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Abstract

In the context of building an Autoregressive Integrated Moving Average (ARIMA) model,
the specification of the degree of differencing (d) is very important. In this paper we consider
the variogram and some modification of it to specify d. The behaviour of these is illustrated
by a simulation study. We also use these to specify d in five well known time series.
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1. Introduction

The theory and the analysis of time series becomes easier under the assumption that
an observed series is a realization from a stationary stochastic process. But in practice, a
great deal of time series data is best described by non-stationary processes. While analysing
discrete time series data, it is often assumed that an observed series is a realization of some
stochastic process which becomes mean stationary (homogenous stationary in the sense used
in Box and Jenkins (1976)) after sufficient number of differencing. In this paper we discuss
a simple method of determining the degree of differencing.

Let d be the number of differencing required for stationarity and B denote the back shift
operator such that B"z, = z;_5. Suppose that {a;} is a white noise process with common

mean zero and common variance 2. Then

(1= ¢ B—¢B— -+ — $B?)(1— B)lz, = (1—6,B—6,B> —--- —,BYa,, (1.1
or ¢(B)(1 — B)%z = 6(B)a,

defines an autoregressive integrated moving average model of order (p, d, ¢) (ARIMA (p, d, q)).
That is, after differencing ‘d’ times, the process {z;} in (1.1) becomes a stationary ARMA

(p.q). Our interest here is to determine the value of d for a given time series.
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University of Waterloo.



Box and Jenkins (1976) discuss a method for determining ‘d’ using the sample autocor-
relation and partial autocorrelation plots. Cressie (1988) used the concept of generalized
covariance to introduce a graphical procedure for determining d. For h = 1,2,..., he calls
Zy4n — 2¢ as the Ij-process and discuss the variogram, Var(zi4r — 2:) = 2V (k) for a stationary
process. In addition he introduces an Iz-process a quantity A’z where A is a vector depending

on h and and d. For example, when the procuss is Iy,
Nz=hz—(h--1)z241 + 2t4nm

where

N=[h - (h+1) 1]

For an I3 process

Nz = —h(h+1).+2h(h+2)z41
—(h+2)(/ +1D)zeg2 + 22e1n42-
where
N =[-h(h+1) 2r(h+2) —(h+2)(h+1) 2]
He also constructs some unbiased estimators for Var(\'z). Based on these, some graphical
procedures are introduced to determine the v. lue of d (the degree of differencing).

In this paper we present a simple graphic 1 procedure to find ‘d’ based on some modifi-
cations to the variogram. Section 2 describes :lie procedure, section 3 considers a simulation
study to confirm the patterns. Section 4 looks at some known examples and see how the pro-
cedure suggested here arrives at the degree of differencing. Section 5 gives some concluding

remarks.

2. Methodology

Suppose the process z; is stationary; let us consider the length h difference

ult(h) = Zt4+h — 2t = (1 - Bh)ZH.h. (21)

Then Vi (k) = Var(ui(h)) = 2(70 — v4), where 7, = Cov(zs4h, 2¢).
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If the process is only stationary after a difference is taken then o = Var(z;) will not
exist. However, V;(h) will exist and will be a function of h for finite A.

For example if the process is
(1—-B)zz=(1-0B)ay, (2.2)
then we can show that (see Box and Kramer (1992))
Vi(h) = Var(u(R)) = [(h = 1)(1 — 6)* + (1 + 6%)]0%, (2.3)

a linear function of k. Box and Lucerno (1997) plots Vi(h)/Vi(1) =1 + &:%;2—-0)-2— versus h
and calls it the variogram. We adopts this terminology. It is a linear function of 2 with slope
(1—6)2/(1 4 6%). When h =1, Vi(h)/V1(1) = 1. In particular if z; = a, (white noise) then
Vi(h)/V1(1) = 1 for all h. On the other hand if (1 — ¢B)z; = a; (i.e. z an autoregressive
process of order 1) then Vi(2)/Vi(1) = (1 — ¢")/(1 — ¢) and this flattens out (converges to
a constant) as h becomes large. '
If the process is only ’stationary’ after a second difference is taken then Var(uy;(h)) does

not exist. However, the variance of
uge(h) = (1= B)(1 = B" )zyn (2.4)

exists. For example if the process is

(]. — B)zzt = (]. - 91B - 92B2)(1t, (25)
then
(1 + 62 + 62)0? ifh=2
Va(h) = Var(uz(h)) = ¢ {1+ (1 —0,) + 62+ (6; + 62)° (2.6)
+(h = 3)(1 =6, — 6,)2}0? if h > 3,

which is a linear function of h for h > 2.

It should also be noted that if the process {z;} is stationary moving average (i.e. (0,0, q)
process) then Var(uy,(h)) and Var(us(h)) are constants. In addition if {(1 — B)z} is sta-
tionary MA (i.e. (0,1,q)) then Var(ug(h)) is constant. Similarly if {(1 — B)?z} is stationary
MA then Var(uy(h)) is linear in h; but V53(h) = Var(us:(h)) where

ugi(h) = (1 = B)*(2e4h — 2e42) = (1 — B)*(1 - B")zi4n (2.7)
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is constant. For a general ARIMA (p, 1, ¢) process with

H(B)/¢( Z¢J ’ % = 1>

o0 o ¢]
so that (1 — B)z, = Zz,/)jat_j, zld’j[ < oo we can show that

7=0 7=0
h-1 J 2 co h 2
1i(h) = [z (£4) 45 (S0) } s he1 29
J=0 \:=0 7=0 \i=1
and
[Z ¥+ Z Phij-i = ¥;) ] , h=>2. (2.9)

If we set ¢(B) =1 then for an ARIMA (O, 1,q) process the variances are given by

1+q§{1—zjj0,—} +2qj(§q;9> +{1—Ze} q} 2 if h>q (2.10)

and

[ 1+ 62 +2(63 + ~+93_2)+(1 —04-1)* + (6 —eq)2+€§—1+9§] o’ifh=gq
Va(h) = { [L4+2(82+ 63+ +62.) + (146, + 62 e if h=q+1
2

[1+62 462+ +620ifh>q+1.
(2.11)

Thus Vi(h) = [C1 + (h — q)Ca]o? for h > ¢ which is linear in h and

Va(h) = Cso?, h>q+1

where C;, Cy, C3 do not involve h.

On the other hand if the process is ARIMA (p, 2, ¢) then Var(uy,(h)) does not exist. But

h-3 0o
= {Z I+ > {Unej-2 + ¥}
1=0 3=0

we can compute

and




In this case if we take ¢(B) = 1 then the corresponding variances for the ARIMA (0,2, q)

are given by

Va(h) = [1+§{1—ije,-} +§j(ie,~) +{1-§:0,} (h—q—l)} o if h>q+1

J=1 =1 \i=j

and

Hence Vy(h) is linear in h for h > ¢ + 1 and V5(h) is constant for h > ¢ + 2.
In practice, since it is unusual to see d > 2, we will not pursue this further. Expressions
for Vi(h), i = 1,2,3 for some processes are given in the Appendix (see Table A.1). From

these the patterns given in Table 2.1 can be specified.

Table 2.1 Patterns of V;(h), 1=1,2,3

Case Process Patterns
1. | Stationary Process Vi(h) A constant for all h > k
Based on where k depends on the particular
ARIMA(1,0,1) process or it stabilizes to a constant
(1,0,0), (0,0,1) as h increases.

Va(h) A constant after some initial values.
V3(h) A constant after some initial values.

2. | Nonstationary Process | Vi(h) A linear function of
Based on for h > k where k depends
ARIMA(0,1,1),(1,1,0) on the particular process or it
(1,1,1) stabilizes to a linear function.
Va(h) Same pattern as Vi(h) in Case 1.
V3(h) Same pattern as Vi(k) in Case 1.
3. | Nonstationary Process | Vi(h) Shows nonlinear tendency.
Based on
ARIMA(2,2,2) V2(h) Same as Vi(h) in Case 2.
(2,2,0), (0,2,2) Va(h) Same as Vi(h) in Case 1.
For estimation of Var(u;(k)), we consider the sample variances of ui(h), ¢ = 1,2,3



respectively. Thus we have,

n—h
SP(h) =D {ua(h) = w(R)}*/(n = h), i=1,23.
t=1
Using the results in the Appendix it can be shown that
(i) when d =1, for finite h as n = o

E(S}(h)) = Vi(h) i=1,2,3.

(i) when d = 2, for finite h as n — oo

E(S}(h)) — oo
E(S2(h)) = Vi(h) i=2,3.

For convenience we consider the quantities
Ri(h) = SX(h)/S2(i), i =1,2,3.

Then we can adopt the following procedure for specifying d. For a given time series, plot
R;(h) versus h 1 = 1,2,3. For R,(h) vs. h we consider h = 1 to 15 for Ra(h) vs. h we
take h = 2,...,15 and for R3(h) vs. h we take h = 3 to 15. If Ry(h), Rz(h), R3(h) are
approximately constants or converging to constants then d = 0. If R;(k) is linear in A or
linear in h after some initial periods, and the other two are constants (approximately) then
d = 1. If R;(h) seems to increase nonlinearly, but R,(h) is linear in h (or linear after some
initial period) or approaching a constant and Rs(h) is approximately constant then d = 2.
Thus this simple procedure can serve as a useful tool in deciding the degree of differencing.

It can be added easily to any software dealing with time series.

3. Simulation Study
Assuming that Var(e,) = ¢ = 1, we generate 150 observations from a prescribed ARIMA
process with specified parameter values and discard the first 50 to avoid transients. From

the remaining 100 observations we compute R;(h) for h = ¢,1 4+ 1,...,15, 7 = 1,2,3. Then



the whole procedure is repeated 1000 times and averages of these quantities over the repe-
titions are computed. We consider several processes. Plots of some of these are shown in
Figures 3.1-3.6. The emerging patterns are summarized in Table 3.1. For example Figure 3.3
corresponds to a (0,1,1) process with § = .5. As expected the average R;(h) is increasing
linearly in h, Ra(h) is a constant for h = 3,4, ... and R3(h) is a constant for k = 5,6,7,... .
Figure 3.5 describes the results for a (0,2,2) process. In this case Rl(h) appears to increase
in a nonlinear fashion, Ry(h) is linear in h for A = 3,4,..., and R3(h) is a constant for
h =5,6,7,... . We generated many plots corresponding to different processes and only a
few are included here to save space. In general the sample variances mimic the behaviour of
the theoretical variances in Table A.1 on the average and these will help in determining the

degree of differencing.

Table 3.1 Patterns of R;(h) = Szz(h)/Szz(z)

Case Process Patterns
1. Stationary Ry(h) Either a constant from h =1 onwards or
No differencing after some initial periods. In some cases

Fig. 3.1, 3.2 it approaches a constant as h increases.
- | Ry(h) Constant after some periods.
R3(h) Constant after some periods.
Nonstationary | Ri(h) Linear function of h for A > some
d=1 fixed value or it approaches a linear
Fig. 3.3, 3.4 function after some periods.
Ry(h) Same pattern as Ry(h) in Case 1.
R3(h) Same pattern as Rz(h) in Case 1.
3. | Nonstationary | Ri(k) Non linear.
d=2
Fig. 3.5,3.6 | Ry(h) Same pattern as R;(h) in Case 1.
R3(h) Same pattern as Ry(h) in Case 1.
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4. Examples

In this section we consider the degree of differencing for some well known series. The

following series are considered

(i)
(ii)
(ii)
(iv)
(v)
(i)

(ii1)

Resident U.S. Population (Cressie (1988))
Single-Family Housing Starts (Cressie (1988))
Series A (Box and Jenkins (1976))

Series B (Box and Jenkins (1976))

Series C (Box and Jenkins (1976))

Resident U.S. Population
The current plots are shown in Figure 4.1. The first plot shows a nonlinear increase
while the second plot is more linear. The third plot indicates that R3(h) varies around

a constant. Hence d = 2. Cressie’s (1988) procedure leads to d = 2.

Single Family Housing Starts (deseasonalized)
Figure 4.2 indicates that Ri(h) is linear in h and R,(h) is constant approximately.
Hence d = 1. This is the same conclusion in Dickey et al. (1986) using a unit root

test. Cressie’s (1988) procedure also leads to d = 1.

Series A (Box and Jenkins (1976))
This is a set of chemical process concentration readings and Box and Jenkins consider
the degree of differencing to be either 0 or 1. Figure 4.3 gives the plots and this is

consistent with the pattern of a process with an AR component and d = 1.

Series B

This is the IBM Common Stock closing prices (daily, May 17, 1961 - Nov. 2, 1962).
The plots are given in Figure 4.4. We conclude that d = 1 since R;(h) is linear in h
and Ry(h) and R3(h) are varying around constants. Box and Jenkins (1976) concluded

the same.



(v) Series C
This is a series of chemical process temperature readings every minute. The plots are
given in Figure 4.5. This is consistent with the pattern of an ARIMA(1,1,0) process
and hence we take d = 1. This is the same conclusion in Box and Jenkins (1976) as

well.

5. Concluding Remarks

In this paper we introduced some graphical tools based on modifications to the variogram
to specify the degree of differencing,d, in a time series. The behavior of these tools were
studied using a modest simulation study. We also used the tools to specify d in some well
known series and the results agreed with those from other methods. We feel that these tools

are very simple and can be adapted easily in «ny software dealing with time series.
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APPENDIX

Table A.1 V;(h) and E(S?(h))
ARIMA(1,0,1) ARIMA(L,1,1) ARIMA(0,2,2)
(1 —¢B)z; = (1 —6B)a; (1-¢B)(1-=B)zz =(1—6B)a; | (1-B)2=(1-6,B—0;B%)a,
Vi(h) Y1,0,1)(u1:(h)) Y1.1.1)(u1e(R)) Does not exist
see equation (A.1) see equation (A.3)
R f) uye(h P uye(h .
BSHA) | qnan (one(h) — A o s - 2D see equation (4.7)
see equation (A.2) see equation (A.5)
Va(h) 1,0,1) (u2e (h)) 7(0,2,2) (u2¢ (h))
see =quation (A.4) see equation (A.8)
] ug: (h 0 ug:(h
B(S3(h) v (wneh) — D o un(h) - S22l )
see equation (A.6) see equation (A.9)
Va(h) Y(0,2,2)(u3:(h)), see equation (A.10)
. d(0,2,2)(u3e(h))
E(S}(h) Y0,2.2)(uae(h)) - ﬂfn—”_(-,f—)él
see equation (A.11)

Variances and Expected Values of Sample Variances

ARIMA(0,01): 2z = (1 — 8B)ay; 7(0,0,1$(u1t{h)) = Vi(h) = 20%(1 + 6?%)
ARIMA(1,0,0): (1 — B)z; = ai; 71,00)(uie(R)) = Vi(h) = 20%(1 — ¢")/(1 — ¢?)
ARIMA(1,0,1): (1 — ¢B)z; = (1 — 6B)ay

Tnon(ue(h) = Vi(h) = Tl = 8 + (9 0F + (2= )@ =D& (A1)
- o 1m6, 266 6)1-6)(1- ¢
Saon(un(h)) = o[(n - h)(l _ ¢) - (1— )2

b OO g gemyp (1 Z g2y (A2)

(1-¢)%(1 - ¢?)
By setting ¢ = 0, and § = 0 we can obtain the results for MA(1) and AR(1) processes
respectively.

ARIMA(0,1,1): (1 - B)z = (1 — 6B)a,

Yo (un(h)) = Vi(h) = [(h = 1)(1 = 8)* + (1 4 6%)]0?, vo1,1(uz(h)) = Va(h) = 20°(1 + 6%)
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ARIMA(1,1,0): (1-¢B)(1 - B)z = a,

uro(u(h) = Vi(h) = ot — g2, y0)(uz(h) = Va(h) = 20%(1 — $+1)/(1 - ¢?)

ARIMA(1,1,1): (1-¢B)(1 - B)z = (1 —6B)a,

o) = W) = G- T S0 - ), h=12. (A9

(¢ 0)
¢2

7(1,1,1)(u2t(h)) = V2(h) = 202[1 - (¢ - 9)¢h—2 ( ¢h—1)], h = 2’37 (A4)

Saay(un(h)) = 02[;{1 +( - 1)(1 : Z) - ¢((1¢__¢9))( 1— W'l)}z +{1+(h l)i—:%

G- (=g (6= - . s1-g),
1618 P a—ey TP T )

— 9 (¢—0) 1—¢"7 (¢—9)(1—¢")(1 —¢"'2"+j)}z

+Zl{ e R e ey R e ey
(6 - 671 ¢h) iy
Yoo gr T T (45)
h-2
5(1,1,1)(u2t(h)) — 0_2[1 +;Z{1 + (¢_9) _i: }2 +Z{ 1_¢j+¢n—h+.‘i _¢n—2h+j+1) + 1}2
HOZIE A a1 - oty 4 (L - 6 i R > 2 (A8)

1—¢? " 1-¢
By setting ¢ = 0, and # = 0 we can obtain the expressions for the processes (0,1,1) and
(1,1,0) respectively.
ARIMA(0,2,2): (1 — B)?z; = (1 — 6,B — 6, B%)a,

B(SHR) = G+ (614367} n = h) + (5

+(n ; h){h(h —1) = 6,h(h+1) — k(A +3)}
+Z{h 5 z‘-ﬁi?’i—el( +1—’“2rl)
i=h+1
—ez<i+2—h—+—>12 (n=m)lh(t 1= L) —ohe - 252~ ba(h - 16 -

h+1 h h—1
Hn = )[a(t = 2=) = 6u(h = 1)(t = 5) = Balk = 2)(¢t = =5}

11
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’7(0,2,2)(u2t(h))

5(0,2,2)(u2t(h))

7(0,2,2)(U3t(h))
5(0,2,2)(U3t(h))

n—h h-3 h—l+1 h—3

+§{Z[(h—i)(t— o) —h(h—i-1(t— =) (A7)
—ou(h—i - 2)(t - Ly
+(5—_§i‘—+@(n —h—1)(n = h)(2n — 2k — 1)]

= Var(uz(h)) = Va(h)

= {141 —6)2+ (8, +6)" +62+ (1 -8, —8,)*(h—3)}o%, h>3. (A.8)
= Tl B S G 08— G = DY+ (b= 26+ 0= (b= 2)F
+(n—=2R)(h —1)%(8y + 6, — 1) + {(h = 1)1 + (h — 2)82 — (h — 1)}?
FAG -0+ (G -2 =Y h>2 (4.9)
= Var(us(h)) = Va(h) = 20%(1 + 6} + 63) (A.10)
202

- (n—h)z{l+(1”91)2+9§+(91+92)2+(h~4)(1—91—92)2} h>3 (A1l
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