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Abstract

The aim of this work is to cast dimensionality reduction methods
into a general framework. Firstly we give an objective function from
which a continuum of different solutions, including all the known
DRM'’s, can be obtained. Then we look at the estimation of the
model at the base of DRMs for prediction. Least squares and Maz-
imum Likelihood estimation lead to an additive objective function.
By letting this addictive function be any convez linear combination
of the two addends, we again obtain an objective function that give
a continuum of solutions.

1 Introduction

Dimensionality reduction methods (DRMs) determine a set of or-
thogonal linear combinations of observed variables, called latent
variables (1v’s). The use of DRMs in prediction consists of sub-
stituting a set of observed explanatory variables with fewer 1v’s .
The responses are then predicted through the usual least squares
method. The use of DRMs for prediction is considered heuristic
because of the lack of a clear model behind the data and of the lack
of optimality of the solutions. In fact, DRMs for prediction seem
to succeed in situations were the Ordinary Least Squares (OLS)
estimates fail to give good predictions. Most of the published ap-
plications are in fields in which a large number of explanatory vari-
ables are available but the exact nature of the relationship between
responses and explanatory variables is not exactly known. That is,



fields such as chemometrics, biochemistry, statistical process con-
trol and sensory analysis. In this paper we only consider multi-
variate prediction, however some DRMs can be applied also for the
univariate case.

Different DRMs have been proposed for different purposes; each
method obtains the 1v’s optimizing a different objective function.
Because of the lack of a criterion for comparing these methods,
it becomes important to relate different DRMs through a common
objective function and to have the possibility of deriving alternative
intermediate solutions.

In the next section we briefly review the most common DRMs
and then propose the objective function of multivariate continuum
regression, from which different DRMs can be obtained. In section
3 we present some examples and in the last section we give some
concluding remarks.

2 Objective Functions of the DRMs Used
for Prediction

Let X be an (n x p) matrix containing n rows of independent ob-
servations on p explanatory variables and Y an (n x q) matrix con-
taining n rows of corresponding observations on ¢ response vari-
ables. In what follows we will assume that the columns of the
data-matrices have been autoscaled, that is centered to zero mean
and scaled to unit variance. The Iv’s t; = Xa;, j =1,...,p are an
ordered sequence of orthogonal linear combinations defined by the
p-vectors a;. We denote matrices with bold upper-case letters and
their columns with the corresponding bold lower-case letter. Thus
we write T(q) = XA(g) to denote the (n X d) orthogonal matrix con-
taining d Iv’s. The use of DRMs for prediction consist of regressing
the responses on the first d, 1 < d < p, Iv’s. Therefore the fitted
response matrix is given by

Y = T (TiyTw) ' TyY = XBy (2.1)



where the subscript [d] denotes that d 1v’s were employed and the
matrix Big = A(d)(T’(d)T(d))‘lT’(d)Y is the matrix of regression
coefficients obtained with d lv’s. When all p 1v’s are employed,
By, are the OLS solutions. To estimate the regression coefficients
it is sufficient to estimate A (q). In all the methods that we consider
the solutions with d 1v’s do not change if further components are
added to the model. In next session we briefly discuss different
DRMs.

2.1 Reduced Rank Regression

The reduced rank regression (RRR) solutions minimize the squared
errors of prediction using d lv’s. That is the RRR addresses the

model
Y = T4 Q4 + Ew, d < g (2.2)

Hence the 1v’s are obtained by LS minimizing the objective func-
tion:
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Hence, RRR minimizes the additional error to OLS due to the rank
constraints, ||Y —¥|[>+|[¥ 5 — Yql[>. The solutions a; are given
by the eigen-vectors corresponding to the d largest eigen-values of
the matrix (X'X)'X'YY'X.

The RRR 1v’s are the same as those obtained with the method
maximum redundancy (MR) ([13]). In fact, it is easy to show that
these are also the solutions to the following objective function:

@X'Yd)? ,
o Rl . .
{max X% A% = L, did; =1

(2.3)
a;X'Xa; =0, 1 <.

where each vector d; contains ¢ unknown coefficients. Thus, MR

determines couples of 1v’s in the two spaces. The resultant 1v’s

t; are the ordered principal components of the OLS solutions Y,

hence, at most min{p, ¢} 1v’s can be computed with this method.



2.2 Canonical Correlation Regression

In a predictive context, the 1v’s used in canonical correlation re-
gression (CCR) are the generalized least squares solutions to the
RRR model. That is the CCR objective function is:

. _ 1
ap{/ﬁgom Y — Xa;(ajX'Xa;)"a; X'Y](Y'Y)?|]%.
The coefficients a; are given by the first d coefficients of the canon-
ical correlation variables in the X space, that is by the eigen-
vectors corresponding to the first d largest eigen-values of the ma-
trix (X'X)'X'Y (YY) 'Y'X. Traditionally, the canonical corre-
lation variables are derived as the solution to (cf, e.g., [6]):

a;.X’Xajd;.Y’Ydj’ J
! / — ; .
a;X'Xa; =0,1<

a' X/ )2
{maxﬁi— aja; =1, djd; =1 (2.4)

2.3 Principal Components Regression

Principal components regression (PCR) regresses the responses onto
the first d principal components (pc’s). The pc’s split the predic-
tive space following the model

X = T(d)P,(d) + Fg d<p. (2.5)

The pc’s can be obtained by OLS from (2.5), however, Hotelling

[5] showed that these can also be obtained maximizing

(a;-X,Xaj), a;-aj =1, (2 6)
a;X'Xa; =01 < j. '

The coefficients a; are given by the eigen-vectors corresponding to
the first d largest eigen-values of the matrix X'X.The use of the pc’s
for prediction is heuristic because these are completely unrelated to
the responses, however PCR has often been advocated as a way for
overcoming multicollinearity in regression.



2.4 Partial Least Squares

Partial least squares (PLS) was introduced as an algorithm with-
out explicit predictive optimality. Its objective function cannot be
expressed in closed form, however, that of a very similar method,
SIMPLS [3], can. The SIMPLS 1v’s are obtained by maximizing
the following objective function:

{(d}Y’Xaj)Q, a;-aj = 1, d;dj = 1, (27)

a;X'Xa; =0,1>j.

The solutions are the eigen-vectors corresponding to the largest
eigen-values of the matrices (I, — H;)(X'YY'X), where H; is the
projector X’T(]‘_l)(T/(j_l)XX,T(j_l))_IT,(j_l)X with Hy = 0. Hence,
SIMPLS determines couples of 1v’s in the two spaces that have max-
imal covariance, under the orthogonality constraints. The objective
function maximized by PLS is the following

(d;.Y’Fjaj)Q, a;-aj = 1, d;d] = ].,
ajF.F;a; =0,1>] (2.8)
F1 = X, F(j+1) = Fj — tj(t;-tj)_lt;-Fj.

Henceforth we will refer only to SIMPLS but extrapolating to PLS,
as several studies have shown that these two methods yield results
close to many significant digits.

2.5 Continuum Regression

Continuum regression (CR), proposed by Stone and Brooks [12], is a
DRM for predicting univariate response that allows for intermediate
solutions between OLS and PCR, including SIMPLS as a special
case. This method is based on the maximization of the following
objective function:

{(a}X’y)2(a;X’Xaj)“, a> -1, aja; =1; (2.9)

a}X’XA(j_l) =0,7 > 1.



The CR solutions correspond to: OLS for « = —1, SIMPLS for
o = 0 and PCR for a that tends to co. The authors suggest
choosing the value of the parameter a by Cross-Validation (CV)
[11] and developed a simplified theory for reducing the number of
iterations for doing so.

2.6 Common Objective Function

The objective functions maximized by all the methods discussed
above are measures of “association” between couples of linear com-
binations of the responses and of the explanatory variables. If we
let r; = Yd; and t; = Xa; be Iv’s with unit norm coefficients, we
can express these objective functions in terms of three quantities:
the squared covariance between t; and rj, (tir;)?, the variance of
rj, ||r;||?> and the variance of t;, |[t;||>, as summarized in Table
2.1. When the nature of the data is uncertain there is a trade-off
between the maximization of these quantities and, so far, the prac-
titioner can only choose among the known DRMs to obtain different
solutions. In the same spirit of Stone and Brooks, we consider gen-
eralizing CR for multivariate responses maximizing the following
objective function:

(aX'Yd;)?|[Ydy]|* [|Xay[[** o, B > —1
aja; =djd; =1, a;X'Xa; =0, j > 1.

g(ajadjaaa /3) = {
(2.10)

Table 2.1 Objective functions of the DRMs used for prediction.
The solutions are to be obtained under the constraints a}aj =
dd; =1 and a;X'Xa; =0, j > 1.

method o.f. solution matrix
PCR max [|t;][? X'X

(t5r5)°

CCR | max miim | (XX)IXY(Y'Y)'Y'X

RRR max &7 (X'X)"X'YY'X
SIMPLS | max (t'r;)? I-H)XYY'X




It is possible to obtain the objective functions of the various
DRMs for fixed values of the two scalar parameters o and 3. Table
(2.2) shows these values.

Table 2.2 DRMs corresponding to different values of & and 3 in
2.10. SIMPLS is approximately the same as PLS.
CCA | RRR | SIMPLS | PCR
al| -1 -1 0 o0
Bl -1 0 0 finite

The convergence of objective function (2.10) to that of PCR
for & — oo can be easily shown [7]. Moreover, objective function
(2.10) allows for a (double) continuum of solutions by letting the
values of o and 3 vary between -1 and arbitrarily large values. We
obtain the first order condition equalling to zero the derivatives of
g(a, B) with respect to a; and d;. After some simplification, these
become:

Oay

B_ad% : Y’Xal(r’lrl) + ,BYIYdl( ,11‘1) = d1¢2

{ﬁs_ P X'Ydi(tt) + oX'Xay (tir1) = a1 (2.11)

where ¢; and ¢, are two constants to be maximized. The subse-
quent solutions must satisfy also the orthogonality constraint. This
is obtained by pre-multiplying the first of (2.11) by the projector
(I — H;) defined for SIMPLS.

A similar multivariate generalization of CR was proposed in
[2] were the Iv’s were to be obtained by maximizing the following
objective function:

g(tj,rj, @, 8 = 0) = (a;X'Yd;)? || Xay|[*
aja; =did; = j, ajX'Xa; =0,1<J (2.12)
o> -1

This objective function can be obtained from (2.10) setting 5 equal

to 0. By letting a vary between -1 and oo we obtain a continuum
of solutions that go from RRR to PCR. One advantage of objective

7



function (2.12) is that we do not need an explicit solution for the
d,’s. In fact the first order conditions are:

X'YY'Xa;(ajX'Xa;) + a(X'X)a;(2;X'YY'Xa)) = a;4. (2.13)

Of course, the solutions must also satisfy the normality constraint
||aj|| = 1 and the orthogonality constraints a;X'Xa; = 0, for i < j.
We will refer to objective functions (2.10) and (2.12) as Multivariate
Continuum Regression (MCR).

The computation of the MCR solutions requires an iterative
algorithm. We outline such an algorithm in Table 2.3. For 8 =0
the solutions are obtained with the same algorithm with steps 2.3
and 2.4 omitted, step 2 consequently modified and substituting
YY't; for r;. The algorithm is easy to implement and in all our
studies has shown a fast rate of convergence for o and 8 positive.
The values of & and 3 can be chosen by CV.

Table 2.3 Algorithm for the computation of the MCR solutions.
TEST at step 4 refers to some stopping rule to be defined.
0) Initialize centering and scaling X and Y.

1) aj"—‘lp, dj=1q, tj:Xaj, I‘j=Ydj,H=0p,j=1
2) iterate until a; and d; converge

2.1) a = (I, — H) {aX't;(t)r;) + X'r;(t}t;) }
2.2) aj < aj/|lajl|, t; =Xa,

23) d]' = ,BYII'j(t;-I‘j) + Y’tj(r;rj)

2.4) d; + d;/|ldjl|, r; =Yd,

3) H=X'T(;-y (Tl(j—l)XXIT(j—l))_lTl(j—l)X
4) if TEST = FALSE: j + (j +1) goto 1

5) exit




In Section 3 we will apply MCR to some published data.

2.7 Weighted Maximum Overall Redundancy

A predictive DRM addressing the dimensionally reduced linear model
was proposed by Merola and Abraham [8]. This method considers
the model:

X = T(d)Pl(d) + F[d]

Y = T(d)Ql(d) + Eg (2.14)

T = XAxq).

Model (2.14) contains models (2.5) and (2.2. Clearly there is
a trade-off between the two parts. As mentioned above, the LS
solutions to the separate models are the principal component’s and
the RRR 1v’s, respectively; PLS gives a compromise between RRR
and PCA without any explicit optimality with respect to them. It
can be shown ([9] and [7]) that the PLS 1v’s span the whole X
space and are closer to the principal component’s of X than the
RRR 1v’s.

Now let us consider model (2.14) with the restrictions that
T'T =1y, T'F = 0 and T'E = 0. For estimating the coefficients,
we consider Least Squares and Maximum Likelihood approaches.

2.7.1 Least Squares Estimation

Let Z = (Y,X), then the LS estimates for model (2.14) are those
that minimize

1Z - T(Q, P)|* = [|X - TP'|* + [|Y - TQ'|* (2.15)

with respect to T = XA subject to T'T = I(g). The solutions are
given by [7] o
(YY, + XX')T(d) =Ty Oq), (2.16)

where ©(y) is a diagonal matrix containing the d largest eigen-
values. Thus the resulting lv’s are eigen-vectors of the sum of
the matrices which give the 1v’s in RRR and PCR. This is not



surprising, given the additive form of the objective function. It
should be noted that the 1v’s would be uniquely determined even
if X'X were singular.

2.7.2 Maximum Likelihood Estimation

For this approach, we assume that A, P and Q are fixed con-
stants, that the rows of E are i.i.d. N,(0,%,) and those of F are
i.i.d. Ny(0,%2¢) and that E and F are mutually independent. If
we consider models (2.2) and (2.5) separately, then the RRR solu-
tions are maximum likelihood estimates (MLE’s) for model (2.2) if
3. = keI, with k. unknown [7], and that the principal components
of X are the MLE’s for model (2.5) for unstructured 3.

If it is assumed X, = kI, and ¥; = kI, with k. and k; un-
known, then it can be shown ([7]) that the MLE’s are the eigen-
vectors T(g) satisfying:

{XX(X'X) X'YY' + (1 - )XX’ } T =Tw®ua, (2.17)

where 0 < X < 1, é(d) is the diagonal matrix containing the d

largest eigen-values in non-increasing order and A= {1 + ’;—g%%
This implies that, under the hypothesis stated above, the MLE’s for
model (2.14) can be obtained as eigen-vectors of a convex combina-
tion of the matrices generating the MLE’s for the separate models.
It is easy to see that these MLE’s tend to the RRR ones for Aol
(i.e.,for ko/ks — 0) and to the principal components for A — 0 (ie.,
for ke/k; — 00).

The MLE’s solutions coincide with the LS under the simpli-
fied assumptions k; = ke, which is the case when the columns of
the data matrices have been autoscaled. Since autoscaling deletes
all information about the variances, these two norms may not be
comparable. Therefore we consider obtaining the solutions as the
eigen-vectors of a generic convex linear combination of these ma-
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trices:
{(1 XX+ AYY'} t = dty, 0<A<1 (2.18)

with ¢, > ¢;, j > k, k =1,...,d. The resulting procedure will be
referred to as WMOR. The same procedure was proposed by de-
Jong and Kiers [4] with the name of principal covariates regression
(PrCOVReg). For A = 0, WMOR reduces to PCR and for A =1
to RRR; A = 1/2 is equivalent to no weighting. The larger is A and
the more importance is given to the prediction of Y. In their paper
deJong and Kiers suggest choosing A by CV. If CV is also used
for choosing the optimal number of components, d, then one has
to cross-validate the pairs (A, d). When the number of observation
is large, repeating the CV can be computationally very demanding
and when the number of observation is small the results may not
be trustworthy. One may think of adopting a fixed choice for A.
We suggest [8] two possible choices:

trace(X'X)
trace(Y'Y) + trace(X'X) -

M= and A=
Vi + 07

(2.19)

where 62 and ~? are the largest eigen-values of X'X and Y'Y re-
spectively. The procedure corresponding to A; will be referred to
as WMOR,;, i = 1,2. Of course, other choices of the weights are
possible, maybe based on some prior knowledge. In Section (3) we
will apply this method to published data.

3 Examples

We applied the methods presented above to two sets of data. The
first set, consisting of measurements taken on 22 explanatory vari-
ables and 6 responses of a chemical reactor, was published in [10].
The second set, consisting of measurements taken on 6 explanatory
variables and 3 responses for 25 different types of tobacco leaves,
was published in [1].

11



Total PRESS for the Chemical Reactor Data

32 observations, 22 explanatory and 6 responses

PRESS

Figure 1: Cross-validated PRESS relative to the OLS for the chem-
ical data comparing various values of o in MCR with 8 = 0.

Total Press Relative to OLS for the Tobacco Data

-1 OO -0.50 0.00 0.s0 1.00 1.50 2.00 2.80 3.00 3.80 4.00
0.75 -0.25 0.28 0.75 1. 25 'I 75 2.25 2.75 3.25 3.75
aph.

Figure 2: Cross-validated PRESS relative to the OLS for the to-
bacco data comparing various values of o in MCR with 8 = 0.

The cross-validated PRESS relative to the OLS for various val-
ues of o in MCR for the chemical data and the tobacco data are
shown in Figures 1 and 2, respectively. For the chemical data PLS
(a = 0 has a slight edge on higher values of o.. However, the results
are very similar for > 0. The tobacco data show that there is a
gain using 2 1v’s. The lowest PRESS is achieved for oo = 0.25 then
PRESS increases with o.

WMOR was applied to same data-sets. The cross-validated
PRESS relative to the OLS comparing various values of A and PLS
for the chemical data and the tobacco data are shown in Figures 3
and 4, respectively. In the first case the best results are achieved
with PCR and PLS. Although the difference in PRESS for equal
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number of 1v’s is very small, PLS reaches the minimum with 10 lv’s
while PCR with 12. In the tobacco data PLS achieves the lowest
PRESS with 2 1v’s, however the PRESS with 2 1v’s is pretty much
the same for values of A between 0.2 and 0.4 and WMOR,.

Cross-Validated Press for the Chemical Reactor Example

Figure 3: Cross-validated PRESS relative to the OLS for the chem-
ical data comparing various values of A in WMOR and PLS.

Total Press Relative to OLS for the Tobacco Data

-1.00 -0.50 000 0S50 1.00 150 200 2850 300 360 _4.00
-0.75 -0.26 ©0.26 O.76 1.26 1.76 2.256 2.75 3.25 3.75
apha

Figure 4: Cross-validated PRESS relative to the OLS for the to-
bacco data comparing various values of A in WMOR and PLS.

4 Concluding remarks

In this paper we give two generalizations of DRM’s useful for pre-
diction. One was derived as the generalization of CR and the other
one was obtained from LS and ML estimation of the full dimension-
ally reduced model. We suggest considering solutions intermediate

13



to the known ones. These solutions, can, in some applications, im-
prove the effectiveness of DRM’s as shown in the examples given
here.
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