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Abstract

In this paper we consider two strategies for variation reduction . One of them
is the exploitation of interactions. We also discuss the role of experiments in
discovering interactions and in particular the use of robust designs to obtain
the interaction between control and noise factors. Then we attempt to reduce
the variation in a measurement system using a robust design.
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1. Introduction

During the last several years North America has been going through a quality
revolution. More people are aware of the importance of Quality in products
and processes. Business leaders are discussing Quality Improvement issues
and Statistical Thinking. In this context two important concepts came to
the forefront: (i) Data Based Decisions, (ii) Variation Reduction (VR).

This paper deals with Variation Reduction. Variation is a fact of life and
it is interpreted differently depending on contexts. There are two types of
’variation’ often discussed. (i) Deviation from Target. (ii) Variation around
a target or a mean. Often it is not clear what type of variation is being
discussed. It is very important to distinguish between these two types of



variation so that we can devise strategies to reduce variation.

Variation is caused. Some times the causes of variation are known and some-
times not. Known causes can be classified in terms of control. Process
parameters such as tooling, material types and amounts, and operational
practice are under the control of the process designer and supervisor. These
causes and the associated factors are called Control Factors. Some times
the causes are not controllable or they may be very expensive to control.
Variation in incoming raw materials, tool wear, environmental factors such
as humidity are examples. These are called Noise Factors. For instance
once a product is shipped to a customer characteristics such as time to fail-
ure and performance are affected by factors outside the manufacture’s control
such as the method of use and the environment. These are also noise factors.

Quality Improvement efforts in many instances have been directed at reduc-
ing the variation (deviation) of a particular characteristic around a nominal
design specification. For instance, in the manufacture of pistons the final
diameter of the piston is a critical characteristic which has a strict specifica-
tion. If the diameters vary then the pistons have to be carefully sized and
marked so that they can be selectively fitted into bores which also would
have been previously sorted. This adds complexity and cost to the process.
Another area of Quality Improvement efforts is in the field performance of a
product. A customer may expect that a product will work as promised under
a variety of field conditions some of which may not have been envisioned
by the product designer and the manufacturer. For instance, if frost free
refrigerators which are designed and manufactured for use in a temperate
climate, were sent to tropical areas where the climate and culture are different
then the performance of the fridge may be affected. A high quality fridge is
one which is robust (insensitive) to these changing conditions.

In the next section we briefly give two strategies for variation reduction.
Section 3 discusses the role of experiments in variation reduction, section 4
describes an experiment for reducing variation in a measurement system and
section 5 gives some concluding remarks.



2. Strategies for Variation Reduction

We consider two basic strategies to mitigate the effects of variation induced
by a known noise factor. These are:

- Controlling the variation in the noise factor itself

- Exploitation of the interaction between the noise factor and an easily con-
trollable factor

Controlling the Noise:

The first strategy is to have more strict control on the noise factor. For
instance, consider Figure 2.1 in which the a noise factor (temperature) trans-
mits large (unacceptable) variation to a quality characteristic. This is be-
cause the temperature variation around the set point is very high. If it is
possible to put tighter controls on temperature as indicated in the figure so
that the transmitted variation is acceptable, then that would be a strategy
to reduce variation in the quality characteristic. (Note that Figure 2.1 is an
idealization)

Exploitation of Interaction:

In this strategy the noise factor itself is ignored but some other easily con-
trollable factor which interacts with the noise factor is changed. Thus the
approach takes advantage of the interaction between noise and control factors
as shown in Figure 2.2. In this case the effect on the response of changing
the noise factor is very different at different settings of the control factors.
And the interaction must of the special form, as shown in Figure 2.2, that
flattens the response graph at particular settings of the control factors.

There could be problems with this approach. In some cases, the response
graph can be flattened but the quality characteristic may not be on target so
that it may be necessary to change another factor to move the response on
to target. In some other cases it may be impossible to flatten the response as



Response

A H
I
'
1
'
Transmitted !
Variation .
|
i
| B '
| E
! |
! ]
: :
! ‘
Temperature
Set Point
- Variation
Figure 2.1 Controlling the Noise
Response
Original Control
Settings
New Control
Settings
Transmitted
Variation
Temperature
Set Point
< Variation —————

Figure 2.2 Exploitation of Interaction



required. It is also possible that changing control factors may change other
quality characteristics in undesirable ways; in this case one problem is trans-
formed into another one.

We discuss this strategy of exploitation of interactions more fully in the next
section.

3. Role of Experiments

In the last section we advocated the use of interactions to counteract the
effect on the response of variation transmitted from noise factors. An exper-
iment is an intervention in to a process and this is the only way to discover
interactions empirically. Thus to discover interactions and to use it appro-
priately we need to plan an experiment involving control and noise factors.
This requires that

- the noise factors are known to transmit a significant amount of variation

- the noise factors can be temporarily controlled during the experiment

- the levels of the noise factors are far enough to capture variation in the
factors during normal production or product use.

Experimental plan:

Taguchi (1987)(see also Taguchi and Wu(1979)) recommends using an exper-
imental plan referred to as a product array in which the experimental plan
for control factors ( the inner array ) and that for noise factors (the outer
array) are crossed as shown in Table 4.1(for three control and two noise
factors). Such a plan is referred to as a robust design. Some others such
as Box(1988), and Shoemaker et al (1991) encourage a combined array in
which there is only one plan for the control and noise factors taken together.
Each approach has its own advantages and disadvantages (see Abraham and
‘MacKay (1993)). For instance, a product array typically requires more runs
than a combined array; on the other hand in a product array all noise by
control interactions are estimable while the combined array cannot assure
that all those can be estimated. Such matters become an issue only when
fractional plans ( subset of the possible factor level combinations) are con-
sidered. The actual conduct of the experiment depends also on other factors



such as cost and convenience. We may use different types of blocking, split
plotting etc. to increase the precision as well.

Analysis:

We consider only simple analysis such as calculations of effects, plotting of
effects etc. There are different software available to do more sophisticated
analysis. If we make an error in the analysis, it can be corrected in a subse-
quent analysis. This does not cost much. On the other hand if we make an
error in the experimental plan or conduct, it is extremely costly to redo the
experiment.

4. The Case of the Runaway (Gauge

A foundry had been supplying a special part to a customer. The customer
started to complain that a sizable proportion of parts supplied are out of
specification for hardness, a critical measurement. This was surprising since
every part supplied went through a 100 percent inspection system. They ver-
ified that the specifications used at the customer and supplier sites were the
same. Then the foundry initiated a project to look in to the measurement
system there.

Initial investigation:

The industry standard for measuring hardness was the Brinell Hardness (BH)
test. In the foundry this was done by machining .100inch off the casting sur-
face and indenting it with a 10mm steel ball under a 3000 kg load. The
diameter of the resulting impression was measured through a microscope.
This is called the Brinell Impression Diameter (B.I.D) which was a destruc-
tive measurement.

Since the B.I.D was a destructive measurement the foundry used an on-line
gauge to get a proxy for the B.L.D. for each of the parts passing through
the line. An operator would place a coil over the part which induces eddy
currents in the casting. The gauge predicted a hardness measurement from
the feedback provided by the coil.



The initial investigation consisted of studying the correlation between the
two measurement systems (on-line gauge and off-line B.I.D measurements).
Two hundred parts were measured by the on-line gauge first and then by
the Brinell test. It was found that the correlation was nearly zero. Thus the
on-line gauge was not doing what it was supposed to do. This initiated a
further study to see whether or not the correlation can be improved.

Main investigation:

The main goal was to improve the correlation between the two measurement
systems by changing the parameters in the on-line gauge. An experimental
design was expected to help in obtaining the optimal settings. It was also
expected that the resulting settings of the gauge would be robust to the vari-
ation from certain noise factors.

Response variables for the experiment were the hardness from the on-line
gauge and the BH test.

Factors and Levels:

There were three machine parameters that the engineers could control; we
suppress the actual names and label these as F, T and G because of confiden-
tiality concerns. The levels of these factors were set with distinct machine
settings or at opposite ends of normal operating specifications.

Historical studies had shown that the variation in chemistry and cleanliness
of the casting had some effect on the gauge measurement . It was decided
to select castings from two different days to simulate 2 levels of chemistry .
For cleanliness the castings would be cleaned for 5min (level 1) and 20 min
(level 2). The different factors and their levels are shown in Table 4.1.

Experimental Plan:

It was decided to perform a product array experiment with the inner array
containing the three control factors in an 8 run full factorial array . The outer
array with the two noise factors was also a full factorial with a 4 run array.
The product array is shown in Table 4.2. This set up allows the replication of
the control treatments over all four combinations of the noise factors. That



means, castings from all the noise combinations, (day 1, 5min) (day 2, 5min)
(day 1, 20min) (day 2, 20min), would be tested with each of the 8 set- ups

Table 4.1: Factors and Levels

Factors Levels

Control factors

F low (—) high (4)
T low (—) high (+)
G low (—) high (+)
Noise factors

Chemistry Dayl1(1-16) | Day 2 (17-32)
Cleanliness 5 min 20 min

Table 4.2: Experimental Plan: Product Array

Noise

Control Factors 5 20 5 20
Run | F T G |Day 1l Dayl | Day2 Day?2
1 - - - . .
2 - - +
3 — + -
4 - + +
5 + - -
6 + - +
7 + + -
8 + + +

Sixteen castings were to be selected for each of the chemistry levels (days 1
and 2). They were to be numbered from 1 to 32; 1 to 16 for day 1 and the
rest for day 2. The 32 castings were to be cleaned for 5 min and measured
using the online-gauge in the production area under the eight inner array
conditions. Then they were to be subsequently cleaned for an additional 15
min and re-measured by the gauge. Then the B.I.D measurements were to
be taken in the laboratory. Thus there were a total of 32 different conditions
under which the hardness was to be measured.



Data Collection:

As per the plan, 16 castings were taken from day 1 and 16 others from day
2 , and they were numbered as required.

First all the 32 castings were cleaned for 5 min. Then castings 1 to 16 were
measured by the on-line gauge using the 8 different (control) settings in a
random order. Then they were cleaned for an additional 15 min ( a total of 20
min ) and measured again with the 8 settings in a random order. Finally the
destructive B.I.D. measurements were taken from castings 1 to 16. The same
procedure was followed for castings 17 to 32. Thus we have 32 experimental
conditions each having 16 pairs of measurements with each pair containing a
B.I.D. and a gauge measurement. The data for run numbers 1-4 are shown
in Figure 4.1. Rest of the data are similar and not shown here to save space.

Data Analysis:

Initially the approach taken was to study the relationship between the value
of the on-line gage measurement and the corresponding value for the Brinell
test using scatter plots. There were 32 conditions and for each there were
16 castings measured by both the on-line and off-line gages. This produces
1 scatter plot per condition.

For the on-line gage to be a useful measurement system there should be a
relationship between the on-line and off-line gage readings for at least one of
the 8 runs in the inner array and this relationship should be consistent over
different days (chemistries) and different levels of cleanliness. This consis-
tency is essential because neither chemistry nor cleanliness can be controlled
in production.

The scatter plots for runs 5-8 are in Figure 4.1. These indicate that the on-
line gage readings and the Brinell test readings are not consistent from one
chemistry to another and that different levels of cleaning have an inconsistent
effect on the relationship. In addition, the correlation between the two sets
of readings for all 32 conditions are negligible.

A more in-depth analysis can be done by fitting a line to the points in the
scatter plot for each condition. Such an analysis would be useful if the scat-
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ter plots had not given such obvious results. A brief analysis is given here to
indicate the direction that one could take. We consider the model

Yijk = Q45 -I-,B,'jll?,'jk + e,-j,k = 1,2, ceey 16, ] = 1,2,3,4, 7= 1,2, 8,

where y;;x and ;;x are respectively the kth on-line and off-line reading for the
sth run and jth noise condition; a;; and f;; are the corresponding intercepts
and slopes respectively, and ¢, is an error assumed to be iid N(0, d?j .
This analysis gives estimates for slopes and standard deviations (sd) for the
variation of the points about the line. These are given in the Table 4.3.

Table 4.3: Slopes and Standard Deviations
Run # Slopes Standard Deviations
1 2 3 4 1 2 3 4

0.79 0.48 0.06 -0.09 | 0.08 0.07 0.04 0.04
0.78 0.55 0.09 -0.07 [ 0.08 0.07 0.04 0.05
0.79 0.50 0.09 0.03 [0.07 0.07 0.04 0.04
0.78 0.53 0.07 -0.05|0.08 0.07 0.04 0.04
0.89 0.61 0.02 -0.22 |0.09 0.08 0.04 0.05
0.83 0.62 0.03 -0.21 |0.09 0.08 0.05 0.05
0.84 0.68 0.02 -0.16 |0.09 0.08 0.05 0.05
0.84 0.60 0.07 -0.19 |0.09 0.08 0.05 0.05

O 3O Ut i LW N+

The estimated slopes indicate that the relationship between on-line and off-
line measurements is different for the two chemistries (sets of parts from
days 1 and 2). For chemistry level 1(parts 1-16) the slopes range from .78
to .89 when the cleaning time is S5min and from .48 to .68 when the cleaning
time is 20min. However, for chemistry level 2 (for parts 17-32) they range
from .02 to .09 when the cleaning time is Smin and from -.22 to .03 when
the cleaning time is 20min. Thus it indicates that for parts 17-32 the true
slopes are zero and for parts 1-16 they are slightly larger but not significant.
Hence the on-line measurements do not predict the offline measurements well.

The effects of the machine settings can be obtained for each combination of
noise factors separately. These are given in Table 4.4 for all noise conditions
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and are negligible except possibly for factor F (parts 1-16). Even this is not
large enough to be significant. We also obtained (but not shown here) the
effects for log(sd) for all noise conditions. These were negligible as well.

Table 4.4: Effects for Slopes

Source | (Day 1, 5 min.) | (Day 1, 20 min.) | (Day 2, 5 min.) | (Day 2, 20 min.)
F .06 A1 —0.04 —0.15

T —-.01 .01 0.01 0.06

FT —.01 .01 0.01 —0.01

G —.02 .01 0.02 —0.02

FG —.01 —.04 0.01 0.01

TG .02 —.03 —0.00 —0.03
FTG .02 —-.01 0.02 0.01

These confirm the earlier findings that the relationship between on-line and
off-line measurements is clearly different for the two batches of chemistry
conditions. It also indicates that the on-line measurements do not predict
the off-line measurements ie. the machine was not performing as it was
supposed to do and it cannot be optimized in the ranges considered for the
purpose it was being used.

5. Concluding Remarks

We considered two strategies for variation reduction. One of them involves
the use of interactions between control and noise factors. For implementing
this strategy a robust design can be used. Such a design was considered for
reducing the variation in a measurement system in a foundry. It was found
that the measurement system could not be optimized to perform as it was
supposed to. Such a finding was somewhat surprising since the machine was
in operation in the foundry for a while. In any case, eventually the manage-
ment decided to decommission the machines.
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