OLS.
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The authors applied PLS to these data for implementing multivariate control
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charts. We compare the predictive efficiency by the leave-one-out cross-validated
PRESS. For graphical reasons we will present the plots of the PRESS divided
by the PRESS of the OLS solutions. Figure 4.5 shows the leave-one-out cross-
validated PRESS for these data. The values of the PRESS for these data are
consistent with the simulations. PLS and PLSSF give very close results; PCSLS
gives a very close minimum and more accurate predictions for higher number of

components used. We note that PCR gives the worst results.

5 Conclusions

Based on the simulated results and the example we can conclude that the PLS
and PCSLS are comparable. The autoscaling of the deflated matrix in PLS does
not seem to change the overall behaviour. PLS seems to achieve its best perfor-
mance with a lower number of 1v’s than PCSLS. However, PCSLS consistently
gave lower minima of PRESS and showed a better behaviour for higher number
of 1v’s. The higher methodological simplicity of PCSLS can ease the interpre-
tation of the results. PCSLS is much less computer intensive than PLS, which
can be an important feature when dealing with large data-sets. Furthermore,
in PCSLS it is still possible to weight each z variable based on prior knowledge
adding flexibility to this method.
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Appendix

Algorithm A.1 Simplified univariate PLS algorithm.
0 ] set: F1=}~(,r1=1q and k=1

1 ] iterate until a; converges

1
k¥ (k
ap =
k= P
ty = Frag
1
— ty
b= Jyriz
rr = ybx

2] F(."’+1) =F; - tk(tktk)"ltchk
3 )if ||Fkl| >e k+ k+1,goto 1

4 ] exit

PLS (Wold (1982)) was derived as one of the procedures of “path modelling”
from a modification of NIPALS, an algorithm for computing simultaneously
the principal components of two matrices (Gelaldi and Kowalski (1986)). A
simplified univariate PLS algorithm is outlined in Algorithm A.1 and a simplified
version of the multivariate algorithm is given in Algorithm A.2. At step (2)
of the algorithms the matrix of explanatory variables is substituted with the
matrix of orthogonal residuals Fy, called “deflated X matrix”. In this way each
latent variable automatically satisfies the constraint of being orthogonal to the
preceding ones. The process is iterated until the X matrix is exhausted by

requiring that ||F|| is small enough.
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Algorithm A.2 Simplified multivariate PLS algorithm.

O]setF1=)~(,r1=1n,andk=1

1 ] iterate until a; converges

Fir
a = TF,r ol

ty = Frag

b, = Y't
k — “'Yltkl

ri. = Yby

2 Fry1=Fp — tk(t;‘tk)"ltkok
3 ]if ||Fil|>e ke k+1,goto1

4 ] exit

The coefficients a; can be also computed as ax = F,y/||F,y|| for the uni-
variate case and as the eigen-vector corresponding to the largest eigen-value of
the matrix F, YY'F; for multivariate response. The advantage of the recursive
algorithm is that it allows for missing observations.

The coefficients ay determined by PLS for k > 1 cannot be used to compute
the lv’s from the z variables because they refer to the residuals f(x). The actual
coefficients for the z variables, C say, have to be computed from the ax’s as
C = S~ 1A where QS is the QR decomposition of the matrix XA.

The algorithm terminates when k latent variables exhaust the X matrix.
However, the optimal number of 1v’s used for prediction is not necessarily k but

is instead chosen by other means, often by cross-validation.
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