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Abstract

In this paper we discuss briefly univariate time series analysis with Autore-
gressive Integrated Moving Average(ARIMA) models. We consider the three
stage model building strategy, the generation of forecasts and several other
practical issues such as outliers, missing values and interventions in time se-
ries. The application of time series to control problems, state space models
and the Kalman filter will also be considered. Non-Gaussian and non-linear
models will be reviewed highlighting some of the more interesting models.
We will also consider stochastic volatility models and other models for con-
ditional variances with discussion on ARCH and GARCH models. We also
include a short discussion of long memory (fractional differencing) models.

1. Introduction

A time series is a set of data collected over time. Data in many areas of
investigations such as business, engineering, environment, industry etc are
often in the form of a time series. Some examples are:

(i) Quality level of a product measured every hour

Weekly concentration of a pollutant in a river

)
(ii) Hourly yield of a chemical process
(iii)

)

(iv
We represent a time series by {Z;,t = 1,2,...,n} where the subscript ¢
indicates the time at which the observations are taken. In this representa-
tion we implicitly assume that the observations are taken at equally spaced

intervals of time. Sometimes the observations in a time series may not be
equally spaced. However, in this paper we assume that the time series 1is

Daily closing price of a share of a company
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equally spaced. In some contexts the observation at time ¢ is an aggregation
of underlying quantity rather than its value at a single point, for example,
monthly sales of a product.

One of the main objectives of time series analysis is the understanding
of the time-dependent structure of the observations by building a model and
the prediction of the future observations using the model obtained.

Statistical Models

Traditional statistical models have been of the form

Zy = f(wthﬁ)+N(m2t), (1.1)

where Z; is some observation from a measurable phenomenon, f is a func-
tion of some variables #;; and N is a function of some other variables @,
for which no measurements are available. These variables may not be under
the modeller’s control or the modeller may not even be aware of some of
these variables. Usually N(zy) is taken as a sequence of independent iden-
tically distributed (z.:.d.) random variables (often normal random variables)
independent of &;;. These assumptions are often justifiable in contexts where
randomization is performed before the experimental runs are taken. However,
when the observations Z;, Z,... are observed in time, randomization is not
possible and hence the assumptions of independence may not be appropriate.

For simplicity we now consider cases in which the function f involve only
the variable time (¢) itself and not @,;. For instance, consider (a) a measured
quality characteristic from an industrial process in control, (b) the speed of
an inter-planetary rocket to which a constant force is being applied, (c) the
mean monthly temperature of a point on the earth’s surface. At time ¢ + ¢
these might be represented respectively by the models

(@) Ziye = PBo+ Nize, (B) Ziye = Bo+ Bil + Neys
(c) Zewe = Po+ Bicos(2ml/12) + Basin(27/12) + Nyye,  (1.2)
where ¢ represents some time origin and £ the lead time. In these expres-

sions (i) {N:} is a sequence of i.i.d. random variables whose distribution is
approximately N(0,0?). (ii) The coefficients S, 81, B2 are fixed constants.



The predictive capability of models such as given in (1.2) can be enhanced
by allowing the coefficients to be adaptive (evolve over time) and the noise
N; to be serially correlated.

Thus in place of (1.2) (a) and (b) we may respectively consider the models

(a) Zeye = B+ Ny where B = B¢ + by,
(b) Zeye = ﬁ(()t)+ﬁ§t)é+Nt+£
where 800 = B¢V + BV + by,
O = B 4 by, (1.3)

In (1.3) {1t} and {by} are i.i.d. sequences independent of each other
and {NV;4¢} is a correlated sequence. These models show how the coeflicients
68” and 5?) adapt stochastically (evolve over time). Instead of considering
such models explicitly in the leadtime ¢, people have considered stochastic
difference equation (SDE) models of the form:

(@) Zisve = Zigo—1 + ar4e — 6101401
(1.4)

() Ziye = 2Ziyt-1 — Zigo—2 + arye — 61a140-1 — O20140-2,

where {a;} is a sequence of i.i.d. random variables and 6; and 6, are fixed
parameters. It can be shown that the models in (1.3) (a) and (b) are equiv-
alent to the solutions of the SDEs in (1.4 (a) and (b)) respectively.

Thus stochastic difference equation models as those given in (1.4) provide
a class of models which allow the coefficients in the function f to be adaptive
and the noise N; to be serially correlated. The models in (1.4) are special
cases of a class of models popularized by Box and Jenkins (1976) referred to
as the Autoregressive Integrated Moving Average (ARIMA) models.

2. ARIMA Models

A class of processes referred to as the Autoregressive Moving Average (ARMA)
models have been found very useful to represent many time series occurring



in practice (see Box and Jenkins (1976), Yule (1927)). This class can be
described by

#(B)Z: = 6o+ 6(B)a; (2.1)
where ¢(B) = 1—$B—---—¢,B"
¢B) = 1-6,B—---—0,B7

are polynomial operators in B and B is such that BZ; = Z;_; -6y is a constant
and {a:} is a white noise sequence with N(0,c?) distribution. This process
will be ’stationary’ if all the roots of ¢(B) = 0 lie outside the unit circle.
Then 6y = (1 — ¢y — - - - — ¢p)p where p = E(Z,), is the mean of the process.

A very simple case of an ARMA model is the Autoregressive model of
order one (AR(1)) obtained by taking §(B) =1 and p = 1:

(1 - QSB)Zt = 00 + ag (22)
OR Zy = ¢Zyy + 00+ a;

This process is stationary if |¢| < 1 and then 6y = (1 — ¢)u where u = E(Z,).

The ARMA is a very flexible class and can include processes with non-
stationary (drifting mean) and seasonal behaviour.

Nonstationarity
If we allow some of the zeros of the polynomial on the left side of (2.1) to

be one then it can capture nonstationary (drifting mean) behaviour. Thus if

we consider ¢(B) = ¢(B)(1 — B)? on the Lh.s. of (2.1) we obtain

#(B)(1 — B)?Z, = 6o+ 6(B)ay, (2.3)
where ¢(B) and 6(B) are as defined before. The representation in (2.3) is

referred to as an Autoregressive Integrated Moving Average, ARIMA (p, d, q),
process. A very simple case is obtained by taking p=0,d=1and ¢ =1:

(1-B)Z, = 6o+ (1—6B)a,. (2.4)
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This is known as the (0, 1, 1) process and has been very popular (see Box
and Jenkins (1976)).

Seasonality

The process described in (2.3) can be generalised to include seasonal
patterns. In general we can write the model as

&(B)®(B*)S(B)Z;, = 6y+6(B) 0O (B*)a, (2.5)
where ¢(B), §(B) and {a,} are as described in (2.1), s is the seasonal period,
$(B)=1-®B*—---—®pBF
©(B)=1-0,B°—---—0gB*
are polynomial operators in B*® such that the roots of ®(B*) = 0 and ©(B?*) =

0 are outside the unit circle. The simplifying operator S(B) is allowed to
have zeros on the unit circle and it is expressed as

S(B)=(1-B)'(1- B,

where D is a positive integer.
Some special cases of (2.5) which are popular:
(1) (1-B%)Z; = 6o+ (1—-6B)(1 -0 B)a, (2.6)
(i) (1-B)(1-B*)Z; = 6+ (1—-6B)(1 -0 B%)a,.
Some Special Cases and Properties

If we take ¢ = 0 in (2.1) then we have the stationary Autoregressive process
of order p (AR (p)):

d(B)Z: = ay, (2.7)



where ¢(B) is as in (2.1) and §p = 0 without less of generality. Alternatively
this can be expressed as

Zt = ¢IZt—1 4+ ...+ qprt—p + a;. (28)
In this model Z; is regressed on the previous values Z;_1, Z;_s, ..., Zi—p.

Suppose that p = 0 in (2.1) then we have the moving average process of order

q (MA (q)):

Z: = 0(B)ar=as—bat—1 — -+ — 6,014, (2.9)
where 6, is assumed to be zero without loss of generality.

Under stationarity we can express the process in (2.1) as (6o is taken as
zero):

Z, = ¢"Y(B)(B)ay (2.10)

since the roots of ¢(B) = 0 are outside the unit circle. This can be reex-
pressed as

2 = ¥(B)a, (211)
where (B) =1+ 1B + ¢B?> + - = ¢~}(B)#(B) and hence

Zy = a;y + Pras-1 + Poas_g + - -

This is called the moving average representation or the ‘random shock’ rep-
resentation of the process. There is an alternate representation called the
autoregressive representation which is possible only if we can write (2.1) in
the form

I BIBYZ = a (2.12)
ile. w(B)Z; = ay, (2.13)



where 7(B) =1—mB —mB* — .- = 71(B)#(B) or

Zt = M2y + T2+ - + as.

This representation is meaningful only if the roots of §(B) = 0 are outside
the unit circle. This condition is known as the invertibility condition. The
autoregressive and moving average representations are useful in different con-
texts and this will become clearer later.

Autocorrelation Function (ACF)
We define the lag k autocovariance as

Y& = COU(Zth—k) k = 0, ﬂ:l,

and

Pk = V&[0

as the lag k autocorrelation. It can be shown (see Box and Jenkins (1976),
Abraham and Ledolter (1983)) that for the AR(p) process in (2.8) pj satisfies
the difference equation

#(B)pr =0 k>0 (2.14)
(Note: B is operating on k)

i.e.
Pk = G1pk—1+ -+ + Sppk—p k> 0.

The solution of this can be written as

pr=A1GE+ -+ A,GF k>0,

where G7'(i = 1,2,...,p) are the distinct roots of ¢(B) = 0. For stationary
processes |G;| < 1 and hence the p are mixtures of exponentials, polynomi-
als and damped sine functions and go to zero as k increases.

For an AR(1) with parameter ¢



pe=¢" ¢ <1 (2.15)

which goes to zero exponentially if ¢ > 0 and in an oscilatory way if ¢ < 0.

For an MA(q) it can be shown that

=0k 4610k 414465k bqg _
o = e A AT
0 k>q
This indicates that p; has a cut off after lag g.
For an MA(1) with parameter ¢
_ [/ k=1
Pk = { 0 Es1 (2.17)

For the ARMA process in (2.1) the autocorrelations are given by the
difference equation

d(B)pe=0 k>gq (2.18)

Thus the behaviour of the autocorrelation is the same as that of an AR(p)
after lag gq.

Given a time series of n observations the autocorrelations can be esti-
mated as



If py =py =--- =0 then

1
V(’T'k) ~ ;

Usually 7y is plotted against k£ and the limits 0+ % are used to assess whether
the autocorrelations are zero or not.

Partial Autocorrelation Function (PACF)

The partial autocorrelation at lag k can be thought of as the partial
regression coeflicient ¢k in the representation

Zy = $nlii++ ook + an (2.19)

It measures the additional correlation between Z; and Z;_j, after adjustments
have been made for the intermediate variables Z;_;, Z;_s,..., Zi_k+1. From
(2.19) it follows that (by multiplying both sides by Z;_; and taking expecta-
tions)

P; = ¢k1pj—1 +o 4t ¢kkpj—k .7 =12,..., k. (220)
Define
1 p1 o pr-1 Pr1 P1
p| g
Pe-1 o pr 1 Dk Pk

Then (2.20) can be written as

Akq)=p



and the coeflicient ¢yx in ¢ is given by

ok = |ALl/] Akl (2.21)

where Aj is the matrix Ay with the last column replaced by the elements of p.

If the process is really an AR(p) then

¢ = 0  k>p. (2.22)

Thus for an AR(1), ¢22 = ¢33 = --- = 0. This property is very useful
in differentiating between AR processes. The ACF for any AR process is a
mixture of damping exponentials and sine waves. However, the PACF has a
cut off after some lag. Partial autocorrelations can be estimated from (2.21)

by replacing the p;s by ris. However, there is a convenient algorithm due to
Durbin (1960) to compute ¢y (see Abraham and Ledolter (1983)).

Note also that for an AR(p)

~

V(okk) =~

S|

for k> p, (2.23)

qASkk can be plotted against k to see the patterns in them. A cut off can be
assessed by the limits at 0 +2//n.

3. ARIMA Model Building

Box and Jenkins (1976) introduced a model building strategy to build ARIMA
models of the form given in (2.3). This is described in the following diagram:
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Theory and/or
Previous Studies

L No
Yes

Specification Estimation Model Checking > Use the Model

At the first stage, a model is specified from pertinent data. In some instances
theory may suggest a model, in other cases such theory may not exist or may
be incomplete, and historical data must be used to specify an appropriate
model. At the next stage the unknown parameters in the specified model
need to be estimated and finally the adequacy of the specified model need
to be checked. If the model is not adequate then it should be modified, re-
estimated and re-checked until a satisfactory model is found.

Figure 3.1. Model Building Strategy

Specification

We use past data to suggest a subclass of parsimonious models that are
worthy of consideration. For easiness of discussion we assume that the series
is nonseasonal.

Step 1. Variance Stabilization

Usually some transformations such as the power transformations (Box
and Cox (1964)) can be used to stabilize the variance. Often a logarithmic
transformation is considered for economic data.

Step 2. Differencing

If the series exhibits trends (stochastic or deterministic),taking differ-
ences, (1 — B)? d=1,2,..., will make the mean constant. We can examine
the series and its differences to visualize nonstationarity in the mean. If the
process is nonstationary in the mean then its sample ACF decays only very
slowly. Thus we consider successive differences until the sample ACF decays
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to zero fast. Typically d = 0,1, or 2. Sample variances of successive dif-
ferences also can be helpful (see Abraham and Ledolter (1983)). One can
also use some modifications of the variogram (see Abraham and Balakrishna

(1999) and Cressie (1988)).
Step 3. Specification of p and ¢

Once we have a stationary difference we must specify the orders of the

autoregressive (p) and moving average (¢) polynomials. These orders are
usually small and can be specified by matching the patterns in the sample
autocorrelations and partial autocorrelations with those of theoretical ACF
and PACF respectively. This is justified since for stationary processes as
n — 0o, ri o pr and ¢?kk B bk (these indicate convergence in probability).
There are many order determination tools and for a survey see de Goojier
et al (1985). Even with all these we find that the usual SACF and SPACF
are mostly used. However, for mixed ARMA processes the Sample Extended
Autocorrelation (SEACF) (see Tsay and Tiao (1984)) may also be used. We
summarize the theoretical properties of some common processes in Table 3.1.
Step 4. Inclusion of a trend parameter (6)
If the series requires differencing then we should check whether it is necessary
to include a deterministic trend () in the model. For this compute w, the
sample mean of the appropriate difference, and compare with its standard
error $(w). This standard error can be approximated by

1

() & [%"(1 For e+ 2rK)] ° (3.1)

where ¢, is the sample variance and ry,---,rg are the first K significant au-
tocorrelations of the stationary difference.
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Table 3.1
Model ACF PACF

(1,d,0), AR(1) Exponential decay Gk =0for k >1
(p,d,0), AR(p) Exponential and / or ¢ =0for k> p
sine wave decay ,
(0,d,1), MA(1) pr=0for k >1 Dominated by

damped exponential

(0,d,q), MA(q) pr =0 for k > ¢ Dominated by damped
exponential and/or
sine waves

(1,d,1), ARMA(1,1) | Exponential decay from | Dominated by exponential
lag 1 decay from lag 1

(p,d,q), ARMA(p,q) | Exponential and/or sine | Dominated by exponential
wave decay after (¢ — p) | and/or sine wave decay
lags after (p — q) lags

When the series involve seasonal components we have to first determine D
along with d and then specify P and @ as well as p and ¢q. These can be
done in the same spirit as we described above by paying special attention to
autocorrelations and partial autocorrelations at and around ‘seasonal lags’
(see Abraham and Ledolter (1983)). It should also be noted that most of
the commonly used models with seasonal components belong to the following
class.

(1-¢B)(1-®B°)S(B)Z; =6o+ (1 —6B)(1— O B%)a,
where S(B) = (1-B)(1-B*)? andd=0,1,2and D =0,1,2. (3.2)

Model Estimation

After a model is specified it is necessary to estimate its parameters. Let
(Z1,--+,ZN) represent the original observations and w = (ws,---,w,)" the
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vector of n = N — d differenced observations. The estimation of the pa-
rameters ¢ = (¢1,- -, ¢p),0 = (61,---,60,)',® = (1,---,Pp) and O =
(©1,--+,0¢0)" can be done by any software. We give a short description
of the methods involved. Box and Jenkins (1976), Abraham and Ledolter
(1983) give more details of estimation.

We assume that the joint distribution of any sample w is multivariate
normal and we illustrate the issues with some simple cases.

Case 1: AR(1): wy = w1 + a;

Or a; = Wy — W1,
where the a,,...,a, are independent and independent of w;.

Hence the joint density function

fwi, .. wnlg) = f(wild) - faz) - flan)
ocf(wllcﬁ)a_(""l)-exp{ E — ¢wi-) }

If we take w; as a fixed quantity then f(w;|¢) does not contribute to the
likelihood

L(glw) = f(wr,..., wnl).

Then the log likelihood is given by

1 n
lPlw) =log L~ —(n—1)logo — 557 (wy — dpwy_q)>. (3.4)
=2
In this case maximizing ¢ is equivalent to minimizing

S(¢) = zn: (wy — ¢pw;—;)? and this leads to the estimator
t=2

14



é= Y w1/ D wy . (3.5)
t=2 t=2

This is the same as the Least Square estimator obtained by regressing w;
on w—1(t =2,3,...,n). Thus the Least Square Estimator is the same as the
maximum likelihood estimator (mle) conditional on w;. This is true for any
AR model.

The marginal distribution of w; is N(0, 1{%) and hence the exact likeli-

hood in (3.3) becomes

2ot (oD e {5 0 -t + D - swry] . (29

2
20 t=2

The Maximization of this leads to a cubic equation. Closed-form solution
is not available and iterative methods have to be employed. Thus the exact
mle of ¢ is obtained by nonlinear maximization. The same results hold for
more general AR processes.

A simplification can be achieved by noting that the exponential term
dominates L and hence maximization of L is approximately the same as
minimizing

Su(9) = (1 — Pl + é(wt — dws_1)>. (3.7)

The resulting estimator is called unconditional least squares estimator and
it is given by

bu = Y wawey) Y wh . (3.8)
t=2 t=3 *

This also can be generalised to the AR(p) process.

Case 2: MA(1): a; = a1 + wy. If ap is known then we can compute
ai,...,an, recursively using the data w = (wy,...,w,)

flao,wr,...,wn) = flao,...,an) = f(ao)... f(as)

15



1
_(n 1) — e ———
X O exp[ 5 25(9)] , (3.9)

where S(6) = f: al.
t=0

Then the likelihood is given by L(f|lw) = f(wl|8) = f(ao,w)/f(aclw). It
can be shown (see Abraham and Ledolter (1983), Box and Jenkins (1976))
that exact likelihood is

L(Blw)ma"”[l—_i—at%TUJ [— Z (as]w) (3.10)

=0

where E(a;|w) is the conditional expectation of a; given w:

E(ai|w) = 0E(at—1|w) +w, t=1,2,...,n

To get this recursion started we need to know E(ao|w). This can be obtained
by a procedure called backforecasting (see Box and Jenkins (1976)). Thus for
a given value of 8, E(ao|w) can be obtained by backforecasting and using the
recursion we can compute E(a;|w), t =1,2,...,n and hence the likelihood.
MLE of 6 can be obtained by maximizing (3.10).

As in the AR(1) case conditional LS estimates can be obtained by setting
E(ao|w) to zero and minimizing S5;(6) = E a?, where a; becomes w;. It

should be noted that S;(f) is not a quadratm function of  and hence non-
linear least squares has to be used. Unconditional least squares estimate of

§ can be obtained by minimizing S2(6) = i E(a;Jw). This also requires
t=0

nonlinear methods.
Case 8: General ARMA (p,q)

The likelihood corresponding to this model is of the form (see Abraham
and Ledolter (1983))

L(¢,8,0%w) = g1(¢,0,0%) exp [‘53725("5’9)] , (3.11)
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where g; is a function of the parameters (¢, 8, 0?) and

S0 = S EUiw). (3.12)

t=1-p—q

Here E(U,|w) is the conditional expectation of U, given w, ¢, @ and o and

U, = ag t=1,2,...,n
LT go(an,w.) t<0,

where g, is a function of the initial unobservable values a. = (a1_q,...,a_1,a0)’
/
and w,. = (wi—p,..., w1, W)

MLE of the parameters (¢, 8, 0?) can be obtained by maximizing the func-
tion (3.11). In general closed form solutions cannot be found. However,
different softwares (S+, SAS etc) compute these or close approximations nu-
merically. Box and Jenkins (1976) discuss the asymptotic variances of the
MLE’s. In practice the softwares readily supply estimates of the covariance
matrix V((}s, é) of the parameter estimates and the square roots of the diag-
onal elements of V (¢, ) can be taken as the estimated standard errors.

Model Checking

We have made some assumptions in specifying the model and after esti-
mating the parameters of the specified model it is necessary to check whether
the assumptions are valid. This phase in the model building usually referred
to as “diagnostic checking” depends on the analysis of the residuals a;.

In a time series with large n we expect {a;} to behave like {a;} which are
assumed to have mean zero, constant variance and zero autocorrelations.
By examining the plots of the residuals we get an indication of whether a
(mean of ;) is close to zero, and the variance is approximately constant.
In addition, such a plot can reveal possible outliers and other systematic
patterns. To check whether the residuals are uncorrelated we can examine
their sample autocorrelations:

™
>

ro(k) = S ek (3.13)

5 (a — a)?

t=1
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and compare them with their standard errors (S.E.) which is usually approx-
imated as

S.E.(ra(k)) = n~V/2,
It should be noted, however, that the true standard errors can be much

smaller (see Abraham and Ledolter (1983)).

There is also a portmanteau test to test whether the autocorrelations of
the a;!s are zeros. Under the null hypothesis of model adequacy

ri(k)

a

M=

Q=n(n+2)

(3.14)
k=1 n-— k
has a large sample chi-square distribution with K — p — ¢ degrees of freedom
if an ARMA(p, ¢) model was employed. This Q statistic can be compared
with the percentiles of a X%K—p— g for model adequacy.
Examples

We illustrate the model building strategy through two examples in which
the data come from well known sources and hence are not included here.

1. Grinding wheel profile
This time series consists of 250 observations on the profile of a grinding
wheel where the sampling interval is .002in. The data are taken from
Pandit and Wu(1983) and are shown in Figure 3.2. Note that the units
are in 1073 in. The SACF given in Figure 3.2 indicate an exponential
decay and possibly a damping sine wave. The SPACF cuts off after
two lags. Thus we consider an AR(2) or ARMA(2,0,0),
Zi=p+ $1Zi—1 + $2Z,-2 + ay.
Maximum likelihood estimation leads to

A

¢ = .785 (.062), &y = —.224 (.062) (3.15)

and & = 2.437, where the values in paranthesis are standard errors.
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Grinding Wheel Profile
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Figure 3.2. Grinding Wheel Data

The residual autocorrelations are all small (see Figure 3.3) and the
portmanteau test with the first ten autocorrelations gives ¢ = 8.57
with a p-value = .57 (from x? distribution with 8 degrees of freedom).
Thus the model seems adequate for the series.

. Metalic Film Thickness

This data set consists of 100 observations on the thickness of a very
thin metalic film and is taken from Box and Luceno (1997). These ob-
servations were made at equally spaced intervals of time at one stage in
the manufacture of a computer chip. It is necessary to keep the quality
characteristic as close to the target value (T = 80) as possible. Our
objective here is to obtain an adequate time series model for this data.
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ARIMA Model Diagnostics: grind

Plot of Standardized Residuals

2

9

-2

-4

] 50 100 150 200 250

ACF Plot of Residuals

ACF
0.0 02 04 08 08 1.0

p-value
00 02 04 06 08

Figure 3.3. Residual Analysis for Grinding Wheel Data
The data are in Figure 3.4 and are the SACF and SPACF. The SACF

shows a non-decaying behaviour and the time series plot also shows

a wandering tendency. These call for a difference of the data. The
differenced data and its SACF and SPACF are in Figure 3.5.

The SACF goes to zero exponentially and the SPACF has a cut off
after lag one. Thus we consider the (0,1,1) model:
Zt - Zt—l + a; — Hat_l. (316)

Maximum Likelihood estimation leads to

f = .785 (.061), & =11.161. (3.17)

At the checking stage, the residual autocorrelations are all small and
the @) statistic with first ten autocorrelations is 6.84 with a p-value of
.74 (x* with 9 degrees of freedom). Thus we take the model in (3.16)
as adequate.
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Figure 3.4. Metalic Film Thickness
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Metalic Film Thickness - First Difference
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Figure 3.5. First Difference of Metalic Film Thickness

4. Forecasts from ARIMA models
Minimum Mean Square Error Forecasts
Given a time series Z;, Z;_y, ..., we like to forecast Z;;, from the origin
t. We assume that the process is as defined in (2.3) with b = p + d.
Zi =0+ v1Zi1+ -+ opZip+ar —0r1ai_1 — - — bgas—4 (4.1)

It is known that the minimum mean square error forecast of Z;;, from
the origin ¢ is given by

Zg(é) = E[Zt+l|Zt, Zt—l, .o ] (42)
» (see Brockwell and Davis (1987)) and Box and Jenkins (1976))
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In a typical situation we have only the n observations Z;,---, Z,. How-

ever, we assume that n is sufficiently large so that

Zo(0) = E[Znst| Zny, Zu-r, .. ) = E[Zuitl Zn, Znr, - . . 2]

The model in (4.1) can be written in the inverted form (assuming invert-

ibility)
Zive = M1 Zpyt—1 + T2 Zigo—2 + -+ - + Qppe,
where 7(B) =1 —mB — mB*—--- = §71(B)¢(B)(1 — B)“.
Hence
Ziyy = MiZi+ -+ a
Ziyy = m{ '21 TiZ—j1 + Qeg1} + T2 + -+ + Qry2
J=
= [a42 + T10e41] + EI(WIWJ‘ + Ti41) Ze—j1
]:
= (Ge42 + ma41) + _21 7T§-2)Zt—j+1,
]:
where 18 = 7,7 + 7
e U] J+1-

Similarly we can write

Zope = [arpe+ 7 Margey + -+ 7 Ve + Y ﬂ-J('e)Zt—j-Ha
J=1

‘ -1
where ﬂgl) = Tjpe-1+ 2 Wkﬁﬁl'h),j =1,2,....

k=1

From (4.4) it follows that
Zy(t) = EZuesel 2, 2oy, ) = Y 70 21 i
J=1

and the associated forecast error is

-1
ei(l) = Zire — Z:(0) = Y 70 are;,

J=0
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where 7T§0) =1, ng) =i, 7r§2) =7} + 7,
Hence
-1
Var[e;(£)] = o* 2[71’{])]2. (4.7)
Jj=0

In practice the m’s are to be estimated from data. However, if we as-
sume that the series is long and that the ajs are N(0,0?) then approximate
probability limits can be given as follows

Zy(£) £ Uyjay/Var[e(£)), (4.8)

where Uy is the 100(1- /2) percentile of the normal distribution.

The forecasts in (4.5) can be more efficiently computed using the difference
equation (4.1) as follows:

Zt(ﬁ) = 00 + (,91Zt(£ - ].) +--- 4+ QDbZt(e - b) - 0104(6 - 1) — e

—bqa:(¢ — q)
(4.9)
. 7 <0
where ai(j) = FElatj|Zi, 241 -] ={ gt+] j'; 1.2,--- ¢
and Z;(—7) = Zi—;, 7=0,1,2,...
Hence when £ > ¢

Eventual Forecast Function
Equation (4.10) describes the forecast function eventually. This can be
rewritten as

(1—@1B = —oB°)(Zi(¢) - 65) =0 £>gq, (4.11)
where (1 — 7 — -+ — )85 = 6y and B is operating on £. The solution

of this difference equation is of the form
2.(0) = 65" fo(0) + BLA1(0) + - + B fu(0), (412)
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where f;(¢), i =0,1,---,b are functions of the lead time ¢ and ﬂ,-(t), 1=
0,1,---,bare coefficients which depend on the origin ¢ and are to be obtained
from the initial conditions at £ = ¢,qg—1,---g—b. Hence the forecast function
in (4.12) is valid for £ > g—b—1 and this function is referred to as the eventual
forecast function (eff).
Forecast Updating

Suppose that we like to forecast Z;ys+; from the origin . Then we can

write

Ziverr = Zo(£ 4 1) + [argeq1 + 7T§l)at+f +--+ Wﬁl)atﬂ],

where Z;(£ + 1) = E[Z4441|2¢, Zi—1, - - -] is the MMSE forecast. We can also
write Zyyeq1 from origin ¢ + 1.

Ziyor1 = Zpp1(0) + [apger1 + 7T§l)at+t + -+ ng—l)at+2],

where Z;11(¢) is the MMSE forecast of Z;4¢4; from the origin ¢ + 1.

Hence .
Zt+1 (Z) = Zt(g + l) + ﬂ'g )at+1 (413)

i.e. the forecast at time ¢t 4+ 1 is the forecast at time ¢ plus a constant
times the one step ahead forecast error a;4; = Zi41 — Zt(l)

(Note that 1; = 7 j=1,2,---,0).
Special Cases
1. AR(1):
Zy = b+ dZi_1 + a
Z(1) = o+ o2 (4.14)
Z(€) = 8o+ ¢Z:({—1) £>1 (note Z,(0) = Z)

2. ARIMA (0,1,1):
Zt = Zt—l + az — Gat_l (415)
Zt(l) = Zt - Gat

Z0) = Z(t—1) = 0 (4.16)
(1-B)Z() = 0 £>1,
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where B is operating on £. The solution of this difference equation is given
by
Zt(g) = (()t)7

where the coefficient 8 is to be determined from Zi(1) or we allow the
function to go through Z;(1). Hence ﬂ((,t) = Z;(1) = Z; — fBa,.

Thus
Z(t) = BY = Z, — fa, £>1. (4.17)

This defines a level 53‘) at time t and this level is the forecast of Z;4¢,¢ =
1,2,---. When Z;,; becomes available this level (forecast for Z;4¢) can be
updated as follows

Zei(0=1) = B8 = Ziypy — bayp
= Zi+ apy1 —Ga; — bapyy
= (Zy —0a;) + (1 — 8)ary
= B+ (1=0)ap (4.18)

Thus the level at time ¢ + 1, ﬂ((,tH), is the level at time ¢, ﬁ(()t), modified by
(1 — 0) times the one step ahead forecast error a;4; = Z;41 — Z,(1).

Alternate representation of forecasts from the (0,1,1) model in (4.15).
Model (4.15) can be written as

Zy = M+ mZig+ -+ ay (4.19)
where 7; = (1—6)6""!

Ziyw = (1—0)[Zt+0Zt_1 +022t—2+"']+at+1
Zi(1) = E[Zi11|Zt, 24—, ")
(1-0)[Z,+60Z_1+--). (4.20)
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Hence Z;({) = Z:({—1) = --- = Z4(1) is the Exponentially Weighted Moving
Average (EWMA) given in (4.20).

There is a large body of knowledge with regard to EWMA forecasting (for
example see Abraham and Ledolter (1983)). Here we note that the EWMA
forecast is the MMSE forecast if the process generating the observations is
the (0,1,1) process.

There is also EWMA control charts (see Box and Luceno (1997)) in the
quality control literature. Thus the EWMA forecasts are used to monitor
and adjust processes in which there is the potential for drifting means.

5. Interventions, Outliers and Missing Ob-
servations

Interventions:

Time series are often affected by policy changes and other events usually
referred to as interventions. Some examples of such interventions are

1. Creation of the Canadian Anti-Inflation Board in November 1975 to
lower inflation

2. Approval of the seatbelt legislation by the Ontario legislature in 1976
to lower traffic fatalities in Ontario.

3. Change in advertisement strategy to increase product sales.

These interventions can affect the response in several ways. They can change
the level of a series either abruptly or after some delay, change the trend, or
lead to more complicated effects. Box and Tiao (1975) provided a strategy
for modeling the effect of such interventions. They consider a model of the
form

Y, = v(B)L, + Z,, (5.1)

where I; is an indicator sequence reflecting the absence or presence of an
intervention and
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v(B) = w(B)B*/§(B) (5.2)

is a ratio of finite order polynomials such that w(B) = wo—w;B—---—w,B*
and §(B) =1— 6B — --- — §,B". Depending on the expected effect of the
interventions, we can postulate w(B),(B) and B®.

Some simple cases

0 B == wn={} 137

This implies a step change at t = T'.

(ii) v(B) = 125, I(T) same as in (i).
This case implies an initial increase of wq followed by a gradual decrease
with no lasting effect.

(i) v(B) = (1_1”'2'5 + l—flg) , I(T) same as before.
Initially there is an increase of wq followed by a gradual decrease with
a lasting effect of w; units.

In (5.1) Z; and Y; are the same before the intervention and can be represented
by an ARIMA model. The parameters of the ARIMA model and those in
v(B) can be obtained by ML as explained in Box and Tiao (1975). Abraham
(1980) discusses interventions in multiple time series.

Outliers

Industrial and business time series are sometimes influenced by nonrepet-
itive interventions such as changes in process conditions, and strikes in a
manufacturing plant. If we know the timing of such interventions then we
may use the intervention models considered before. In practice, we may lack
this knowledge and hence it is necessary to have procedures to detect and
remove such effects. Such problems are referred to as outlier problems.

Abraham and Box (1979), Fox (1972) discuss two characterizations of outliers
in the context of time series models

(1) Aberrant Observation Model (AO: additive outliers)
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(ii) Aberrant Innovation Model (AlL: Innovational outlier)
Z; = Zi+ ¢~ 1(B)(B)wL(T). (5.4)

In (5.3) and (5.4) Z; denotes the observed time series, Z; the underlying
process without the impact of outliers, and I,(T) = 1 if ¢ = T and zero oth-
erwise. In the AO model, only the level of the T'th observation is affected;
however in the Al model the outlier affects the shock at time T which in turn
affects Zr, Zr41,- - -

Several papers have been written to address various aspects of outlier analysis
(for example see Fox(1972), Abraham and Box (1979), Martin (1980), Chang
(1983), Chang et al (1988), Abraham and Yatawara (1988), Abraham and
Chuang (1989; 1990)). Chang et al (1988) describe a likelihood procedure
for estimating the outlier effects and removing these effects. This procedure
is described in Abraham and Ledolter (1983).

Missing Values

In some situations a time series may contain missing observations. For
instance, equipment shut down or an emergency in the plant may lead to
the inability to obtain observations at certain times in the monitoring of a
process. This will make it difficult to estimate parameters in the model and
to make forecasts from the model.

Generally two approaches are taken to deal with missing values in time se-
ries. The first one deals with the estimation of the missing value and then
use this to estimate the parameters of the model. In the latter approach
the parameters are estimated in the presence of missing values. (see Ansley
and Kohn (1986), Ljung (1982), Jones (1980)). We briefly discuss the former
approach, estimation of missing values, which is also known as interpolating
a time series.

Suppose that Z,, is missing and Z)s represent all observations except Z,,.
Then Brubacher and Wilson (1976) showed that the least square estimate of
Zp, is given by

Zm = - Zp(i)(zm—i + Zm+i)> (55)

i=1
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where p(;) is the ith inverse autocorrelation coefficient. In fact it turns out
that Zpm = E(Zm|Z ). This motivated Abraham (1981) to formulate a sim-
ilar approach. In this approach the estimate (Z,) of the missing value is a
weighted average of forecasts f1 = E(Zmn|Zm-1, Zm-2, ) based on the past
observations Zp,_1,Zm—2,- -+ and fo = E(Zn|Zmt1, Zms2, - ) based on the
‘future’ observations. Z, is obtained explicitly for several simple ARIMA
models and given in Abraham (1981) and it is the same as Z, given above.

Case 1. AR(1): Z; = ¢Zi—1 + a

- ¢ N
Zm = 1+ ¢2(Zm—1 + Zm+1) = Zm (56)

Case 2. ARIMA (0,1,1): Z; = a; — 6,4

Zm = %(Zm—l+Z—m+l)

where Zpn_y = E[Zm|Zm-1,Zm-2,]=(1-8)% 671 Z,,_;
_ 521
and Zm+l = E[Zm|Zm+1a Zm+27 v ] = (1 - 0) Z GJ—IZm-i-j
321

In our discussion we outlined the case when there is only one missing obser-
vation. The ideas discussed here can be generalized to the cases of several
missing observations (in patches or isolated) and the papers mentioned before
discuss these.

6. Application to Control

Process Monitoring

An essential idea in traditional quality control is that when a process is
operating in a state of ‘control’ it will vary in a stable manner about a fixed
mean. We refer to this variation as due to common causes. This can be
represented by the model

Zt = u+ &4, (61)

where Z, is the observed value of the quality characteristic at time ¢, u is the
fixed mean and €; is the deviation of the observation from the mean and
it is assumed to be an i.i.d. sequence. Occasionally upsets will occur and
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the mean p may be affected. If this is detected on a control chart then a
search for an assignable cause (special cause) is made and it is removed so
that model (6.1) is still operational.

In some contexts, as an indicator of the level of quality at time ¢, we may
use an exponentially weighted average of past data. For example, suppose
that the data on a quality characteristic is available as Z;, Z;_;,---. Then we
may consider

Zi=(1=N[Z; 4+ X2y + -], (6.2)

where 0 < A < 1. Since the sum of the weights in (6.2) is one Z; is a weighted
average and it discounts the past observations exponentially. It is called an
exponentially weighted moving average (EWMA). This is often used to mon-
itor a process mean which is slightly varying over time (see Roberts (1959),
Abraham and Kartha (1978), Hunter (1986)). As Z;;; becomes available
(6.2) can be updated as

Zt.+_1 == /\ZH—I + (1 - /\)Zt (63)

Zt+1 - Z_t + )\(Zt+1 - Zt) (6.4)

The mean at time t+1 is a weighted average of Z;, and the previous average

(6.3). It can also be thought of as the previous average adjusted by a constant

times the prediction error Z; 41 — Z;. If we assume that Z;’s are independent
then it follows that

V(Z) = (\(2 = X))o (6.5)

Based on this we can set up some limits to see whether the mean is off target.
In many process industries it is more realistic to consider the model

Zy = put €, (6.6)

where
Pt = pre—1 + by, (6.7)

{€:},{b:} are i.i.d. sequences independent of each other. The model in (6.6)
- (6.7) indicate that the mean is drifting with time. In this case the drifting
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is part of the common cause. It can be shown that (6.6) - (6.7) is equivalent
to a (0,1,1) process for Z;:

Zt — Zt_1 = a; — 0at._1, (68)

where 6 is a function of the variances of €; and b; and {a;} is an i.i.d sequence
with variance o2. In this case also we can set up a chart in which the EWMA

is plotted against time (see below).

X Actual Observations
& —® EWMA

X Action Limit

Figure 6.1. EWMA Chart

If the EWMA is deviating too much from the target T (ie Z; — T is large)
then adjustments will be necessary to keep the mean on target. For this some
action limits based on past information, experience, cost etc are necessary.
This chart gives an indication of where the process level is and it is not meant
to spot assignable causes.

At time t the EWMA, Z,, gives an estimate of the level as well as a prediction
for Z;4;. Hence as new data arrive we can compute the one step ahead
prediction errors:

Zt+1 - Zt = €. (69)

These errors are i.1.d. N(0,02) if there is no sudden upsets in the system.
Then we can set up another chart to monitor the prediction errors e; as
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shown below:

30 ¢

N A~
e

‘30&

Figure 6.2. Prediction Error Chart

The centre line is at zero and the limits are 30, units from 0. If there is a
sudden shift in the process that will be shown as an ‘out of control’ point in
this chart.

Feedback Control

In a traditional Shewhart Chart special causes (assignable causes) are
indicated and a search for their removal is initiated. In many situations it
is very difficult or costly to remove the assignable causes. However, these
can be compensated by some process of feedback control. Box and Jenkins
(1976) described feedback and feedforward control schemes based on time
series models. We will consider a special case to explain the ideas in a feed-
back control scheme.
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Transfer Function
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Compensating .
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“ Controller “

Figure 6.3. Feedback Control

Let the transfer function between a compensating variable (input) and output

Y; be given by
w

Yo=138

Xoor. (6.10)

However, what we observe is
Zy =Yy + Dy, (6.11)

where D, is the joint effect at the output of all unobserved disturbances and
it is the deviation from target if no control was applied. Suppose that D
can be modelled as

(1-B)D; = (1-6B)a;. (6.12)
The effect of the disturbance D; can be cancelled if we could set
1-6B
Xt = —‘(T)DH.I. (613)

However, this is impossible since D;y; is not realized at time ¢. Hence we
replace D4 by its MMSE forecast from ¢, D;(1).

Then the MMSE control is given by

1-6B
X = —(———)D,(l) (6.14)
w
or the adjustment at time ¢ is given by
(1-46B)

w

Ty = Xt - Xt—l = — [.Dt(l) - Dt—l(]-)]- (615)
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Note that since we replaced D;y; by its forecast from ¢, the error at the
output at time ¢ will be the lead one forecast error

€t41= Diy1 — Di(1) = a4, (6.16)
where D;(1) = %If%lat.

Using this in (6.14) we obtain

_(1-46B)(1-0)
X = w 1-B €
or in terms of the adjustment
1-4
Ty = —( w )[Et —(S et—-l]- (617)

Thus the control equation depends on the errors at time ¢ and (¢ — 1) and
the constants 4,60 and w.

Box and Jenkins (1976) consider more general cases and the reader is
referred to this book for additional reading.

7. State-Space Models and the Kalman Filter

The ARIMA models are essentially empirical which have the flexibility to
represent a wide range of time series behaviour. State space models are
based on the Markov property which implies the independence of the future
of a process from its past, given the present state. Suppose that the unknown
state of a system at time ¢ is given by vector S; referred to as the state vector.
Then the state-space model is described by

(i) A measurement equation

Z:;=H,S: + € (7.1)

(ii) A system equation
St+1 + ASt + Ay, (72)
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where both Z; and S; may be vector valued H; and A are known matrices.
A captures the evolution of the state vector and H; expresses how the com-
ponents of the state are combined in the observation. €; and a; are white
noise vectors with mean zero and independent of each other. Their covari-
ance matrices R; and R, are assumed known.

The state space system include, as special cases, many known models (see
Abraham and Ledolter (1983), Harvery (1989)) such as the ARIMA models.
In this set up the objective is to obtain the distribution of the state S; given
all the information up to t, Z; = (Z;, Z;—1,---) and then obtain P(S:41|Z;)
(prediction). In order to specify the distribution of the state vectors S; it is
necessary to start with a distribution for Sy, the state at the time ¢t = 0. Let

this be P(So).

From equations (7.1) and (7.2) and the specification of P(S,) we can
derive recursive equations that propagate the conditional distributions:

P(St]Zt) — P(SH.IIZ,) — P(St+llzt+l) — e (73)

Now suppose So ~ N(Sop, Pop), €:~ N(0,R;) and a; ~ N(0, R;). The
the conditional distributions in (7.3) are all normal. Then let us take

P(S,|Z.) = N(Suy:, Pup) (7.4)

P(St-l-llzt) = N(SH'llt?PH-llt)' (75)

Then the mean vectors and covariance matrices can be updated recursively.
These updating equations are commonly referred to as the Kalman Filter

Siyit = ASys, Pup= AP, A'+ Ry
Sitit41 = Sepap + Key1(Zy — Hp1Seape) (7.6)
Pt+1|t+1 = Pt+1]t - Kt+1Ht+1Pt+1|t>
where K;yy = P+ Hy (Hip Py Hyy + Ry) 7

The first two equations are prediction equations which gives the one step
prediction of the state vector and its covariance matrix. The next two equa-
tions update the state and the covariance matrix after Z,,; is observed. The
updated state vector is the prediction of S;;; from time ¢t modified by K4,
times the forecast error Z;11 — Hy41S:41)e - K141 is usually referred to as the
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Kalman gain.

Once Sgp and P are specified the recursions in (7.6) can be effected easily
and the predictions and updates can be obtained efficiently. It should be
noted that A, H;, R;, R;, etc are assumed known. Usually these and Soqp
and Py are obtained from historical data or using a ‘training set’ from the
current data. Once these are set the recursions in (7.6) follow easily.

8. Non-Gaussian Time Series

The linear time series models discussed earlier are simpler to handle theo-
retically as the mathematics of linear difference equations is well developed.
Further the Box-Jenkins methodology developed for linear time series make
the Gaussian assumption, which simplifies the theory of statistical inference.
However, there are several naturally occurring time series which do not fol-
low Gaussian distributions. A traditional method of modelling non-Gaussian
series is by making a suitable transformation of the original data to fit a Gaus-
sian model. But such transformed series do not carry some of the important
properties of the original data. For example, time-reversibility is a charac-
terizing property of a linear Gaussian sequence (cf Mallows (1967)). If the
original sequence is time irreversible, it cannot be transformed into a Gaus-
sian series, which is always time reversible. Thus it is important to stress on
the study of non-Gaussian time series.

In Gaussian framework, it is assumed that the observed time series is a
realization from some Gaussian sequence and hence the innovation distribu-
tion is essentially normal. This is not the case in non-Gaussian time series
modelling as can be seen in the forthcoming sections.

Exponential Autoregressive Models

In the literature on non-Gaussian time series modelling the paper by
Gaver and Lewis (1980) is a prominent one. This paper discusses the sta-
tionary autoregressive models with exponential and gamma marginal distri-

butions. Suppose that {Z;} is an AR(1) sequence defined by

Zt = ¢Zt_1 + ag, t= 1,2, T |¢| < ]., (81)
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where {a;} ¢.i.d. random variables (r.v.’s) and Zj is independent of a;. Sup-
pose that {Z,;} is a stationary sequence having a specified marginal distribu-
tion F(-). The problem here is to obtain the distribution of the innovation
r.v. aq if it exists, when the marginal distribution of {Z;} is specified. Let
¢.(s) and ¢4(s) be the characteristic functions (c.f.) of Z; and a; respectively.
Supposing that each Z; in (8.1) has a c.f. ¢,, we get an equation for the c.f.
of a; as

¢:(s)
a(s) = ——=, 0< <1 8.2
buls) = S, 0 <19 (82)
In general this ratio need not define a c.f. for every ¢, if it does then we say
that the d.f.F. is self-decomposable. For example, the distributions such as

normal, exponential, gamma, Cauchy, Laplace are all self-decomposable.
If we want Z; to have exponential distribution with density function

flzz ) =Xe™, 2>0,A>0 (8.3)

in the model (8.1) then using (8.3) we can show that the distribution of a, is
given by that of I, E;, where {E,} and {I;} are two mutually independent iid
sequences with E, having pdf (8.3) and the mass function of I; is given by

The resulting model is known as an exponential autoregressive model of order
one (EAR(1)) introduced by Gaver and Lewis (1980) and may be written as

Zy=¢Zy+LE, 0<¢p<1, t=12 ... (8.4)

Throughout this section { E;} denotes a sequence of 7.7.d. r.v’s with pdf (8.3).
This model may also be used to describe the life times of a unit when there is
successive dependence. Lawrance and Lewis (1980) extended (8.4) to define
and EAR(p) model. We only describe an EAR(2) model below:

Iy .p. —
th{al t-1 w.p. 1 02}+at’ (8.5)

aZi_g W.p. Qy

where

0 w.p.ar /(1 + a; — az)
ar=< B wp(l—a)(l—-a)/(l-9)
OB, w.p.(l—oa2)(an —a2)?/{(1+a1—a2)(l—-4)}
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and § = (1 + a1 — a2)a,. Here w.p. stands for with probability. Let pr =
Corr(Z;, Z;—x) be the autocorrelation function (ACF) of {Z;}. The ACF of
EAR(2) sequence satisfies the following equations

pP-1 = M
pe = oa(l — o2)pr-1 + OFpr—2, k=1,2,---, (8.6)

Note that in EAR(1) model there is a possibility of getting runs of Z;’s which
are equal to the previous Z;_; times ¢. This might limit the applicability of
the model in real life situations. Lawrance and Lewis (1981) defined another
AR(1) model given by

Zt = JtZt—l + ag, (87)
where
E, w.p(1 = B)/{1 - (1-)B}
ay = (8.8)
(1-e)BE: w.p. af/{1—(1-a)B}
t = 1,2,---. The sequences {J;} and {E;} are mutually independent iid

sequences with E, as defined before and J; has the probability distribution,
PlJy=B8]=a=1-P[J;=0]; 0<B<1.

Then {Z;} in (8.7) defines a stationary sequence with exponential marginals
and is referred to as a New EAR(1) (NEAR(1)) model. If « = 1 then
NEAR(1) model reduces to EAR(1). Moreover the NEAR(1) model does not
have the problem of runs in {Z;}. The autocorrelation function of NEAR(1)
model is given by
Pk) = (aﬁ)ka k= 0,1,2,' o
Generalizing the above, Lawrance and Lewis (1985) defined a NEAR(2)

model as follows:

BIZt—l w.p. ai
Zt = ,82Zt—2 'wp (65 ‘I" Qg, t = 1, 2, e, (89)

0 w.p. 1—a; —a
where

bE; w.p. po (8.10)

E wp l-p—ps
ag =
bsE; w.p. p3
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with
a; > 0,00 > 0,00+, <1,0<B,8: <1

p2 = {(a1B1 + a2B2)by — (@1 + @2)B182}/{(b2 — b3)(1 — b2)}
p3 = {(o1 + @2)B182 — (1B1 + a282)b3}/{(b2 — bs)(1 — b3)}

and 0 < b3 = {s — (s? —4r)'/2}/2 < b, = {s + (s* — 4r)}/?}/2 < 1

where s = (1 — 1)B1 + (1 — a2)B2 and r = (1 — a1 — a3)51 5.

Then {Z,;} defines a stationary sequence of exponential r.v.’s with ACF given
by

Py = Q1P(k-1) + 20 (k-2)5 k = 3’ 4’ e
P = aip(l) +aq
pay = a1+ azp(l),

where a; = a;6; and a; = a3f;.

A detailed analysis of NEAR(2) model is discussed by Lawrance and Lewis
(1985). They also fit this model for a wind velocity data and showed that
it performs better than a Gaussian AR(2) model. The conditions for exis-
tence of a more general NEAR(p) model are studied in detail by Chan (1988).

One can also define exponential moving average (EMA) models. For
example, an EMA(1) model is defined by

_ ) BE: w.p.f L '
b= { BE,+E,, wp—p) 0<P<Lit=12 (8.11)

Combining (8.4) and (8.11) will lead to an EARMA(1,1) model given by

_( BE, 8
L= { BE, + Xy wp(1-B), (8.12)

where {X;} is an EAR(1) sequence.

On similar lines Lawrance and Lewis (1980) defined EMA(g) and EARMA(p, q)
models.
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In order to apply the above models in real life situations it is essential
to have some procedures for statistical inference. In the next section we de-
scribe some methods for estimation.

Estimation for Exponential AR Models

Recall that the EAR(1) models generate successive runs in the sequence
and this will help in determining the exact value of ¢ and then identify the
innovations to estimate A as suggested by Gaver and Lewis (1980). Adke
and Balakrishna (1992) proposed some sequential procedures to determine
the value of ¢ and then to estimate A. The likelihood based inference is
intractable due to the mixture form of the innovation distribution. Billard
and Mohamed (1991) adopted the method of conditional least squares (CLS)
of Klimkov and Nelson (1978) for parameter estimation in EAR(p) model.
In this method the parameter vector § = (6;,0,,--- 6,) is estimated by min-
imizing the conditional sum of squares

N
Q) = Y {2 — E(Zi|Zt-1, Z1-s, -, Ze-1)}, (8.13)
t=k+1

where N is the sample size. In all the exponential AR models discussed
above, the marginal distribution of Z; is Exp(}).
For the EAR(1) model (8.4)

1
E(Zy|Zs—1, Z4—s, - - ) =0Zi1 + (1- ¢)M, where p = N

and 6 = (¢, 1). The CLS estimators of ¢ and p are respectively given by

N N N
Y ZZyy—(N-1)1Y Z, t; Ziq

d;: t=2 t=2
N N 2
far- o (San)
N ~ N
Zy — @3 Zi
/l — t=2 : t=2 _ .
(N-1)(1-9¢)

Further q3 and [ are asymptotically independent and normally distributed as
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VN($ - ¢) 5 N(0,1 — ¢?)

and as N — oo
R c 2
VN(a—p) 5 N (0,512
where % stands for convergence in distribution.

For an EAR(2) model (8.5) the CLS estimators of a;, a3 and p = 1/ are
given by

~ _ A A A1/2
a1—1—_§, az—A2

N N N
E Zi—Ay E Zi1~Az E Zi—2
t=3

A __ iz =3
and fi = ¢ (N'fz)(l-x‘il—fiz) ’

A C10C22—C3C A C11C20—C1,C
wh = =
ere A; —m—zu%—lzcu Aot As _11._29_122_1.110“022_012

N N N _ ,
and Cj; = 7 {Z ZiiZii— 5= % Ze-j Y, Zt—i} ,0=1,2,7=0,1,2.
t=3 t=3 t=3
If o = (0q, ;) then & and & are asymptotically normally distributed as
VNG —a) 5 N0, V()
and VN (i — 1) 5 N(0,V*(),
where V*(a) = 02Vi7!, V*(u) = 02V35!
[ (0} + 402 —420)) /(1 + a2) a1(l — a9)?/(1 + a) J

Vit =
a(1 = a2)?/(1 + ar) (1~ a)?

with ¢ = 4u?a2(1 — 03)%

Viz' = {1 — (1 — o) — a2}2
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and 02 = p?{l — o? + &%(o1 — a2)(2 + a1 — a2)}.
It may also be noted that & and f are asymptotically independent.

Raftery (1980) has proposed some consistent and asymptotically normal
estimators for @ and A by fixing 8 in NEAR(1) model. Smith (1986) dis-
cussed maximum likelihood estimation for the parameters of NEAR(2) model
(8.9) with A = 1. He also discussed numerical evaluation of the mle’s.

Gamma AR Models:

The methods described earlier can be adopted for defining AR(1) models
with gamma marginal distributions (GAR(1)) with pdf
9,0-1 Az
flzi M k) = 5%5—6——, A>0,9>0,2>0. (8.14)

If we assume that each Z; defined by (8.1) has the pdf (8.14), then by (8.2)
the c.f. of a; becomes

ba(s) = {¢+(1 —qb)AjiS}g. (8.15)

When 9 is a positive integer the distribution of (8.15) may be given by that
of the sum of ¥ :.7.d. innovations of EAR(1) model. For an arbitrary positive
number ¥, Lawrance (1982) proved that the distribution of a; can be specified
by that of

N
w=Y ¢ E;, (8.16)
7=1

where {U;} is a sequence of itd U (0,1) r.v.’s and N is a Poisson r.v. with
mean —3log ¢. The variables Uj, E; and N are mutually independent for
every j. This is a convenient form of GAR(1) model to generate it on a
computer. It easily follows that

v
E(Ztth——ly Zt—2 . ) = ¢Zt_1 + (1 - ¢)X (817)

Sim (1986) defined a gamma AR(1) model as follows
Zy =ViZi_y + 4, (8.18)
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where {n:} is a sequence of vid exponential r.v.’s and {V;} is an 17d sequence
of power function r.v.’s with pdf

fo(@) =ad*!, 0<9<1, a>0. (8.19)

These sequences are mutually independent. If Z; has a G(a + 1, ) distri-
bution then {Z;} defines a stationary Markov sequence of G(a + 1, A) r.v.’s.
The sequence was used for modelling hydrological data. The ACF of the
model is given by

k @\ ko012
p()—<a+l>’ —Oaaa"'

and

1
E(Zi|Zir, Zozy---) = (ai 1) Zity (8.20)

Lewis, Mckenzie and Hugus (1989) constructed a gamma AR(1) model by
a method called beta-gamma transformation. Let {B;(m,n)} be a sequence
of i.1.d. Beta(m,n) r.v.’s with pdf

flz,m,n) = ——2™ 1 -2)"", 0<z<1 mn>0 (8.21)
™

and {G¢(9,A)} be a sequence of i.t.d. Gamma (9, A) r.v.’s. Assume that B;
and G, are mutually independent for every t. Taking @ = 1 — a define

Zt = Bt(ﬂa,ﬁ&)Zt—l + Gt(ﬂa,/\), 0 S a< 1. (822)

If Zo has a Gamma (9, A) distribution and is independent 6f B; then {Z;} isa
stationary Markov sequence of Gamma (9, ) r.v.’s. Hence (8.22) is referred
to as a first order beta-gamma AR(1) [BGAR(1)] model. The ACF of this
sequence is given by

p(k) =of, k=0,1,2,---

and the regression of Z; on Z;_, is

E[ZtIZt—l] = aZt_.l + (1 b a) (823)

>
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The beta-gamma transformation technique can also be used to define
moving average models with gamma marginals. For example, if

Z, = Gy(9,)) + B,(98,95)Ge-1(9, @), (8.24)

where 8 = 1 — 3,0 < 8 < 1, then {Z;} defines a MA(1) sequence with
Gamma (J(1 + 3), A) marginals (BGMA(1)).

The CLS method can be used to estimate the parameters of all the three
gamma AR(1) models described above. As the conditional expectations of Z;
given Z;_; are linear functions of Z;_; (see (8.17), (8.20) and (8.23)) the CLS
estimators can be obtained by minimizing Q(6) in (8.13). It is readily verified
that the regularity conditions of Klimkov and Nelson (1978) hold good for
all the models. Hence the CLS estimators are consistent and asymptotically
normal for the corresponding parameters. We skip the computations.

Remark: Other non-Gaussian AR(1) models include the Laplace AR model of
Dewald and Lewis (1985), Logistic AR model defined by Sim (1993), Inverse
Gaussian AR model introduced by Abraham and Balakrishna (1999a), Linnik
AR model studied by Anderson and Arnold (1993) and Mittag-Leffler AR(1)
models of Jayakumar and Pillai (1993).

9. Other Non-Linear Time Series Models

Recently several non-linear time series models have been proposed and stud-
ied in different contexts, see for example Tong (1990). However, the studies
on such models have been confined to specific types of non-linear structures.
In fact the models discussed in Sections 8 are essentially non-linear in nature.
In this Section we describe some other important non-linear models studied
in the literature.

Random Coefficient AR Models

In the class of non-linear time series models, the random coefficient au-
toregressive (RCAR) models introduced by Nicholls and Quinn (1982) re-
ceived a considerable amount of attention. These are important in engineer-
ing and econometric literature since many data sets in fields such as hydrol-
ogy, meterology and biology exhibit occasional sharp spikes which cannot be
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sufficiently explained by classical linear time series models. Such features
arise when the coefficients of the model considered have random character-
istics. This situation led to a consideration of RCAR models. A p** order

RCAR (RCAR(p)) model is defined by

p .
Zt = Z(a,- + bgi))Zt_i + a;. (91)

i=1

The following conditions are imposed on the model (9.1) for the sequence
{Z;} to be strictly stationary

(i) {a:} is a sequence of i.i.d. r.v.’s with mean 0 and variance o2 < oo
(ii) ai1,az,---,a, are constants

(iii) {b: = (bgl), b§2), e ,bﬁ"’)’} is a sequence of 7¢d random vectors with zero
mean vector and the dispersion matrix E(bb}) =

(iv) {b:} and {a;} are mutually independent.

Note that the models discussed in Section 8 are different special cases of
the model (9.1). In particular taking p = 1 an RCAR(1) model is given by

Zt = (a + bt)Zt—l + a;. (92)

If b, = 0 with probability 1 then (9.2) reduces to an ordinary AR(1) model.
One can have the following interpretation for the model (9.2) when the vari-
ables are non-negative and a@ = 0. Consider a study of the retention of a
substance in a system when the substance is periodically introduced in ran-
dom quantities and the system periodically eliminates a random proportion
of this substance. In particular, let Z,_; be the amount of a given substance
present in a system at the end of epoch t —1,¢t =1,2,--- with Zy = 0. Sup-
pose an amount of a; of this substance is introduced during the time interval
(t — 1,t] and during the same interval a modification of the amount Z,_; to
b;Z;_, takes place. Hence the total substance present at epoch t is described
by the model (9.2).

Nicholls and Quinn (1982) carried out the statistical analysis of {Z,;}

in (9.1) by assuming that {b;} and {a;} are mutually independent Gaussian
sequences. They also discuss the likelihood method of estimation. Tjgstheim
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(1986) proved that the conditional least squares (CLS) estimator of a given

for the RCAR(1) model (9.2) is consistent and asymptotically normal. Tjgstheim
also study the problem of estimation in RCAR(p) model by using a maximum
likelihood type penalty function. The parameter estimation in RCAR(p)
models using the theory of estimating functions are discussed by Thavaneswaran
and Abraham (1988) and also Chandra and Taniguchi (2001).

Bilinear Time Series

The bilinear time series is another useful model suitable for describing a
non-linear situation. The general form of a bilinear time series {Z;} satisfies
the following stochastic difference equation

P q P Q
Zi+ > 0iZii=ar+ Y Biaj+ D Y Ymn Gem Z—n,  (9.4)
i=1 1=1

m=1n=1

where {a:} is a sequence of #:d r.v.’s with mean zero and finite variance.
Further a; is independent of Z, for s < ¢. The model (9.4) is denoted by
BL(p,q, P,Q). Observe that the model is linear in Z’s and also in a’s sep-
arately, but not in both. If we set P = = 0 then (9.4) reduces to an
ARMA(p, ¢) model. Statistical analysis of this model in its general form is
very difficult. Subba Rao (1981) discussed the maximum likelihood estima-
tion of the parameters of the model (8.4) by taking {a;,t > 1} as a sequence
of i.i.d. normal variates with mean 0 and variance o2 < co. One of the simple
version of the bilinear models studied in literature is

Zt = Y2tk Qe + au, (9.5)

where {a;} is as defined before. This bilinear model is said to be diagonal if
k = £, super diagonal if ¥ > ¢ and subdiagonal if k¥ < {. Granger and Ander-
son (1978) discussed the various properties of these models. Quinn (1982)
proved that a necessary condition for {Z;} defined by (9.5) to be strictly
stationary is that log|y| + E(log |a:|) < 0. Gabr (1988) studied the moment
structure of these models. Kim, Billard and Basawa (1990) discussed the
parameter estimation for a diagonal bilinear model when k = ¢ =1 in (9.5).
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They estimated v by the method of least squares and the moment methods -
and also proved that they are consistent and asymptotically normal. Grahn
(1995) proposed the method of conditional least squares to estimate the pa-
rameters of (9.4). A detailed analysis of the model (9.5) with k£ = 2 and
£ =1 is also presented in that paper.

Threshold Models for Time Series

The threshold models are used to describe situations where the series
shows sudden changes at certain time points. The basic idea involved here is
a piecewise linear approximation of a general univariate non-linear model by
introducing regimes over its state via thresholds. For example, a threshold
autoregressive (TAR) model is introduced by dividing the state-space of the
process in to different regimes such that in each regime the model is linear.
Let {co,c1, - cm} denote a ordered subset of real numbers such that ¢y <
¢ < -+ < ¢y where ¢g = —o0 and ¢, = +o0o. Thus if we define R; =
(¢cj-1,¢j] then {Ry, Ry, -, Ry} defines a partition of the real line. Then a
TAR(p) model is defined by

. Pj . .
Zi=ad +3 a7 i +ad? i Zi g€ R, j=1,2,---,m, (9.6)

i=1

where d is an integer called the delay parameter and {a;} is an 7id innovation
sequence with mean 0 and variance o?. The model (9.6) is also referred to as
a self-exciting TAR (SETAR) model (c.f. Tong (1983)). If Z;_4 € R; then
the model is said to be in regime j at time t. Within each regime Z, follows
an autoregressive model, not necessarily of the same order. The parameters
involved in the model are 02, d, a,(j),cj, 1=1,2,---p;, J=1,2,--- ;m—1.

Let us describe a SETAR model with two regimes:

)y 4
45 ez, i +aV 2 4<c
1=1
Zt = 2 ) (97)
a(()2) + 3 a,(-2)Zt_,- + agz) if Zi_qg>c
=1

where 0 < d < ¢ and c is the threshold parameter.
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Chan and Tong (1986) obtained the conditional least squares estimates of the
parameters of a particular model called smooth TAR (STAR) model. This
model is represented as

P p 7.
7, = agl) + Za,(”Zz-i + (a((,2) + Zaﬁz)Zt-i) F (%_1) +ay, - (9.8)

i=1 i=1

where F(-) is the distribution function of a standard normal variate and s
is called the smoothing parameter. Petruccelli (1986) studied the properties
of least squares estimators in the model (9.7) when oV = oP = 0 and
p1 = po = 1. A useful procedure for building TAR models by identifying the

thresholds is discussed in Tsay (1989). The Bayesian analysis of the model
(9.7) is studied by Geweke and Terui (1993).

A self-exciting threshold moving average model (SETMA) with m regimes
may be defined by

. . qj . .
Z =69 +a? +3 6099 i 2, 4 e Rj, j=1,2,---,m  (9.9)
=1

By assuming that {agj)} is a sequence of independent normal r.v.’s with
mean 0 and variance 012-, deGooiger (1998) discussed the statistical analysis
of the model (9.9) when m = 2. Brockwell, Liu and Tweedie (1992) studied
the existence of a stationary solution for a particular self-exciting threshold

ARMA (SETARMA) model given by

m . P a
Iy = Z {aé]) + Z Olz(])Zt—i + z ng)at_i} I{Zz_deRj} + ay, (9.10)

7=1 =1 1=1

where I4 denotes the indicator function of a set A and the other notations
are as defined before.

Doubly Stochastic Time Series Models

Let {a:} be a sequence of iid rv’s and {¢:} be an arbitrary stochastic
process. If we define

Zt == ¢tZt—l + ag, t= 0, 1,2, .o (911)
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then {Z;} is called a doubly stochastic autoregressive process of order one
(DSAR(1)). (See for example Tjgstheim (1986a)). On similar lines we can
define a DSAR(p) model by

Zy= N2+ P Zig 4+ ¢£p)Zt_p + ay, (9.12)

where {0; = ( ﬁ”, 52),---,¢§p))} is a vector of stochastic processes. In
general {Z;} is not stationary. If {©,,¢ > 1} is a sequence of iid random
vectors then (9.12) reduces to an RCAR(p) model. In particular if {¢:}
in (9.11) is strictly stationary then {Z,} defines a second order stationary
process if and only if

S E (fI ¢?) <.
n=1 t=1

If we assume that {¢:} and {a;} are two independent stochastic processes
then (9.11) contains essentially all the previous models in this section and the
models discussed in Section 8. The doubly stochastic moving average models
and the conditions for their stationarity are discussed by Pourahmadi (1986).

10. Models for Variances

The studies on economic and financial time series reveal that the daily and
monthly financial asset returns, such as share prices, foreign exchange rates,
etc. typically possess the following features (see for example, Mikosch and
Staurica (2000)):

(i) The frequency of large and small values (relative to the range of the
data) is rather high suggesting the data come from some non-normal
heavy-tailed distribution.

(ii) Exceedances of high thresholds occur in clusters, which indicates that
there is dependence in the tails.

(iii) Sample autocorrelations of the data are tiny where as the sample auto-
correlations of the absolute and squared values are significantly different
from zero even for large lags.

The quantitative description of such phenomenon may be expressed in
the form of certain functions of the conditional distribution of an underlying
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process {Z;} given its values prior to ¢. In particular, the variability h; at
time ¢t may be measured by the conditional variance of Z; given {Z;_;,t1 > 1}.

Various models have been proposed in order to study this kind of situa-
tions. Among them, models of the type

Z, =€\l (10.1)

have become particularly popular. Here {€;} is a sequence of i¢d symmetric
rv’s with mean 0 and unit variance. Moreover, {h:} is a sequence of non-
negative r.v.’s such that €; and h; are independent for every fixed ¢. The
conditional distribution of Z; given h; has the variance h; and hence we refer
to h; as the stochastic volatility of Z;. Now we describe some features of
the model (10.1) when h; evolves according to certain stochastic difference
equations.

Autoregressive Conditional Heteroscedasticity (ARCH)

One of the well-known models used to describe changing volatilities is
the ARCH model introduced by Engle (1982). In this model for stochastic
volatility (SV), h; depends on a finite number of past values of the process
{Z;}. More specifically Engle’s ARCH model of order p (ARCH(p)) is defined
by

P
Zy =€, \/hT and h; = ag + ZaiZf_,- (10.2)
=1
with a9 > 0 and a; >0, 7 =1,2,---,p. The assumptions on {€;} and {h:}
are as in model (10.1). Milhgj (1985) proved that the ARCH(p) process {Z,;}
is stationary if
aptaz+ - +a, <1 (10.3)

The conditions for existence of higher order moments are also discussed in

that paper. It also follows that E(Z;) = 0 and Cov(Z;, Z,) = 0 for s # t.
Under the condition (10.3) we can show that

a
E(Z}) = —— < 0.
1- 3 o

1=1
Thus {Z;} is a zero-mean white noise process. The model (10.2) also reveals
that the autocovariance structure of the process {Z?2} coincides with that of
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an AR(p) process.
Let us consider the details of an ARCH(1) model given by

Z, =€ \/h with hy = ag + 1 Z2 ;. (10.4)

The assumptions on {€;} imply that the odd ordered moments of €, van-
ish and E(€?) = 1. Let us denote E(€;) = A. In particular if €, is a standard
normal variate then A = 3. Thus {Z,;} defined by (10.4) has the following

properties:
E(Z,) = E(Z}) =0, E(Z})=E(h)=12-if0< o<1

The autocorrelation function of {Z?2} is Corr(Z2, Z% ;) = oF, which is always
non-negative.

The fourth moment of Z; is given by

a2 (14 .
E(Z) = (——"g(—f_x);r) if Aa? < 1.

1—01

Hence the coefficient of kurtosis becomes

E(Z))

K= ‘{E\W:’\(l_%)/(l_’\al) if daj < 1. (10.5)

We may rewrite (10.4) as

th = Zt2 - ht + ht
= oo+ alZf_l + Ug, (106)

where {u; = h;(€? —1)} is a sequence of uncorrelated r.v.’s and hence (10.6)
defines an AR(1) model in Z? with v, as an innovation r.v.

The definition of ARCH(1) model implies that the kurtosis of the condi-
tional distribution of Z; given h, is same as that of €; denoted by A. Thus
if ¢; >0 and A > 1, from (10.5) it is clear that the kurtosis of the marginal
distribution of {Z;} exceeds A. For example, if €, is a standard normal vari-
ate then A = 3 and « exceeds 3. Thus the unconditional distribution of Z; is
leptokurtic and hence suitable for modeling heavy-tailed financial series. An
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ARCH(1) process {Z,} is covariance stationary if a; < 1. Nelson (1990) has
shown that this process is strictly stationary if E(log(a; €7)) < 0 provided
ag > 0. Thus if €, is a standard normal variate then the strict stationarity
of {Z;} holds whenever o; < 3.4.

FEstimation: Suppose that €; in (10.2) has a standard normal distribution.
Then it follows that the conditional distribution of Z; given {Z,,s <t — 1}
is normal with mean zero and variance h;. The unknown parameter vector
to be estimated is § = (aop, @1, -,¢p). The log-likelihood function of 6§
conditional on Z;, Zy_y,- -+, Zs—p is given by

N
L) = Zlog fztlze-1, 20—, 5 203 0)
t=1

N

N
_ —(%log(er) - —;—;log he — %;(zf/ht). (10.7)

The mle of 6 can be obtained by maximizing £(). This is possible only by
numerical methods. Hamilton (1994) describes a number of methods for ob-
taining such mle’s. In certain practical situations,the normality assumption
on €; may not be applicable. So Bollerslev (1987) discussed the likelihood
analysis of ARCH model when €; has a student ¢-distribution and Nelson
(1991) studied such problems by assuming generalized error distribution for
€;. The theory of estimating function for parameter estimation in station-
ary ARCH models is developed by Chandra and Taniguchi (2001). Various
statistical tests for ARCH effects are proposed and studied by Engle (1982),
Bera (1992) and Hong (1997).

Next we consider a generalized version of an ARCH(p) model.
Generalized ARCH Models
Bollerslev (1986) generalized the ARCH(p) model (10.2) by adding linear

combination of lagged values of h; in the equation for conditional variance.
This leads to a more flexible model called Generalized ARCH (GARCH(p, q))

model defined by
Z: = & \/i_l—t
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p q
Wlth ht = oo+ Z Ct,'th_i —+ Z Gjh,_j, (108)
i=1 1=1
where ag > 0,0; > 0,6; > 0 and {€,} is a sequence of 7.7.d. r.v.’s with mean
zero and unit variance. Then the sequence {Z;} is covariance stationary if

p q
Yo+ 6; <1 (10.9)
i=1 7j=1

In the original formulation of GARCH model it is assumed that €; is a
standard normal variate. However, one can take other distributions for €;
as well. For example, it is quoted in Pawlak and Schmid (2001) that the
student ¢-distribution and the inverse-Gaussian distribution provide better
descriptions of some financial data.

The above restrictions imposed on the parameters ensure that the condi-
tional variance h; is non-negative. It is observed in empirical analysis that
the variance remains non-negative even if we relax some of the constraints
on the parameters. Nelson and Cao (1992) obtained the conditions for h; to
be positive in the case of GARCH(p, ¢) model. Detailed analysis is given for
GARCH(1, q) and GARCH(2, g) for ¢ = 1,2. Explicit expressions for the au-
tocorrelations of {Z2} in GARCH(p, q) when (p,q) = (1,2),(2,1) and (2,2)
are obtained by He and Terasvirta (1999).

A simpler version of GARCH(p, ¢) is the GARCH(1,1) model given by

Z, =€, \Jhe and hy = ag + 0 Z2, + Oy, (10.10)

This may be rewritten as a non-Gaussian ARMA(1,1) model in terms of Z?2
as follows. As in ARCH(1) model we write

Zt2 - th - ht + ht
= oag+ alZf_l + 61hi—1 + us, where u; = (€2 —1)h;.

This can be simplified to write
Zt2 = qp + (a1 + 01)23_1 - Glut_l + U, (].01].)

which is in the form of an ARMA(1,1) model. Note that the model (10.10) is
covariance stationary if @3 +6; < 1 and strictly stationary if E{log(6; +a; €?
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)} <1 and g > 0.

It is readily verified that for Z; defined by (10.10)

E(Z:) = E(Z}) = 0
E(th) = E(ht) = ao/(l — Q3 —91) lfO S (83] -|-01 < 1.
The coefficient of kurtosis is given by

/\(1 +a; + 91)(1 — Q0 — 01)

k=
1-— )\Ol% - 0% — 2&101

if )\af — 9% - 2(1191 <1

and the autocorrelation function of {Z?} is

Corr(Z2,22 ;) =p(k) = (a1+61)pk-1) for k> 2
and p(1) = ai(l =67 —u61)/(1 — 6} — 20:61).

Note that the GARCH model introduces flexibility in the structures of kur-
tosis and the autocorrelations as compared with the ARCH specification.
Assuming that €; is a standard normal variate in (10.8), the likelihood func-
tion of § = (ap, a1, -,Qp,01,02,---,6,) can be written as (10.7) with an
appropriate h;. For details see Bollerslev (1986).

Bayesian analysis of ARCH and GARCH models are discussed in Bauwens,
Lubrano and Richard (1999). The unconditional marginal distributions of
GARCH processes have tails fatter than that of the normal distribution.
Pawlak and Schmid (2001) studied the tail behaviour of Z? in GARCH(p, q)
and obtained some bounds for the distribution function.

The ARMA(1,1) representation of GARCH(1,1) model given by (10.11)
reveals that if a; + 6; = 1 then Z? will have a unit root. Then the model
(10.10) is referred to as an Integrated GARCH (IGARCH) model. Another
generalization is the one due to Nelson (1991) in which h,; evolves according
to the equation

he = ao + arhi—y + g(E€4-1), (10.12)

where g(z) = wz + u(|z| — E(z)).

Moreover {g(€;)} is a sequence of i.i.d. r.v.’s. Such a model is referred to
as an exponential (EGARCH(1,1)) model. For a few more generalizations
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refer Shephard (1996). The problem of estimation in EGARCH model is also
discussed in Hamilton (1994).

Stochastic Volatility Models

As noted before the volatility of financial series tends to change over time.
The ARCH/GARCH models described earlier serve as tools for modelling and
estimating the time-varying conditional variance. These models assume that
the volatility is driven by the past observations. Alternatively Taylor (1986)
argued that the volatility process should be driven by some unobservable
or latent economic forces rather than the movement of prices. The class
of models that is formulated under this kind of belief is referred to as the
stochastic volatility (SV) model. One of the specifications of this type of

models is given by
Zt =&; exp(ht/2), (1013)

where
hiv1 = ag + o1he + N1 (10.14)

and {€,} is a sequence of i¢d symmetric r.v.’s with mean zero and unit vari-
ance. Further {€;} and {n;} are independent for each t. One interpretation
for h; is to represent the random and uneven flow of information which is
very difficult to model directly into financial markets (see Tauchen and Pitts
(1983)). In the initial development of the model, it is assumed that {€&,} and
{n:} are two independent ¢id Gaussian sequences with means 0 and variances
1 and o2 respectively. And the model is referred to as a log-normal SV model.

Observe that the sequence {€;} is always stationary and hence {Z;} is
stationary whenever {h;} is so. If |a;| < 1 then {h;} defines a stationary
Gaussian sequence with

Qg 03 2
= up and Var(h) = = o = 0}. (10.15)

E(h) =

1—a1

The distribution of Z; is symmetric about zero and hence E(ZF) = 0 for odd
k. When k is even

kh
E(zf) = E(€f)(¥)
_ k! k Ko}
BEEZEC TR PIar
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The kurtosis of Z; is given by (see also (10.5))
k = 3exp(a}) > 3,

shows that the SV model has fatter tails than the corresponding normal
distribution. The autocorrelation function of {Z;} vanishes while that of
{Z?} is given by

2 kY _
Corr(th,Zf_k) = exp(oper) — 1

10.17
3exp(o?) —1 (10.17)

which can be negative if a; < 0 unlike in the case of ARCH model.

The dynamic properties of SV model can also reveal by using logarithms.
So model (10.13) implies that

log Z} = hy + log € (10.18)

with A, as defined by (10.14). If €, is a standard normal variate then log €?
has a mean -1.27 and variance 4.93. The autocorrelation function of {log Z?}

is given by (c.f. Shephard (1996)).

(k) 1

- k
Plog 22 = (1 1+ 4.93/07) V"

The SV model (10.13) - (10.14) may also be defined by

Z, =€, \/hs, (10.19)
where
log hty1 = ag + a1 log by + Myg1- (10.20)

This form of the model is discussed in Jacquier et al (1994). It €; and 7, are
normal r.v.’s as before then all the properties discussed above follow similarly.

FEstimation: Unlikein ARCH/GARCH models, the likelihood based inference
is not straight-forward in SV models. For example, let @ be the parameter
vector to be estimated in a SV model. Then the assumptions on the model

allow us to write the likelihood function of © based on Z;, Z,, -+, Zn as
N
Ley=J---J/J {H P9(2t|ht)P9(ht|ht-1)} dhydhy - - - dhy,
hy ho by | t=1
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where Py(z|y) denotes the conditional density. Thus to express the likelihood
function in terms of the observable r.v.’s Z;,Z, - -+, Zn, we have to evaluate
an N-dimensional integral. Even in the case of log-normal SV model, it is
not possible to get a closed form for L(©). Hence numerical methods are
adopted to obtain mle’s based on simulation. Fridman and Harris (1998)
proposed a method for evaluating the above multiple integral using an iter-
ated numerical integration procedure.

Another method of estimation suggested for SV models is the general-
ized method of moments (GMM), where the parameters are estimated by
equating a finite number of population moments to the corresponding sam-
" ple moments. Here one may use more number of moment equations than the
number of unknown parameters in the model. Asymptotic properties of the
GMM estimators are discussed by Hansen (1982). This method is applied in
real life situations by Jacquire et al (1994). Various numerical methods for
computing the GMM estimators are discussed in Hamilton (1994).

The equation (10.18) along with (10.14) helps in writing log y? in the form
of a linear non-Gaussian state-space model. Hence the Kalman filter method
(see Section 7) can be used to provide the best linear unbiased estimator of
h; given the past values of logy?. See for example, Harvey, Reiz and Shep-
hard (1994). Jacquire et al (1994) study the Bayesian analysis of SV models
(10.19) - (10.20). They apply Markov Chain Monte Carlo (MCMC) methods
for estimating and forecasting the volatilities.

Other SV models with student ¢ - and generalized error distributions are
also studied in the literature. A survey of such models may be found in
Taylor (1994). Andersson (2001) discussed the properties of ARCH and SV
models assuming normal-inverse Gaussian distribution for the return series.

11. Long-Memory Processes

Sometimes observed time series, although satisfying the stationarity assump-
tions, seen to exhibit non-negligible serial dependence between distant obser-
vations. This is often referred to as ‘persistence’ and the ARIMA class can
be extended to model long term persistence. If the parameter d is allowed to
be fractional in the ARIMA model then this can incorporate ‘long-memory’

58



in the sense that the ACF decays at a hyperbolic, instead of exponential
(d = 0), rate as the lag increases. Such a process is called the autoregressive
fractionally integrated moving average, ARFIMA(p,d,q), process and has
widely been used in different fields such as hydrology, astronomy and com-
puter science (see Beran (1994)). The ARFIMA(p, d, q) process is stationary
and invertible if |d| < .5. If d > .5 then Var(Z;) is infinite and the process
is nonstationary.

The spectral density function for the ARFIMA process is given by

fo(w) = fu(w)[2sin(w/2)]"%, w € [—m, 7] (11.1)
where f,(w) is the spectral density of the ARMA process
4(B)U, = 8(B)a, (11.2)

such that U; = (1 — B)¢Z;. Geweke and Porter-Hudek (1983) proposed to
use the periodogram function I(w) as an estimate of the spectral density in
(11.1) and use that to estimate d. Several modifications were suggested which
replaces the spectral density (11.1) by a smoothed periodogram function (see
for instance Hassler (1993), Reisen (1994), Chen et al (1994), Robinson (1995
a, b), Hurvich et al (1998), Hurvich and Deo (1999) and Velesco (1999)).

These estimators of d may be called semiparametric and often such an
estimator of d is obtained first and then the other parameters. An alternative
parametric approach is one in which all parameters including d are estimated
simultaneously by maximizing the likelihood function (Whittle (1953), Fox
and Taqqu (1986), Dahlhaus (1989), Beran (1994), Taqqu et al (1995)).

Several steps are necessary to obtain an ARFIMA model for a set of
time series data and these are given below, (see Hosking (1981)). Sup-
pose that U; = (1 — B)?Z, has an ARMA(p, q) process as in (11.2). Let
Y; = (#(B)/0(B))Z: is an ARFIMA (0,d,0) process.

Step 1 Estimate d in the ARIMA(p, d, g) model; denote the estimate by d.
Step 2 Obtain U, = (1 — B)4Z,.

Step 3 Use the Box-Jenkins (1976) approach to obtain an ARMA(p, ¢) model
for Uy i.e. ¢(B)U; = 0(B)ay.
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Step 4 Calculate g, = (¢(B)/8(B))Z:.

Step 5 Estimate d in the ARFIMA(0, d,0) model (1 — B)‘iyt = a;. The value
of d in this step is the new estimate of d.

Step 6 Repeat steps 2 - 5 until the estimates of the parameters d, ¢, 8 converge.

This algorithm uses the semiparametric approach mentioned earlier. Usu-
ally only one iteration with steps 1 - 3 is used to obtain a model. It should
be noted that the bias in the estimator of d can lead to the problem of iden-
tifying the short-memory parameters (see Crato and Ray (1996), Smith et
al (1997) and Reisen et al (2001a,b)). These authors also show by simula-
tion studies that (i) the estimates obtained in the first iteration and after
convergence are similar, (ii) the estimates are biased for series of length 300,
and (iii) the estimator of the variance of the forecast errors are severly biased.

Currently this area is very active and for further details see the references
cited earlier.

12. Summary

In this paper we discussed univariate time series analysis. We started with
the ARIMA models describing the 3 stage modelling strategy to build an
ARIMA model from data. We also obtained such models for two sets of data
from industrial processes. MMSE forecasts from ARIMA processes were then
considered. Several practical issues such as outliers, missing values and inter-
ventions were discussed and the application of time series to control problems
were considered. We also discussed state space models and the Kalman filter.

Non-Gaussian and non-linear models were reviewed highlighting some of
the more interesting models. Then we considered stochastic volatility mod-
els and other models for conditional variances with discussion on ARCH and
GARCH models. We also included a short discussion of long memory (frac-
tional differencing) models.

There is a vast literature on multiple or multivariate time series. We
focussed only on univariate time series and our discussion in not exhaus-
tive. We included only certain highlights of some areas which we have been
interested.
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