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Abstract

In this paper we discuss some dimension reduction methods (DRM) which use
linear combinations of observed explanatory variables referred to as latent vari-
ables for the prediction of a set of responses. We give an objective function to
generate a whole range of different solutions which can be used to taylor DRMs
to specific problems. In fact, the known DRM’s can be obtained as special cases
from this objective function. We also consider an alternate way of generating
solutions from least squares and maximum likelihood estimation of the full di-
mensionally reduced model. We give two examples one in sensory analysis and
another one in process monitoring which indicate that these methods give good
representation of multivariate linear relationships in few dimensions, allowing
for graphical inspection and easy interpretation.

1 Introduction

Dimensionality reduction methods (DRMs) were initially used in data analysis
as a purely descriptive (exploratory) tool, useful for isolating and possibly visu-
alizing selected characteristics of a set of variables in fewer dimensions. Apart
from numerical procedures (see Seber (1984) for a review), the exploration of
sub-spaces is often suggested for investigating the presence of outliers in a mul-
tivariate set of data (e.g. Gnanadesikan and Wilk (1968), Seber (1984) and
Jackson (1993)). Representing multivariate data on a two or three dimensional
graph makes it easier to “see” trends, clusters and relationships in the data,
otherwise hidden or dispersed by the high dimensionality. More recently DRMs
were used for representing, both graphically and numerically, a multivariate lin-
ear relationship between two sets of data. This last case, prediction, has always
been one of the fundamental problems of statistics and it can be applied in in-
dustry for many different reasons, such as designing, production and marketing.

The use of DRMs for prediction has been firstly advocated as a solution for
multi-collinearity in the predictors; in more recent years it seems to have found
particular favour in those contexts in which the number of variables involved is
very large and/or they are highly correlated and/or their structure is not easily
modelled or even when there are more variables than observations. Also, the
increase in data storage capacity together with that of computational powers
has created the necessity of dealing with very large data-sets. DRMs can be used
for “shrinking” large sets of unstructured data into few “meaningful” variables.



This last problem can be rightly considered a “data-mining” technique. We
now give a few examples of applications of DRMs in industry.

One of the problems in Chemometrics is to estimate the presence of ele-
ments in a compound from the readings of Near-Infra-Red spectrography (see
Brown (1993) for a statistical treatment on the model and Gelaldi and Kowal-
ski (1986a) and (1986b) for applications of DRMs to it). Readings are taken at
many different band-widths from fewer samples in order to determine a linear
function in the readings to determine the concentration of the compound. This
procedure is known as calibration and its peculiarity is that the role of predictors
and predictands is reversed. In fact, the concentration causes the readings and
not the opposite, as modelled. Hence, the calibration prediction problem con-
sist of predicting the concentration from few observations (samples) of a higher
number of variables. Obviously, the usual OLS approach to this problem fails
because the matrix of the regressors is not of full column rank. Chemometrics
has several application in industry, such as in the devices that test the glucose
content in the blood for diabetics or the routine tests on the product of chemical
reactions.

Another area in which DRMs for prediction are widely used is the control
of chemical reactors (for a review, see Kourti et al. (1995)). Here the sensors
hooked on-line to the reactors give an enormous quantity of readings on process
variables and product characteristics at an hourly rate. Furthermore, many of
the measurements are highly correlated. DRMs are thus used to predict the
product characteristics from the measurements on the process variables. One of
the applications is a 3-dimensional control chart where the horizontal plane is
a 2-dimensional representation of the process obtained with two linear combi-
nations of the predictors and the vertical axis measures the error of prediction
for the product characteristics. Such a control chart is used as an on-line tool
for monitoring the process and the product and as an off-line tool to diagnose
the cause of malfunctioning or unexpected variability.

Sensory analysis is another area where DRMs for prediction are extensively
used (see Hoskuldsson (1996)). Sensory analysis consists of predicting the lik-
ings of customers about a certain food. The explanatory variables are usually
organoleptic judgments given by a number of trained tasters and the responses
are likings given by a sample of untrained “customers”. The measurements are
usually taken on various different recipes or brands for the same kind of food.
It is difficult to model this kind of data because of the subjectiveness and high
variability of the customers’ judgments and because, in many cases, the different
recipes (units) are less than the characteristics measured by the trained judges
(hence the matrix of predictors is not of full column rank).

There are several other examples, such as QSAR (quantitative structure
activity relationships) and QSPR (quantitative structure property relationships)
which study relationships between useful molecular properties (like ability to
control a human disease or lubricate a piston) and the underlying chemical and
physical properties which may enhance or limit the desired property (see, for
example, Schmidli (1995)). Yet another example is customer classification for
credit allowance or advertisement.



1.1 Notation and Convention

For future reference, we define here the notation and conventions that will be
adopted and most frequently used throughout this Chapter. We will restate
them whenever necessary and explain new ones when introduced.

Upper-case boldface letters will denote matrices, lower-case boldface letters
column-vectors and lower case letters scalars. The columns of a matrix will be
denoted with the corresponding lower-case letter. Greek letters, with the same
typographical convection, will be reserved for eigen-values and singular values.
So it is understood that a boldface capital Greek letter is a diagonal matrix
with the eigen-values (or singular values) on the diagonal. The eigen-values and
singular values of matrices will be indexed in non-increasing order. We assume
that the eigen-values of a symmetric matrix are all different (which is true with
probability 1 when the corresponding population eigen-values are positive). As
exceptions, we will reserve the symbols y for means and o for variances and
covariances.

When needed, subscripts enclosed in round brackets will denote the number
of columns of a matrix and subscripts enclosed in squared brackets will refer
that the element subscripted has been obtained using that number of elements,
as it will be clearer later. The elements of the j-th recurrence of a series of
matrices, F1, Fs, ..., Fg4, say, will be indexed separating with a coma the recur-
rence number from the row and column numbers, so fix ; will denote the (ik)-th
element of the j-th matrix.

The matrix X will denote an (n x p) matrix containing n independent ob-
servations of the p explanatory variables, the matrix Y will denote an (n x ¢)
matrix containing n independent observations of the ¢ response variables. For
both matrices the columns are assumed to be centered to zero mean, that is

the sample means z; = ‘—“"Ji:,:ﬁ and §; = g-”'—?’—y—'i, are subtracted from the
corresponding original observation. The symbol Y without any subscript will
denote the Ordinary Least Squares (OLS) solutions to the linear regression
model, ¥ = X(X'X)"1X'Y.

2 Dimensionality Reduction Methods for Pre-
diction

DRMs build a sequence of ordered orthogonal variables, called latent variables
(Iv’s), are defined by linear combinations of the x variables as:

t; =Xa;, i=1,...,p suchthat tjt; =0if7#j.

The 1v’s span the column space of X and only d < p are used for the prediction
of the responses.. When d = rank(X) < p, the matrix T4. = XA, forms an
orthogonal basis of the whole column space of X. When d < d* are taken, the
matrix T(q) is an orthogonal basis of a sub-space of the column space of X.
This sub-space, called latent space, is the main interest of DRMs.



The model underlying the dimensional reduction of the X matrix is the

following:
oroming X =T P/ F 2.1
=Tk + ¥ (2.1)

where P (4) is an (p x d) matrix of parameters and Fiq is an (n x p) matrix of
residuals. The columns of P(4) take the-name of z — loadings. In this way the
matrix X[d] = T(4)P{, builds a lower dimensional approximation to X. From
this modelling it follows that the interest of DRMs is in determining the axis
t; and not in the intercept terms (location), which are estimated by the sample
means I; = 2’5“1—3'—’ The computed values ¢; ; take the name of scores.

Clearly, model (2.1) is not uniquely parameterized as the matrix T4y can
be post-multiplied by any orthogonal (d x d) matrix. It is also over-identified as
the number of unknown parameters is greater than the number of observations.
Therefore, all DRMs need to impose some restrictions on the model. The class
of DRMs that we will consider is that in which the residuals F(q are taken to
be orthogonal to the lv’s. Hence, we are looking for an orthogonal partition of
the column space of X such that T’( d)F[d] = 0. Note that under this condition,
rank of Figq can be at most min{n,p — d}. The orthogonality conditions rule
out the class of DRMs that goes under the name of Factor. The uniqueness
of model (2.1) is achieved by taking the P4 matrix to be the Ordinary Least
Square (OLS) solution to it. That is, assuming T[4) known, P4 is taken to be
the matrix that minimizes ||X — T(d)P’(d)Hz, which is

It is straightforward to see that the matrix of residuals F[5 must then be
F[d] =X - T(d) (Tzd)T(d))—lTI(d)X =X - X[d].

Therefore, with the above conditions, model (2.1) is completely determined
knowing the coefficients A (4).
If we take the full rank set of dx 1v’s, we have that

X[d‘] =X.

This is easily proven by observing that since T[4.] is of rank d*, it spans the
whole column space of X. Hence, T4. (T, Tg4- )‘ITE 4) Projects onto the whole
column space of X and it follows that Fig = 0 for d > d* also P,) = I,..

In a predictive context, the linear regression model is

Y =XB+E (2.2)

where E is a matrix of zero-mean errors. The OLS solutions for (2.2) are given
by B = (X'X)~1X'Y. The dimensionally restricted model is:

Y= T(d)de) + Efq- (2.3)



The columns of the (¢ x d) matrix of parameters Q(q) take the name of y —
loadings. Also here Q is taken to be the OLS solution for given T 4), that is

It is then clear that Q(q4) is completely determined by A (g). Substituting T 4) =
XA (4), model (2.3) can be expressed as

Y = XA(2)Q(y) + Eg) = XBig + Eq = Yq) + Eq. (2.5)

where By = A(d)(TEd)T(d))‘lT’(d)Y is an estimate of the matrix of regression
coeflicients for the full linear model (2.2).
In virtue of the orthogonality among the 1v’s, we have that
p; = X'(tjt;)7't;
q;i = Y/(tjt;)7't;.

That is to say that the each vector of loadings is determined only by the corre-
sponding coefficients a;. Furthermore we have the following recursive equalities:

By = By +aa(tyts)'tyY
Yig = Yo+ Y(ta)
Xig = Xuoy+X(ta), d=0,1,...,p (2.8)

with the subscript [0] denoting 0 matrices. Hence the the parameters obtained
with d 1v’s do not change if more 1v’s (d+1,d+2,...) are included in the model.
Note that, also in modelling the responses, the intercept terms for the responses

are implicitly estimated by the sample means y; = gl—:n‘—y'i Note that the
solutions to the dimensionally reduced models are invariant to the length of the
1v’s, therefore normality constraints can be imposed without loss of generality .

So far we have not addressed the problem of the choice of the rank of the
latent space, d. In fact, this value is usually left undetermined prior to the
analysis and chosen after the 1v’s have been determined. The most common way
of choosing the optimal value of d, in a predictive context, is Cross-Validation
(CV) (Stone (1974)).

DRMs are distinguishable by the different (objective) function optimized for
obtaining the solutions a;. This function transposes in mathematical terms the
property that is wanted to be retained the most by the latent spaces.

The idea of a predictive space of reduced dimension is presented in a sugges-
tive way by Wold (1984) in terms of latent path modelling. In this context the
relationship among observed variables (called manifest variables) is modelled in
a lower dimensional space of unobservable variables (the 1v’s). Figure 2.1 shows
the linear models in the manifest variables (type (a)) and the corresponding
paths for the 1v’s (type (b)), in which the relationship between regressors and
regressands is explained by the lv’s. More complex paths are possible and are



illustrated in Wold’s paper, where further references are given, too.

a) (b)
manifest variables latent variables

Simple Regression

X1
— S O—<13

X4 Ya

Multiple Regression

= B35 o<
Xa Xa

Figure 2.1: Latent path modelling. (Ia) simple univariate regression on manifest
variables, (Ib) simple univariate regression on 1v’s, (Ila) multiple regression on
manifest variables and (IIb) multiple regression on 1v’s.

Latent path modelling has been used mainly by psychometricians who have
developed a specific jargon. We will not adopt that terminology nor the path
modelling techniques because they are hard to cast into a more rigorous sta-
tistical framework. Latent path modelling has led to methods such as Partial
Least Squares (PLS) that, although cannot be justified through standard linear
modelling with quadratic loss function, have proved themselves quite powerful
in practice. As it can be seen in the latent paths, the 1v’s are used for explaining
the manifest variables. This implies that behind PLS there is the idea that both
the response and the predictor spaces must be explained.

3 Approaches to Dimensionality Reduction

In this section we visit some of the DRMs used to generate the lv’s for the
prediction of responses. Some of these methods, as we shall see, enjoy differ-
ent optimality properties. Sometimes these properties can be related to the
prediction of résponses but other times they cannot.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is the most popular and well known DRM
and the 1v’s that it generates are known as principal components. PCA’s pop-
ularity is due to being the oldest DRM, and therefore most studied, to being
relatively easy to compute and, most of all, to being the solution to a number
of different problems involving the dimensional reduction of one set of variables.
That is to say that PCA enjoys several optimality properties at it is discussed



in many books (c.f., e.g., Seber (1984) or Mardia, Kent and Bibby (1982)) and
monographs (e.g. Jackson (1993), Jolliffe (1986) and Lebart et al. (1984)).

The principal components were firstly found by K. Pearson (1901), under
the name of “lines of best fit”, as the LS estimates for the model (2.1). If we
let UAV' be the singular value decomposition (svd) of X, the first d principal
components are given by U4 A4 and the coefficients A, are given by the
matrix V(d). It was shown later (Okamoto and Kanazawa (1968)) that the
principal components are the optimal solutions to model (2.1) with respect to
any uniformly invariant norm of the matrix Fiq).

The principal components gained consideration by the statistical commu-
nity when Hotelling (1936), 30 years later, proposed them as the estimates of
the linear combinations of a set of random variables that retained the highest
possible variance. Hence, the principal components can be also obtained as the

solutions to:
! /
a;.x')rclxlfzo i< a;X'Xa;. (3.1)
In this framework the principal components are also the Maximum Likelihood
Estimates (MLEs) for model (2.1) under Normal distribution of the x variables.
It is well known that PCA is very sensitive to the variance of the z variables
and that the first principal component will be “closer” to the variables with
larger variance. This property may be undesirable, especially when the units
of measure of the variables are not comparable. Furthermore, in a predictive
context there is no a-priori reason for which the regressors with larger variance
should be better predictors of the responses than those with smaller variance.
In order to overcome the problem it is customary to autoscale them to unit
length prior to PCA.

3.1.1 Principal Component Regression

Principal Component Regression (PCR) consists of regressing the responses on
the first d principal components. Thus the matrix By in (2.5) is given by:
A -1
By = V(d)A(d)U'(d)Y (3.2)
so that, substituting this into (2.5), the fitted responses with d Iv’s are given
by:
Y = U(d)UEd)Y. (3.3)

Obviously, when all the principal components are used, Y[d] = U(p)U’(p)Y is
the OLS estimate as U(p)U’(p) = X(X'X)"X.

PCR can be applied to univariate and multivariate regression. However, the
principal components are chosen “independent” of the responses and choosing
the best subset of principal components for the prediction of the responses is not
a trivial problem. The choice of the first d principal components as predictors is
usually based on the idea that the last principal components are only “noise”.
In fact, there is no reason for which the first d principal components should form



the best subset for predicting Y. One reasonable thing to do is to look at the
correlation between the principal components and the responses (e.g. Mardia
et al. (1982) and Jackson (1993)) or use other techniques for variable selection
for multiple regression. However, it can be shown (e.g., c.f. Mardia, Kent and
Bibby (1982)) that, for each y; and principal component t;, the variance of the

estimates bj; is
2 2

Var(b;yj)zdiag ‘7/\2 } (34)

where ? = Var(y;). Therefore the inclusion of principal components corre-
sponding to small eigen-values can increase the variance of the estimates. This
and other problems connected with PCR are discussed in Jackson (1993) and
Jolliffe (1986) at length where detailed references are also provided. Sun (1995)
suggests choosing the best subset of principal components by cross-validation.
Indeed, Sun’s method may lead to better prediction but there could still be
different 1v’s that give better results.

3.2 Reduced Rank Regression

Reduced Rank Regression (RRR) was introduced with this name by Izenman
(1975) as multiple regression with rank constraint on the coefficient matrix.
However, the same solutions had been obtained before by Rao (1964) as the
Principal components of instrumental variables. Later, the same 1v’s were de-
rived by Van den Wollenberg (1977) as the solutions to Maximum Redundancy
(MR). RRR addresses model (2.3) directly and the resulting 1v’s are the prin-
cipal components of the OLS solutions Y, therefore widely optimal. Details on
this method can be found in Schmidli (1995) and Reinsel and Velu (1998).

Although RRR is the optimal solution for the prediction of a multivariate
set of responses from a set of 1v’s, in some applications it has been shown that
heuristic methods, such as PCR and PLS, give better predictions of yet to be
observed values.

The RRR 1v’s are the set of orthogonal linear combinations of the x variables
which, sequentially, minimize the residual sum of squares (RSS) for model (2.3).
Hence they are given by the solution of:

min Y - Yiqll?
Ta)=XA@q) I Gl (3.5)
T'T =1

Note that we added normality constraints for the 1v’s without loss of generality.
MR seeks couples of 1v’s, one in each space, solutions to the following objective
function:
(aX'Yd;)?
max a;X'Xa;
aja; =1, did; =1 (3.6)

a;X'Xa; =0, i<j



where each vector d; contains ¢ unknown coefficients for the 1v’s in the Y space,
rj. The Iv’s Xa; are the same as the RRR 1v’s.
The RRR coefficients are given by the first d generalized eigen-vectors:

X'YY'Xa; = X'Xa;¢;, j=1,2,...,d. (3.7)

Thus, for X'X non singular, the RRR coefficients a; are proportional to the
eigen-vectors defined by

(X'X)"'X'YY'Xa, = a;¢;, j = 1,2,...,d. (3.8)

For X'X singular the coefficients are not uniquely defined. However, the lv
t; = Xa;, given by the eigen-vectors

X(X'X)"X'YY't; = t;¢; (3.9)

are unique for any choice of the generalized inverse (X'X)~. A more meaningful
expression for the RRR 1v’s can be obtained by noting that these are the ordered
principal components of the OLS solutions for the regression model, Y. That is

Y?It]’ =t;¢; (3.10)

Hence, the RRR 1v’s lie in the space of Y and, letting W(4) = Y'XA (4), these
can be expressed as linear combinations of the OLS solutions by

YW = Tg)® () (3.11)

The maximum number of RRR 1v’s is then min{rank(X), rank(Y)}.
Davies and Tso (1982) show that RRR minimizes the additional RSS due to
rank constraints. That is, the RRR solutions are given by:

argmin||Y - Y|>+||Y - XBig||? = const + arg min HY"{,,} - XBg]|%

3.3 Canonical Correlation Analysis

Hotelling (1936) proposed Canonical Correlation Analysis (CCA) as a method
for finding relationships between two sets of variables. This technique is gen-
erally applied in exploratory data analysis and it is considered able to detect
spurious linear relationships between sets of variables, due to outliers or clus-
tering of data (Seber (1984)). CCA was later generalized to more than two sets
of variables by Carroll (1968).

The idea behind CCA is to express the association between two spaces in
terms of the highest possible squared correlation between two vectors in the two
spaces. Hence, CCA maximizes the squared correlation between pairs of vectors
belonging to mutually orthogonal sets. The CCA solutions can be obtained as
maximum likelihood estimates under the assumption of multivariate normality
for the two sets of variables. In CCA the two spaces are treated symmetrically,



that is the role of the two can be exchanged without changing the result.
Let the data matrices X and Y be such that the sample covariance matrices
X'X and Y'Y are non-singular. The objective function of CCA is the following:

max (a'X'Yd;)?
aj,d; a;X'Xa;d Syd, (312)
aja; =djd; =1, ajX'Xa; =0 i#j.

The solutions are given by the eigen-vectors:

(X'X)"IX'Y(Y'Y) 1Y'Xa; = a;p? (3.13)
(YY) 'Y'(XX'X)"1X'Yd; = d;p? (3.14)

where the eigen-values p? are called the (squared) canonical correlations. The
above eigen-decomposition is real because it concerns the product of symmetric
matrices). The 1v’s are given by

X(X'X)'X'Y (YY) 'Yt = PxPrt; = tip? (3.15)
Y(Y'Y) 'Y X(X'X)" ' Xr; = Py Pxr; = rip? (3.16)

where Px and Py are the orthogonal projectors on the X and Y spaces, re-
spectively. In the case where X'X or Y'Y is singular, the inverses can be
substituted by generalized inverses and the coefficients a; and d; will not be
uniquely defined.

3.3.1 Canonical Correlation Regression

Canonical Correlation Regression (CCR) consists of regressing the responses on
the first d canonical correlation variables in the X space. Although CCA is not
meant for prediction it can be cast into a predictive framework. The CCR 1v’s
can be obtained as the generalized least squares solutions to the RRR model
(2.3). That is the CCR 1v’s are obtained minimizing

i Y -XA yE2,
iy @ Q@) (YY)l

The coefficients a; are given by the first d coeflicients of the canonical correlation
variables in the X space.

CCR can be obtained from a more general geometrical framework. Consider
the problem of determining the matrices A (p x d), D (¢ x d) and C (d x q)
such that A’X’XA =1 and D'Y'YD = I for which

IlYD — XAC]||? (3.17)

is minimized for all unitarily invariant norms (UIN). Rao (1979) shows that the
optimal solution are the CCA coefficient vectors A and D with C = A’X'YD =

10



P. Hence, under the above orthonormality constraints, we have

min{p,q}
: _ 2 _ _ RI12 = 2
CI,IB{]AHYD XAC|*=||R-TT'R|| ,-_El_,_d i (3.18)

where R = YD. That is the best prediction of orthonormal linear combina-
tions of Y by orthonormal linear combinations of X, w.r.t. any UIN, is given
by the projection of the CCA variates in the Y-space on those on the X-space.
A special case of the above definition is that the canonical correlation 1v’s in
the Y-space are the sequence of linear combinations of the y variables that
have maximal coefficient of determination with a sequence of orthogonal linear
combinations of the & variables. These linear combinations are the canonical
correlation 1v’s in the X space. This property follows immediately noting that
objective function (3.3.1) maximizes the coefficient of determination of the re-
gression of Yd; on Xa;.

3.4 Partial Least Squares

Partial Least Squares (PLS), sometimes called Projection to Latent Structure,
was proposed by H. Wold (1982) in the context of Latent Path Analysis. One of
the features of PLS is that it does not require the inversion of the matrix X'X,
hence it can be applied to data-sets with fewer observations than explanatory
variables or in the presence of multicollinearity. PLS is as an algorithmic solution
for predictive situations without any “hard” modelling behind, hence without
any explicit optimality property. In fact, until now, nobody seems to have
succeeded in finding a convincing one, or even a rationale for its use, using a
linear predictive model and a quadratic loss function for the prediction errors.
Also, the distributional properties of the estimates obtained with this method
are not well known, some approximations and suggestions can be found, for
example, in Kourti, Nomikos and MacGregor (1995). This is probably why PLS
is not widely accepted by the statistical community. Nonetheless this DRM
has been shown in many applications to yield better predictions than other
”optimal” Least Squares methods and it is extensively used in many fields of
research and applications. The OLS solutions to the linear predictive model

Y = XB +E,
given by
Y = X(X'X)"'X'Y = XB,

are, clearly, non-linear in X thus, in a sense, they violate the original model;
when it comes to predicting y. from new observations x. the OLS solution is
y. = x.B, which’is linear in x.. Therefore the assessment of the goodness-
of-fit based on the sample RSS may not lead to the best predictions. For dis-

cussion and critique of the OLS estimates see, for example, Seber (1984) and

11



Whittaker (1990)). Also the usual distributional assumptions for the regression
model are often not realistic. In his review for the Encyclopedia of Statistical
Sciences, Wold (1984) put forward, as merits of the PLS method, the fact that
it neither require distributional assumptions nor the specification beforehand
of the number of 1v’s in the model. In this light, PLS can be considered a
data-based method that gives good predictions locally without any general in-
ferential reliability. PLS has been primarily used for prediction in a regression
context, however its similarity with Canonical Correlation Analysis has led some
to use it as an exploratory method as well. In different cases (e.g. Stone and
Brooks (1990)) PLS is also called Canonical Covariance Analysis.

The original PLS algorithm was derived from a modification of NIPALS,
an iterative algorithm for computing principal components (Gelaldi and Kowal-
ski (1986b)). Its mathematical functioning was explained by Hoskuld sson (1988),
Helland (1988) and de Jong (1993); Phatak et al. (1992) and Merola (1998) con-
tributed to explaining its geometry. As Hoskuld sson (1988) pointed out, this
algorithm obtains the 1v’s from iterations of the power method, which can be
substituted with more efficient algorithms (such as, for example, the singular
value decomposition). The advantage of the NIPALS based algorithm is that it
can be adapted to data-sets with missing observations.

PLS can be applied to univariate and multivariate regression problems but
the multivariate version is not considered a straightforward generalization of
the univariate one. The univariate version used to be labelled as PLS1 and the
multivariate one as PLS2. In what follows we will present the iterative PLS
algorithms, including the case of missing data, a more efficient version and then
the algorithm SIMPLS, a variant of the latter one, proposed by de Jong (1993).
PLS is always performed on autoscaled data (that is each observed variable
(vector) is centered to zero-mean and scaled to constant variance).

3.4.1 Univariate PLS

In Algorithm 3.1 the classical univariate, NIPALS based, PLS algorithm is
shown; among other sources, different versions can be found in Wold (1982),
Gelaldi and Kowalski (1986b) and Manne (1987), of which Helland (1988)
showed the equivalence. One of the distinctive features of PLS is that after
each lv has been determined, the matrix of the explanatory variables is substi-
tuted with that of the orthogonal residuals F(; 1), as in Step 1.5. of Algorithm
3.1. At step 1.4 the elements of p; are the regression coefficients of the f vari-
ables on tj, so that Fj;1) = F; — t;(t}t;)"'t/F;. The response is deflated in
the same way at step 2.8, so the variables r; are not multiples of the y vector
but lie in the space orthogonal to that of T(;). The matrices F; are called
deflated X matrices. By defining the 1v’s subsequent to the first one as linear
combinations of the deflated z’s, as in Step 1.3, each lv automatically satisfies
the constraint of being orthogonal to the preceding ones. The algorithm given
above is clearly inefficient, as some steps are redundant when there are no miss-
ing data. However, as we shall see later, these steps are important in case that
some observations are missing. When there are no missing data, the division in

12



step 1.2 is not necessary since c¢; is normalized at next step.
Algorithm 3.1 Original univariate NIPALS based PLS algorithm.

0] set: F1 =X, e1=y,j=1
1] iterate until p; converges -

Fle;
. J
1.1] ¢ = —J_e;,ej

1.2] Cj — I-I-EIJ—IT

Fjc;
1.3] t; = S;J::-

F't;
1.4] pj = _J_t;tj

1.5] F(j4+1) = F; — t;p]

U .
e.t;

1.7] r; = ejd;

1.8] eG+1) =€ — t;d;
2] if ||Fen)ll > € j 7 +1,gotol

3] exit

Also the division at step 1.3 is not necessary as cg- c; = 1. It is easy to see
that Fie; = Fjy, hence step 1.1 can be modified as ¢; = Fjy. In virtue of
this last observation the computation of the r; variables and the deflation of
the response can be omitted from the computation when only the 1v’s in the
X space are needed, as in prediction. Note that eliminating the deflation of y
(and substituting r; with y in step 1.1) would lead Loop 1] to converge in 2
iterations. In PLS the 1v’s are computed until the X matrix is exhausted by
requiring that ||F;|| is small enough, Step 2. The choice of the stopping value, e,
is usually taken to be 0.01||X]|| or 0.05||X]||, so that the number of components
computed will always be less or equal to p. The actual number of components
used for the prediction of y is generally different from the number of components
that exhaust X and it is chosen independently, usually by cross-validation. The
PLS algorithm determines the coefficients ¢; that express the 1v in terms of the
residuals F;. However, the coefficients a; that express the 1v’s in terms of the
original x variables are required in order to obtain the regression coefficients
B4 and the scores for new observations. It can be shown (Helland (1988))
that XC gy lies in the space of T4, hence the A (4) matrix of coefficients can
be retrieved from the matrix C(y). If we let QR be the QR decomposition of
XC(q) then we have

Ay = C(d)R_l (3.19)

The columns of the matrix Q = XA 4) are the t; scores standardized to unit
length. Scaling the a; so obtained to unit length gives the scores of the required
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length. Note, however, that Xa; and F;c;, with [|a;|| = ||¢c;|| =1
Algorithm 3.2 Univariate PLS algorithm with straightforward computation of
the solutions.

0] set: F; =X, j=1

F!
1.1) ¢; = ﬂf%ﬂ
1;2] tj = ch]'

L3] F(jq1) = Fj — t;(tjt;) T 6F;
2] if [|Fi41)ll > € j < 3j+1,goto 1
3.1] N = XC
3.2] gr(N) = QR
3.3] A = CR™!

4] exit

will be collinear but will have different lengths. In Algorithm 3.2 we give
a more efficient univariate PLS algorithm that takes into account the above
considerations. This algorithm cannot be adapted to missing data.

3.4.2 Multivariate PLS

A version of the classical multivariate algorithm is given in Algorithm 3.3.
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Algorithm 3.3 Classical multivariate PLS algorithm.
Olset: F1 =X, Ey=Yand j=1

rj=y
1.1] iterate until ¢; converges
1.2] ¢; = g’;r’—
5%
13] ¢; « 1y
1.4] t; = 55—11
1.5]d; = 5—5’:—;)-
1.6] r; = %%7

¢
Fit;

1.7 p; = -t-i—q

1.8] F(j41) = F; — t;p;

L9] Ej4y) = E; — t;d;

2] F(j41) = Fj — tj(tjt;) 7' tiF;
3] EGiy1) = Ej — t;(t5t;) 7"t E;
4 if ||Fjl| > e J (—~:j+ 1, goto 1
5] exit

The observations made above for the univariate algorithm hold also for the
multivariate one, except that the vector d is not unitary here; also in this case
the algorithm for complete observations can be improved. Hoskuld sson (1988)
showed that at each iteration the solutions c¢; can be computed directly as the
eigen-vector corresponding to the largest eigen-value of the matrix F;YY'F;.
Therefore, if we let ¢; be these eigen-values, at each iteration the coefficients c;
satisfy:

F}YY/F]'CJ' = c]-¢>j.

Eigen-values are computed most efficiently through the standard singular value
decomposition (svd) routines available. It is easy to see that the other quantities
computed by multivariate PLS are also eigen-vectors, such that:

FjF;YY,tj =t;d;, Y’FjF‘Iinj = d;¢;, EjY/Fng-rj =r;¢;.

In the original PLS algorithm the 1v’s in the y variables, r;, are defined as
r; = E;d;. These are of difficult interpretation and it is not clear if defining
them in terms of the original y variables, that is as r; = Yd; would make
them more meaningful (see Tenenhous (1998)). In Algorithm 3.4 we give a
more efficient multivariate PLS algorithm that takes into account the above
considerations. This algorithm cannot be adapted to data-sets with missing ob-
servations. Nelson, Taylor and MacGregor (1996) discuss the difference between
the scores obtained with NIPALS and PLS on data with missing observations.
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Algorithm 3.4 More efficient multivariate PLS algorithm. The steps marked
with an asterisk may be omitted unless the scores r; are required.

0] EE=Y, F,=X,j=1
1] svd(Y'F;) = UBV’
1.1] ¢j=w1
1.2*) dj =w
1.3] t; = Fjc;/||Fjc;l|
1.4*] r; = E;d;/||[E;jd;| or r; = Yd;/|[Yd;]|
2.1] Fjp =F; —t;t;X
2.2"] Ej41 = E; — t;t}E;
3] if ||Fj41]] > €, j=j+1, go to 1.1
4 N=XC
41] qor(N)=QR
42] A=CR™
43) T=XA=Q

4] exit

Note that the scores so obtained are not, in general, orthogonal and the
products F;E; and FY, obtained substituting zero for the missing values, are
not equivalent. The coefficients c; are, sometimes, interpreted as the regression
coefficients of the f; variables on the v r;, that is the LS solutions to F; =
rjc; + Q, where Q is the residual matrix, as shown graphically in Figure 3.1.
Also the 1v’s can be interpreted as LS solutions of the regression of the rows
of F;, f;.;, onto the vector of coefficients c;, that is each score ¢; ; is obtained
fitting the model f; ; = c;t; ; as shown in Figure 3.2.
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3.4.3 Missing Data

Algorithm 3.5 Univariate PLS algorithm for missing observations.
0] set: F1=X,e;1=y,j=1

1] iterate until p; converges

E{i:f,k’j ande; ;exist} fir,5€i,5 k‘
9y

1.1) cx,j = =1,..
] k,J E{i’fik,j ande'»,j exist} e?,j ’ ’p
i
12] Cj — W‘jﬂ', k= 1, D
Z{k:j* ; exists} fik,iCk,5 .
1.3] t;; = ) - ——7— ,i1=1,...,mn
{k:fik,; exists} “k,j
2{:'/‘ ; exists} fik,jti,j
1.4 P = ik k=1,.
] Pk,j E{i:fik’j exists} £17 ’ P
1‘5] dJ — Z{i:ei’j exists} ei,5ti,5

S . t2
'(l:e",j exists} “t,7

1.6] ri; = e;,;d; fore; jexisting, i=1,...,n
2.1] F(j41) = (F;j — t;p}) for fix ; existing
2.2] e(j4+1) = e; — t;d; fore; ; existing
2.3] if ||F(j+1)||{f,-k,(,-+1)exists} >e€ j+—j+1,gotol

3] exit

As mentioned before, PLS can also be applied when some observations are
missing. PLS deals with missing data computing the coefficients using only
the available data. Algorithm 3.5 gives the univariate PLS algorithm for this
situation. The multivariate algorithm is given in Algorithm 3.6.

The score values ¢; ; are computed also for the units with missing obser-

kif ) s exist fik,jck,5 o . .
{k:fip j exists} ,t = 1,...,n, from these it is possi-

vations as t; ; =
hJ Z{k:f,‘k’j exists} ci,j

ble to reconstruct the X matrix as X[d] = j=1 t;p; and the Y matrix as
o d
Y =35, t5d5
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Algorithm 3.6 Multivariate PLS algorithm for missing observations.

0] set: F1=X,E;1=Y,j=1
rj=y:

1.1] iterate until ¢; converges

E("!‘ i andr; :exist} fik,iTi,5
1.2] ¢k, = ALY i E=1...
] ki E{i:f,'k’j andr; jexist} rtz.j ! k

1.3] ¢; (—“—f:ﬁ—, k=1,...,p

S kit existsy Jik,iCk, i
1.4] ti,j — {k:fip j exists}

5 1= 1, BRI [
(k:fik,j exists} ck,j

Eogip,j exina) Sokstis

1.5] Pk,j = y =17"'ap

E{i‘fzk,j exists} txz,j

2{i~e~ ; exists} €ik,jti,j
1.6] d,; = —tkod
] k,] Z{"eik,j exists} Ff?j

2o (kieyy ; exists} Eik, ik,
1.7] ri,j — ka'J exists

Lkieix,j exists} Cik,
2.1] F(j41) = (Fj — t;p;) for fix,; existing
2.2] E(j41) = E;j — t;d] fore; ; existing
2.3] i [[F (1)l [{fix, jny exists} > € J < j+1, goto 1
3] exit

j-th iteration

frki

k-th var f ;

f fi,j = ujck,; +q;

Figure 3.1: The coefficients c;interpreted as the regression coefficients of the
f) ; variables on the 1v r;.
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J-th iteration

fP,,ﬂ f,",jA
i-th score f'»’»j
’ k-th value
. L4 cj ‘. L4
. . R L
. . > > .« <
L]
f2,5 "¢
£ ; fj=cjtij+sij

Figure 3.2: the scores t; ; interpreted as the regression coefficients of the i-th
row f; ; onto the coefficients c;.

3.4.4 Objective function and SIMPLS

The objective function maximized by the PLS lv’s cannot be expressed in a
closed form. At each iteration , PLS generates couples of 1v’s that have maximal
covariance, that is maximizing the following function:

(d5Y'Fjc;)?
C‘licj' = l, d;dJ = 1, (320)
F1 =X, F(41) = F; — t;(t)t;) 1t F;.

where d; = d; = 1Vj in the univariate case. Note that since the data matri-
ces are always autoscaled prior to PLS the starting product between the data
matrices is a correlation and not a covariance. As mentioned above, the maxi-
mization of this objective function cannot be related to any optimal property for
predicting the responses using quadratic loss. In PLS the orthogonality among
the 1v’s is enforced through the deflation of the X matrix. This procedure, how-
ever, prevents PLS from maximizing exactly the covariance between the 1v’s in
X-space and the ones in the Y-space. de Jong (1993) proposed a method, called
SIMPLS, which gives couples of 1v’s that have maximal covariance, under the
orthogonality constraints among the t; Iv’s. SIMPLS maximizes the following

objective function:
d'Y'Xa;)?
(,J 3) , (3.21)
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The first SIMPLS lv is the same as that of PLS but the coefficients for the
subsequent components t;, are obtained as eigen-vectors of the matrix

(Tp = X'XA 1) {Af ) XXX XA -1} A X'X) X'YY'X

These solutions are obtained solving the stationarity conditions for d; and ap-
plying the rules of constrained maximization. The solutions obtained with SIM-
PLS have been shown to coincide with those of PLS to many significant digits.

3.4.5 Multi-block PLS

The multi-block PLS algorithm is applied when the predictive variables can be
divided into meaningful blocks. This can happen, for example, when there is
physical difference between measures or these are taken at different locations or
when a process is run in batches (see Wangen and Kowalski (1988) and Kourti,
Nomikos and MacGregor (1995)).

Figure 3.3: Scheme of the multi-block PLS algorithm.

Let X1,X,,...,X;, be the s matrices containing n observations of p; ex-
planatory variables corresponding to n observations on ¢ responses, then multi-
block PLS consists of determining the 1v’s tx ; = Fj jck,;, separately for each
X, matrix. Then the matrix T; = (t1,1,t1,2,...,t1,s) is used as the matrix of
explanatory variables in a round of PLS, so that the overall v t; = Tjc; is de-
termined; the procedure is iterated until the 1v’s obtained satisfy some stopping
criterium, for example explaining a fixed percentage of the sum of squared norms
||Fk,;||?. Figure 3.3 shows schematically this procedure and the multi-block PLS
algorithm is sketched in Algorithm 3.7. The overall 1v’s t; are linear combina-
tions of all the z variables, as t; = Ficyjc1; + Faegjeaj + ... + Focg jcs ;.
Since each X-block is deflated with the relative lv, within each block the lv’s
tk,j, = 1,...,p are orthogonal but the overall 1v’s t; are not. This algorithm
can be modified to yield orthogonal overall 1v’s deflating the Fj ; with the t;’s
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but then the tx ; will not be orthogonal within the blocks anymore. Further-
more, this latter deflation implies considering deflated X-matrices, Fy,;, that no
longer span only the original X, space, making the interpretation of the lv’s
more difficult.

Algorithm 3.7 Multi-block PLS algorithm with non-orthogonal overall latent
variables.

0] set: Fri =Xy, E1 =Y, r1=y1,j=1

1] Perform PLS for each Fy ;, k = 1,...,s on E; toobtain T; = (t1,;,t2;,...

Deflate
Fi,i+1) = (Fr,j = th,j(t jth,5) "'t ;Fr,j
E(jy1) = Ej — t;(tjt;) " 'tiE;

]
2] Perform PLS for T; on E; to obtain the overall variables t; and r;.
3]

4] Test on an appropriate stopping rule. If test fails set j=j+1 and goto 1,
else exit :

3.5 Weighted Maximum Overall Redundancy

Merola and Abraham (2001) have derived a DRM for prediction that enjoys least
squares optimality for the predictive linear model with dimensional reduction
of the predictive space. DRMs for prediction address the joint model

X = T(d)PEd) + F[d]
Y = T(d)QEd) + Eq) (3.22)
Ta) = XA

Each DRM divides the space spanned by the predictors into a latent subspace
and its orthogonal complement. RRR tries to maximize the variance of the
responses retained by the latent subspace while PCR that of the predictors.
Clearly there is a trade-off between these two. objectives. PLS gives a com-
promise between the RRR and the PCA lv’s without asking for any particular
optimality with respect to them. It can be shown (Phatak, Reilly & Penlidis
1992; Merola 1998) that the PLS 1v’s span the whole X space and are closer to

the principal components of X than the RRR 1v’s.
Now let us consider models (2.3) and (2.1) jointly, i.e., the model
{x =TP+F (3.23)

Y =XB+E=TQ+E.
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such that T = XA, T'T = Ijy), T'F = 0 and T'E = 0. For estimating the
coefficients, we consider Least Squares and Maximum Likelihood approaches.

3.5.1 Least Squares Estimation

Earlier we have indicated that (i) the LS estimates of T for model (2.3) are
the RRR solutions, given by the principal components of the projection of Y
onto the column space of X; (ii) the LS estimates of T for model (2.1) are the
principal components of X.

Let us take Z = (Y,X). Then the LS estimates for model (2.3) are those
that minimize

IZ - T(Q,P)||” = || X - TP||* + ||Y ~ TQ|? (3.24)

with respect to T = XA subject to T'T = I(4). Merola (1998) has shown that
the solutions are given by

(YYI + XX/)T(d) = T(d)@(d), (3.25)

where ©(q) is a diagonal matrix containing the first d eigenvalues taken in non-
increasing order. Thus the resulting 1v’s are the eigenvectors corresponding to
the d largest eigenvalues of the sum of the matrices which give the Iv’s in RRR
and PCR. This is not surprising; in fact, the objective function (3.24) is the
sum of the objective functions of PCA and RRR. It should be noted that the
latent subspace would be uniquely determined even if X'X were singular.

3.5.2 Maximum Likelihood Estimation.

For this approach, we assume that A, P and Q are fixed constants, that the rows
of E are i.i.d. N(0, X.) and those of F are i.i.d. N(0,X;), and that E and F are
mutually independent. If we consider models (2.3) and (2.1) separately, then
the RRR solutions are maximum likelihood estimates (MLE’s) for model (2.3) if
3. = keI, with k. unknown (Merola 1998), and that the principal components
of X are the MLE’s for model (2.1) for unstructured X; (cf., e.g., Seber 1984).

If 3. and X; are known, then the MLE’s of T for model (2.3) are given by
the eigen-equation (cf. Merola 1998 for details)

{(XXX)"X'YSY + X5 X} By = T, (3.26)
where (X'X)™ is any generalized inverse of (X’X) and é(d) is a diagonal matrix
containing the first d eigenvalues taken in non-increasing order. If it is assumed

that £, = I, and £y = I,,, then the MLE’s in (3.26) are the same as the LS
estimates in (3.25). If it is assumed X, = kcI; and £ = k;I, with k. and k;
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unknown, then it can be shown (Merola 1998) that the MLE’s are

- trace(Y'Y) . trace(X'X)
ke=———m, k= —77-——+-,
ng np

(B xX) XYY + XX g = T (3:27)

Since eigenvectors are invariant to scalar multiplication, letting A = k 7/ (k 7+ k.)
= (1+ ke/ks)~1, we can rewrite (3.27) as

PxEX)™XYY' + (1 - HXX'} Tg) = T4 80,

where 0 < A < 1. This implies that, under the assumptions stated above, the
MLE’s of model (2.3) can be obtained as eigenvectors of a convex combination
of the matrices generating the MLE’s for the separate models. It is easy to see
that these MLE’s tend to the RRR ones for A — 1 (i.e.,for k /kf — 0) and to
the principal components for A — 0 (i.e., for k /kf — 00).

The LS solutions to model (2.3) coincide with the MLE’s obtained under
simplified assumptions. The MLE’s (3.27), however, simplify to k. = I}f =n"!
when the columns of the data matrices have been scaled to unit norm. Since
these two norms may not be comparable, we consider weighting them, namely
by obtaining the solutions as the first d eigenvectors of the matrix

kD'XX + kSIYY (3.28)

Letting A = kz/(ks + ky), these solutions can be expressed as the eigenvectors
of a convex linear combination

{(1 — VXX 4 AVY fti = gets, 0<A<I (3.29)

with ¢x > ¢;, 7 > k, k =1,...,d. The resulting procedure will be referred to
as WMOR. The same procedure was proposed by de Jong and Kiers (1992) with
the name of principal covariates regression (PrCOVReg). For A = 0, WMOR
reduces to PCR and for A = 1 to RRR; A = 1/2 is equivalent to no weighting.
For large A, the prediction of Y is given more importance.

RRR MOR PCA
I I T
A0 0.5 1

Figure 3.4: Effect of changing the value of A in WMOR.

In their paper, de Jong and Kiers (1992) suggest choosing A by CV. If CV
is also used for choosing the optimal number of components, d, then one has
to cross-validate the pairs (A,d). When the number of observation is large,
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repeating the CV can be computationally very demanding. One may think of
adopting a fixed choice for A.

Let x(A,d) = ¢1 + -+ + ¢a, where ¢; are the eigenvalues in (3.29), AAR’
the singular value decomposition (svd) of Y and UT'V’ the svd of X. The LS
solutions (3.25) are obtained by maximizing

d d
x(d) =) tXX't; + ) tiYY't;.
i=1 i=1
If we consider each term separately, we have that

d
0< Sh Y2 < 20 XXt < T 47 < trace(X'X),
=1

4 . .
0< Y62 1 < El tYY't; <0, 62 < trace(Y'Y) < trace(Y'Y),
(3.30)

where the eigenvalues 2 and 4? are indexed in non-increasing order. One pos-
sible choice for k; and k, would be the upper limits in (3.30). However, since
the number of components to be included in the model is generally not known
beforehand, this choice seems problematic. We consider then the choice k; = 72
and ky, = 62. These weights render the largest eigenvalues of the two matrices
in (3.28) equal to one and the others comparable, since each one becomes a
ratio in the interval [0,1]. Furthermore ,this choice penalizes the directions of
ill-conditioning in the two matrices. Another possible choice is the full rank
upper limits, k; = trace(X'X) and k, = trace(Y'Y). With these weights,
each matrix is reduced to unit trace and the respective eigenvalues become the
variance explained by each eigenvector. When the matrices have been au-
toscaled, these weights become k, = p and ky, =gq.
Now let '

2 trace(X’'X)

AM=—1— and A= — . (3.31)
trace(Y'Y) + trace(X'X)

S+t

The procedure corresponding to A; will be referred to as WMOR;, ¢ = 1,2. Of
course, other choices of the weights are possible, maybe based on some prior
knowledge.

The WMOR 1v’s t; can be expressed as linear combinations of the principal
components of X. If we let t, = Uag, the coefficients a = I'V'a,. satisfy

{(1= N2+ AU'YY'U} ax = axéx.

This form can be used in the actual computation. The above equation expresses
the coefficients of the WMOR 1v’s as coefficients for the principal components
of X. The coefficients a; depend on the weight ), the eigenvalues of X'X and
the covariance between the responses and the eigenvectors u;’s.

24



Since the eigenvectors I; are the RRR 1v’s, it is possible to appreciate the
role of the weights in determining the WMOR 1v’s as linear combinations of
these and the principal components of X. In fact, the WMOR solutions are
given by

{(U diag (4 /k2)7_, U' + A diag (02/ky), A’} ts =t

Unlike RRR, WMOR can be applied to univariate regression. However, the esti-
mates of the coefficients a,, and hence of B4}, would not be uniquely determined
when X’X is singular.

3.6 General Frameworks for DRMs

Burnham et al. (1995) have cast PLS and the other DRM’s in a framework
based on the optimization of an objective function under different constraints.
This is done by considering different metric spaces for the X and Y variables.
If the choice of the metrics has not been justified by any criterion, the result
is purely descriptive and taxonomic. Note that a choice of a metric for the
variables spaces is already made by deciding to autoscale the variables. It turns
out that a common objective function for CCR, RRR, SIMPLS and PLS can
be expressed as a bilinear form with quadratic constraints

Xy d _ Sl (a;x'xfﬁ)(l‘;x'Yd‘)]
mege XY, - T S

a;-M]_a,' = d;Mzd,’ =1
ajMga; =0 j<i

(3.32)

where the vectors Xy ; are defined as orthogonal basis vectors for the space gen-
erated by (Xay,...,Xa;) using the Gram-Schmidt method. Different choices
of the matrices M, distinguish different methods, as given in Table 1.

Table 1 Choice of the matrices for the objective function framework

CCR | RRR | SIMPLS | PLS

M, | XXX | XX I I
M, | Y'Y I 1 I
M; | X'X | X'X X'X I

Although for comparative purposes it is important to derive the methods
from a common objective function, the above is very general and does not
help much in understanding the differences among the DRMs considered with
respect to the prediction of the y responses. For this purpose, it is probably
more meaningful to analyze the objective function maximized by the various
DRMs under the same constraints.
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3.6.1 Common Objective Function

All the methods that we discussed above derive the 1v’s maximizing a measure
of “association” between linear combination of the response variables and of the
explanatory variables. In Table 2 we summarize these objective functions.

Table 2 Objective functions of the DRMs used for prediction. The solutions are
to be obtained under the constraints a‘a; = d;d; = 1 and a;X'Xa; = 0, j > i.

method objective function solution matrix
PCR max a;X'Xa; X'X
(a;X'Yd;)? / -1/ i —1~s7
CCR MaX ryr¥a dTY'Yd; X'X) " X'Y(Y'Y)'Y'X
1 1 2
RRR max —z————(‘:;;,‘;;f;j (X'X)"1X'YY'X
SIMPLS max (aé-X'Ydj)2 (I-H;)X'YY'X

If we let r; = Yd; and t; = Xa; be the lv’s in the Y space and in the X
space, respectively, we can separaté three measures of association related to the
generic j-th couple of 1v’s:

(i) the covariance between t; and rj, (tir;)?;
(ii) the variance of r;, ||r;||%
(iii) the variance of t;, ||t;||%.

Each one of the above objective functions can be expressed in terms of one or
more of these these three quantities.

When the nature of the data is uncertain there is a trade-off between the
maximization of the variance of the explanatory variables included in the model
and the amount of variance of the responses explained by the reduced rank
model (2.5). So far the practitioner can only choose among the known DRMs
to obtain different solutions. In the same spirit of Stone and Brooks (Stone and
Brooks (1990)), we consider generalizing the DRM for multivariate prediction
with the following objective function:

max(aj;X'Y'd;)?||Yd;||* ||Xaj|[**
9(aj,dj,a,8) = { aja; = djd; = 1, a;X'Xa; =0, j > i (3.33)
a>-1,8>-1.

It is possible to obtain the objective functions of the various DRMs for fixed
values of the two scalar parameters o and . Table 3 shows these values.

Table 3 Objective functions of DRMs corresponding to different values of the
parameters a and f3.

CCA | RRR | SIMPLS | PCR
«a -1 -1 0 oo
B -1 0 0 finite
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The convergence of objective function (3.33) to PCR for a — oo is obtained
observing that g(a;,d;,a, 3) > 0, hence for a > 0

L
o

a‘rgg(ajvdj»a’ﬂ) = arg [g(aj,dj,a,ﬂ)]
Therefore, under the constraints,
. . 2 28
arg lim g(a;j,dj,, ) = argmax lim (a;X'Y'd;)%[|Yd;||= [|Xay]|®
= argmax||Xa;||?

Moreover, objective function (3.33) allows for a (double) continuum of solutions
by letting the values of a and 8 vary between -1 and arbitrary large values. We
obtain the first order condition equalling to zero the derivatives of g(a, ) with
respect to a; and di, which, after some simplification, are:

% : X'Yd1(t’1t1) + aX’'Xa; (t'll‘l) =a;d; (334)
2 Y Xay (vir) + AY'Ydy(tir:) = digy
where ¢; and ¢, are two Lagrange multipliers for the constraints ||a;|| = ||d1]| =

1, which must also be satisfied. Premultiplying by
(a)XXa;)*~1(a}X'Yd;)?~1a] the first equation of (3.34) and by
(ajXXa;)*"1(a}X'Yd;)?~1d] the second one we obtain

¢1 = (a + l)g(ala d17 a, ﬁ)

¢2 = (,B + 1)g(ala dl)avﬂ)-
Therefore, g(ai,d;, a, §) will be maximized when ¢, and ¢, are maximal. The
solution for the succeeding variables must include also the orthogonality con-
straint. Obtaining the solutions of this objective function is not a trivial matter,
in the appendix we give an iterative algorithm that can be used to compute
them.

For the prediction of the responses we may not be interested in reducing the

dimension of the response space. Thus we can eliminate the parameter 5. By
setting S equal to 0 we obtain the following simplified objective function:

g(tj,rj @, f=0) = (ajX'Yd;)* || Xay||*
aja; =djd; =j, ajX'Xa; =0,i < j (3.35)
a> -1

By letting a vary between -1 and co we obtain a continuum of solutions that go
from RRR to PCR. By choosing higher values of o we decrease the variance of
the explanatory variables not included in the reduced space used for predicting
the responses. Table 4 summarizes the methods yielded by objective function
(3.35) as « increases.
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Table 4 DRMs corresponding to different values of the parameters a. SIMPLS
is approximately the same as PLS.

RRR | SIMPLS | PCR
a -1 0 0o

One advantage of objective function (3.35) is that we do not need an explicit
solution for the d;’s. By equalling the first order derivatives to zero and solving
for d; we have that the solutions to objective function (3.35) must satisfy:

X'YY'Xa;(a}X'Xa;) + (X'X)a;(a;X'YY'Xa;)? = a;¢. (3.36)

Of course the solutions must also satisfy the normality constraint ||Xa;|| = 1
and the orthogonality constraints a’;X'Xa; = 0, fori < j. Objective function
(3.35) was proposed by Brooks and Stone (1994) as a multivariate generalization
of their univariate method Continuum Regression (Stone and Brooks (1990)).
In fact, this, and even more so, (3.33) can be considered multivariate gener-
alizations of that method. Brooks and Stone suggest computing the solutions
via approximate grid search and conclude, on the basis of some examples, that
the method is not worth the effort. However, this method is more flexible and
comprehensive than other DRMs since it allows for intermediate solutions.

4 Distributional Issues

As mentioned before, the statistical theory behind DRMs and the predictions
obtained has not yet been fully developed. Some asymptotic results are avail-
able for PCR (cf. Jackson (1993), for example) and RRR (cf. Reinsel and
Velu (1998)), however, note that whenever the data matrices are autoscaled
these results become very approximate. The distributional theory of eigen-
vectors of a random matrix projected onto a lower dimensional sphere is very
complex and, even more so, is the distribution of projections of, possibly corre-
lated, random vectors on these.

On the practical side there are two possible approaches to making inference:

i) consider the lv’s and the predictions as independent observations of nor-
mal r.v.’s

ii) use the available data to estimate the empirical distribution

Approach (i) leads to the usual limits, based on F and Hotelling T distributions,
approach (ii) relies heavily on the quality of the available data and on numerical
routines for computing minimum volume ellipsoids or bootstrapping.

If one is willing to assume that the estimates of the predictive model obtained
from d lv’s are Normal variates, then classical distributional theory can be
applied. Hence tests of hypothesis and confidence intervals for the regression
coefficients Bpg) and the predictions Y|4 can be built. The SSE for the prediction
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of the responses or for the terms x can be assessed through the so called Q-
statistics (cf. Jackson (1993)). If w is an observation from a N, (0, X), then,
asymptotically,

7]
Q=ww~ éx% (4.1)

where 61 = YF_ A%, 0, = Y F_ ML {\}, i =1,...,p} are the eigen-values of
and h = z-; Jackson (1993) suggests also the following approximation, based
on the assumption of normal distribution of the 1v’s:

- Vag:1 %
Q=ww~0;|1- 62h0(12 ho) + zho 20, (4.2)
02 o,
where hg = 1 — 28282 93 = 3°7_ A% and z ~ N(0,1) with the same sign of

ho. Having obtained the predictions with d 1v’s, the covariance matrix can be

estimated with F{—lEid] E[d] or ;zl_lFEd]F[d]’

The scores of the 1v’s can be tested through the T-statistic. Given an ob-
served p-vector w' ~ N, (0, X) then

p(n* - 1)

n(n _ p) F(p, n-— p) (43)

t=wS"lw~
where S is the estimate of ¥ obtained with a sample of n past observations. It
is not difficult to show that, if u is the vector of the scores corresponding to
the principal components of the p-dimensional Normal distribution, such that
var(u) = Aj, then

T = i 2, (4.4)

The above decomposition leads the way to applying the T-distribution also
to the partial reconstructions obtained with the first d principal components,

2
Tig = Z;.l:l ;-J’}, (e.g., see Tracy, Young and Mason (1992) and Fuchs and Ben-

jamini (1994)). This approximation is also extended to 1v’s obtained with dif-
ferent DRMs, although, in reality, it only applies to the principal components u;
and not to any set of orthogonal 1v’s t;. When a new observation X, becomes
available, Tracy, Young and Mason (1992) suggest the following approximation:

d 42
t ,
Ty = —— 3 229~ T%(d,n — d) (4.5)

n—1 o;
Jj=1 J

with ¢pew,; being the scores of a lv with normalized coefficients and o; their
sample variance. Kourti and MacGregor (1996) consider that in the presence

2 .
of highly collinear variables, the residual Z?_ a1 t—";—"’-"— only carry disturbances
- J
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and therefore approximate

a 42

n lne J

Ta= 72, 7 ~ T =) (4.6)
=

The confidence limits obtained with this distribution are narrower than those
obtained with the T%(d,n — d)) distribution. Note that if the quantities (n —
l)t—'-‘%l are taken as independent N(0,1) (which can be justified if n is large
enough) then Tjg ~ x3.

The use of the reference set to estimate confidence limits is pretty straight-
forward. Minimum volume ellipsoids can be estimated via different algorithms.
For example a simple one, named Minimum Content Ellipse (MCE), given in
Weisberg (1986), is shown in Algorithm 4.1 for an (n x p) matrix. Suggested
value for € is 0.1.

Algorithm 4.1 Minimum content ellipse. If the maximum at step 1 is achieved
for more than one observation, any one can be chosen.

0] set: my =%, M; =S, j=1

1] ¢ = (xk — m;)'M;*(xx — my) = Jmax {(xi - m;)'M; ! (x; — m;)}

2] If ¢; < (p+e) exit

— =P
o=y

3.1] mgyy) = (1- a)mj + axg
3.2] M(j41) = (1 — a)M; 4 axx),
331 j«(j+1), goto 1

Another, non-parametric, approach consists of taking the 99-th and 95-th
2
quantiles of the observed sample quantities }:gzl %"5}, t=1,...,new to build
7
confidence ellipsoids, non parametric probability statements are also possible.

5 Exploratory Analysis with DRMs

One of the advantages of reducing the dimensionality is that graphical inves-
tigation of the data is easier. The output of DRM’ in a predictive context
are:

e The coefficients of the lv’s: a; and dj, j=1,...,d
e The scores t; and r;

e The loadings p; = (t;-tj)"ltg-X and qj = (tjt;)"'t;Y
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e The fitted values X[4 = T(d)P’(d) and Yq = T(d)Q’(d)
There are several different types of plots that are possible:

e score plots: consist of plotting the scores for different 1v’s against each
other. These allow to ”view” relations, clusters outliers and trends among
the observations.

e coefficient plots: usually one-dimensional, consist of plotting the coeffi-
cients a; or d;, most of the times in absolute value and also in percentage
over the total sum. These show graphically the composition of the lv’s.

e correlation plots: consist of plotting the correlations of the variables
with the 1v’s. These indicate how important a variable is with respect
to the 1v’s considered. It is common practice to plot on the same graph
the correlations of the z’s and the y’s. These plots are analogous to the
loading to loading plots.

e loading to loading plots: consist of plotting the loadings (pj, q;) re-
lated to the j-th lv against those related to the k-th (pk,qx). In this
way the explanatory and response variables can be represented on the
same plane. These plots can be used to group variables and detect rela-

. . . r— cor(t;,X)
tionships. When the variables are autoscaled we have p; St and

¢ M, hence these plots will often be vary close to the correlation

U= e
plots (depending on the ratio ;ti-% In a predictive context the use of the

loadings seems to be more appropriate because these can be interpreted
as regression coefficients of the 1v’s with respect to the original variables.

e biplots: these plots, whose construction is described below, show on the
same plane units and variables. The usefulness of these plots is rather
controversial.

e residual plots: consist of the usual residual plots used for diagnostic in
a predictive context.

Biplots were proposed by Gabriel (1971) and are based on the two-dimensional
approximation of a matrix via principal components. Let A be an n X p
matrix with svd UAV’ so that its two-dimensional approximation is Ay =~

U(Z)A(2)VE2) = U(2)AE’2)A8)_Q)V22); an (n + p) X 2 matrix is obtained by

stacking the columns of V(z)Ag)—a) below those of U(Z)A‘("z). The biplot con-
sists of plotting the columns of this matrix against each other, in this way the
n observations and the p variables can be plotted simultaneously on the same
plane. The choice of the parameter « is completely arbitrary, some suggest the
values 1 or 0.5, but, in most cases, & must be chosen so that the points on the
plot appear neatly. The choice of o determines the relative position of the points
on the plot, criticisms are due to the lack of a common metric for the variables
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and units. These plots are popular among practitioners in fields such as sensory
analysis as they, somehow, allow to relate products to customer likings.

Other plots, useful for process monitoring such as control charts, will be
discussed in the next section. Examples of graphical data-analysis will be given
in a later section.

6 Process monitoring

In the last decade the use of DRMs has been advocated for the control of com-
plex industrial processes, in particular, chemical reactors (cf. MacGregor and
Kourti (1995) and Kourti and MacGregor (1996), among others). Traditionally
control charts are used to monitor the one or more characteristics of the output;
often, monitoring of the process also is desired. When several different charac-
teristics are to be monitored, the use of many univariate control charts becomes
problematic, because of the increased false alarm probability due to simultane-
ous testing. Multivariate charts can be built using Hotelling’s T-statistics. A
different approach, when measurements on process and product variables are
available, is to monitor the product variables by means of a transfer function.
The simplest case is to use a linear predictive model in the process variables.
The use of DRM’s makes one step further in this simplification assuming that
the transfer function can be estimated in fewer dimensions. This hypothesis is
certainly likely when the measurements are taken automatically at short inter-
vals and some are highly correlated, like in modern chemical reactors. The use
of DRMs in this context allows to monitor both the process and the product
by means of two and three dimensional control charts. It also allows for some
diagnostics when a deviation from ”"normal” behaviour is observed.

Assume that the unknown parameters of the linear predictive multivariate
model with dimensional reduction 3.22 are computed from a set of n observations
on p process variables and on ¢ product variables, contained in the matrix X and
Y respectively, taken in in-control conditions. Then the process is monitored
with the first d 1v’s and the product with the predictions from these. Let X, eq
be a new observation on the process variables then possible malfunctioning
of the process can be detected from unusual values of the scores tcy, (a) =
XnewA(d) and from the Prediction Error Sum Of Squares (PRESS) (xnew —
Xnew,(d]) (Xnew — Xnew,[d]). Out-of-control values of the product characteristics
can be detected from the values of y,eu,[q) = tnew(d)Qz 4) OF from the PRESS
(Ynew — Ynew,[d]) (¥Ynew — Ynew,[d]), if also measurements on the y’s are taken.
Different types of control charts can be drawn for these data, as we will illustrate
in Section 7.2.

One of the important requirements of a control system is to allow for a quick
diagnosis of the causes of a special event. it is possible to evaluate which of the
z variables are most influential from determining the individual scores using the
contribution plots (MacGregor et al. (1994)). These are built deploying in a bar-
chart the addends of the decomposition tnew,; = X},o8; = Y (1 PTnew,jCk,j-
For a clearer interpretation of a contribution plot sometimes percentage values

32



are plotted.

7 Examples

In this section we give two examples that illustrate the use of DRMs for pre-
diction. We will consider mainly PLS. The first data-set consists of sensory
data, that is overall likings (scores) of untrained customers that are to be ex-
plained by judgements given by trained tasters. The second data-set is taken
from the literature and consists of simulated data for a chemical reactor. With
this data-set we will show statistical process control with DRMs.

7.1 Sensory data

The explanatory variables for this example consist of the average judgements
given by a panel of trained tasters. Each judge scored 24 different organoleptic
characteristics (flavors) of 25 different brands of a condiment, in integers between
0 and 12. The responses are the overall likings of each brand of a group of 10
untrained customers, expressed in integers between 0 and 10. The data, given
in Tables 1, 2 and 3, are real and come from an experiment actually carried out
but, for confidentiality reasons, we cannot give further details.

With these data we cannot use a full rank linear model with 25 parameters
because the points would be (over)fitted perfectly. With the dimensionally
reduced predictive model for these data, the overall liking of the condiment
can be explained by few combinations of flavours. Some may argue that the
multinomial nature of the data should be taken into account but by autoscaling
we hope to achieve closer Normality.

PLS was performed on the autoscaled data, the first 1v explains 91.3% of
the variance of the X-matrix and the first two 93%. The coefficient plots for
the first two 1v’s in the X-space are shown in Figure 7.1. In order to make
comparison easier we have scaled the values to percentages.

Percentual coefficient plot for variable 1

Yoo psfiterrgsgee

ual ici plot tor
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F§r1asz2afsape§iyyerricerie-

Figure 7.1: Coefficient plots for the first 2 1v’s t; and t;. The values are
percentages of the sum of absolute values.
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The highest positive coefficient of the first lv, about 10% of the total, is is
that of OL, other flavours that have positive coefficient for this variable are:
Tomato, Blended, Vinegar, Salivat, Throatir, and Onion (in order of impor-
tance). On the other hand the flavors OffFl, BrownSug, Sweet, Pepper and
Metallic have negative coefficients for the first lv. Positive coeflicients of the
second lv are given mainly by Throatir, Metallic, BrownSug and Sweet. Most
of the coefficients of the second lv are negative, lowest are those of: Ginger,
MSG, Vinegar, Beef, Sour, Garlic, Onion and MouthDry. Among the variables
that have positive coefficients for this v are: Troathir, Brownsug and Metallic.

Figure 7.2 shows the correlation of the responses with the first two 1v’s. The
first 1v is positively correlated with all customers, while the second has both
positive and negative correlations, with a prevalence of the latter.
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Figure 7.2: Correlation of consumer’s overall likings with the first two 1v’s.
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Figure 7.3: Correlation of the flavours with the first two Iv’s.

In the light of these plots, the first lv can be interpreted as the combination of
flavours that determines the generic liking of a condiment while the second one
reflects personal tastes of each consumer. In most cases the coefficients have
opposite sign in these 1v’s.

The correlation of the judges’ scores, shown in Figure 7.3, confirms the
coefficient plots. Worth of notice is that Bitter seems not to influence the overall
liking, while flavours Tomato, OL and Metallic have the same effect on the liking
of all customers. Groups of flavours that have similar effects are Sweet and
BrownSug; Throatlr, Salivat and Blended; Medicine, BrnSpice and Cloves (this
group seems to influence mostly the personal tastes); Ginger, MouthDry, MSG
and Garlic; Salt Sour and Vinegar. The loading to loading plot for the first two
1v’s is shown in Figure 7.4, this plot relates the flavors to the customers’ likings.
Customers C1, C5 and C8 seem to be most influenced by salivat, Blended and
ThroatIr; C9, C4 and C7 by Onion and so on. This indication seems to be
supported to some extent by the data as, for instance, C8 likes best the brands
that have high Throatlr scores. However, the brands that have highest Onion
(S14, S17, S13) are not always the best liked by consumers C9, C4 and C7,
although their scores do not contradict completely this indication. The score
plot of t; against r; (the first lv in the response space) shows a good linear
relationship between this two lv’s. From this plot it is possible to see which
brands are well explained by the dimensionally reduced model. By looking at
the coefficients of r; one could understand which customers’ have their liking
best explained. This could be important if the customers had been selected with
respect to some characteristic (e.g. nationality, sex, class, etc.).
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Loading to loading plot, latent variables 1 and 2
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Figure 7.4: Loading to loading plot for the first two 1v’s.

The plot in Figure 7.6 gives minima, averages and maxima of the overall
likings for each brand and can help in ranking the brands. The brands can be
ranked with respect to the t; scores, which are plotted in 7.7.
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Figure 7.5: Score plot for the first 1v in the explanatory space and the first in
the response space.
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Figure 7.6: Minima, averages and maxima of the likings for each brand.
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Figure 7.7: Score plot for the first v in the explanatory space.

From this plot brands S13, S17, and S7 stand out as the most liked while
S9 as the least liked. The two plots show good agreement. Plot 7.8 shows the
tasters’ evaluations for some of the brands, the flavors are ordered with respect
to the coefficients ax ;. These values confirm PLS analysis: well liked brands
have high values for Tomato, Blended and OL and low values for BrawnSug and
OffFlav. In particular, brand S9 seems to be penalized by high OffFlav and low
Blended. Brands S13 and S17 are priced for being low in BrownSug, Metallic
and Sweet but high in Tomato and OL. A neater insight of the contribution of
each flavor to the liking of a brand is given by the contribution plots, shown in
Figures 7.9 and 7.10. For all brands the value of OL contributes much to the
liking, it is the most influential for brands S9 and S13, although other flavors
contribute too. More than one flavor contribute to determining the liking of S3
and S17.
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Figure 7.8: Scores of the trained tasters for brands S9, S3, S14, S13 and S17
with average values over all brands. Above each contribution plot are shown
the scores of the tasters. Flavors are ordered with respect to their coefficient in
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Figure 7.9: Contribution plots for brands S9, and S3.
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Figure 7.10: Contribution plots for brands S13 and S17.
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Figure 7.11 shows the biplot for the tasters’ scores. The plot has been ob-
tained by plotting the (n + p) vector (t;(t;t1)=%7%, Y t1(t)t1)=%2%)" against
(t5(t5t2) =075, Y'ta(tht2)~%2%)", as explained in Section 5. By looking at this
plot, one may conclude that brand S21 is mostly influenced by the flavor Metal-
lic, brand S7 by Blended and Salivat, brand S13 by Tomato and so on. However,
by looking at the actual data, the score of Metallic for S21 is very close to the
average, S7 does not have high Blended or Salivat but rather high OL, also
S13 does not have strikingly high Tomato flavor but OL has the second highest
score.

Biplot for tasters’ scores, alpha=0.75
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Figure 7.11: Biplot for the explanatory variables based on the first two 1v’s.
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Biplot for matrix Y alpha=0.5
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Figure 7.12: Biplot for the customer’s likings based on the first two 1v’s.

Also the visual impressions given by the biplot for the responses, shown in
Figure 7.12, are contradicted by the data. For instance, there does not seem to
be any reason why S17 should be closer to C7 than to C6 and C10, who like
this brand the best. Biplots seem difficult to interpret, possibly due to the lack
of a common metric for the points plotted.

Since the responses are homogeneous quantities we considered the prediction

of the average overall liking C; = E%Jé—gi. The likings of each customer can
be estimated with two 1v’s as
C,'k = x;bk,[2] = x;A(g)(TI(Z)T(g))_lTI(Q)Ck (7.1)

where x; is the row vector containing the tasters’ scores for the i-th brand and
Cy the vector of likings of the k-th consumer. By taking the averages of the
fitted values we obtain

A Ziozl xsglﬁ[z] / ’ -1/ & n
C,’ = —-——-—10— = ng-(2)(T(2)T(2)) T(Z)C = x,'b[g]. (7-2)

The values of 5[2] are plotted in Figure 7.13. Note how these values have the
same sign of the coefficients ax, ; and the effect of the second lv is not as strong.
This is because the correlations of t; with the customers’ likings are small in

magnitude with different signs. The fitted surface for the average overall likings
is shown in Figure 7.14.
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Figure 7.14: Fitted surface for the average overall liking based on the first two
lv’s.

In conclusion, the use of the DRM PLS in this context helped exploring
and interpreting the multivariate data and gave results that were supported by
the original data. It was possible to determine the flavors that are best liked
and those that are least liked by consumers. Biplots showed some problems of
interpretation.

7.2 Control charts for an LPDE Reactor

These data were obtained by simulating a Low-Density Poly-Ethylene (LDPE)
production process. A total of 56 values for 22 variables regarding the function-
ing of the reactor were generated together with 6 characteristics of the product
to be predicted. The first 32 values constitute the ”training sample”, which
reproduces normal operating conditions and is used for the computation of the
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parameters. The remaining 24 form the “test sample” and represent possible
malfunctioning of the process.

Note that, under such a set up, the test sample can only be used to eval-
uate the ”inadequacy” of the model to fit abnormal data and not the usual
”goodness” of the model to fit normal data. In fact, these data were used by
Skagerberg et al. (1992) to exemplify the implementation of multivariate con-
trol charts. In that application the authors considered only PLS, which rightly
detects abnormal data. The same data were used by Stone and Brooks (1990) as
an example for evaluating Continuum Regression; in this application, however,
the two samples were considered as a whole set of observations and evaluated by
Cross Validation. Further analysis of these data can be found in Merola (1998).
The peculiarity of these data is that the noises for the input and the output
are independent uniform variables added after the measurements were taken,
hence they are pure independent measurement errors which are not transmitted
to the responses. The responses were generated feeding the values of 4 input
variables to a simulator. Of these 4 variables only 2, x5;, the wall temperature
and X33, the solvent flow rate, were used as explanatory variables. The other
20, (x1,...,X20), were additional readings on 20 temperatures. Further details
on these data can be found in the original paper.

Also in this example we only consider PLS, so that the results can be com-
pared with those of the original paper. However, any other DRM could have
been used for the same purpose and we are not at all sure that PLS is the best
performer for this kind of application. In fact, in this case, it would be hard to
evaluate which method performs the worst when we don’t even know which of
the 24 test values is to be considered out-of-control and which not.

The first 2 PLS 1v’s explain 73% of the total variance of the x variables and
77% of that of the responses, indicating that the system can be approximated
by these.

Figures 7.15 and 7.16 show the coefficients for the first and second PLS lvs
respectively. The first 1v represents an overall "temperature” (note that the
different sign of the coefficients is justified by the negative correlation of some
of the temperatures with the others, (c.f. Merola (1998)). The second lv is
practically the solvent flow rate.
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| Figure 7.15: Coefficients of the first PLS lv.
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Coefficients of the second PLS latent variable
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Figure 7.16: Coeflicients of the second PLS lv.

The t; —to score plot for the test observations is shown in Figure 7.17. From
this we note that observations 50 to 56 are outside the in-control limits.

Scorepiot — 95%

15

Figure 7.17: Scores of the 24 observations to be monitored.

The PRESS for the x and y variables, obtained with the first 2 1v’s is shown
in Figures 7.18 and 7.19. PRESS of y shows that points 36-40, 44-49 and 54-56
are above the 95% control limit. Of these points only the last ones were detected
as abnormal in the t; — t; plane. However the PRESS of the x variables, shows
that points 34-39 are not in-control. In this case the values of the process
variables are so abnormal that the PLS model cannot extrapolate to them.

Figure 7.20 shows a 3-dimensional control chart for the test observations.
The vertical axis shows the total PRESS for the responses.

Press for the y variables
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Figure 7.18: PRESS for the y variables obtained with the first 2 PLS 1v’s.
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Press for the x variables
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Figure 7.19: PRESS for the x variables obtained with the first 2 PLS 1v’s.

press

Figure 7.20: 3-dimensional control chart for the 24 test observations, the vertical
axes shows PRESS for the responses.

Contribution plot for observation 56

Figure 7.21: Contribution plot for the t; score for observation 56.
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Recalling that the second lv tq, was practically equal to x22 it is clear that
the flow rate is responsible for the out-of-control situation for points 50-56. This
is confirmed by the contribution plots, such as that for observation 56, shown
in Figure 7.21. This example shows how DRMs can help in monitoring an
industrial process. PLS identified departures from normal operating conditions
showing trends and relationships in the dynamic of the reaction.

8 Conclusions

In this paper we reviewed some methods which use a subset of 1v’s of observed
explanatory variables for the prediction of a set of responses. These methods are
difficult to adapt to a linear predictive model and in some cases they can’t even
be related to optimizing a function of the Residual Sum of Squares. We have
given ways to generate a whole range of different solutions which can be used
to taylor DRMs to specific problems. In fact, as shown in the examples, these
methods give good representations of multivariate linear relationships in fewer
dimensions, allowing for graphical inspection and easy interpretation. Further
work needs to be done on the geometrical and statistical properties of these
methods.
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Appendix
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Table 1: Average scores of the trained tasters on the first 12 characteristics of

the 25 brands. Scores are expressed on a scale between 0 and 12.
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rI‘ypeI lBumlMouthdryISa.ljvatIMeta.lliclMSGrI‘hroat IriGingerlBrnSpice Cloves| edicine]Oﬁ'F lavloq
S1 || 3.1 2.9 4.9 4.1 2.4 1.0 2.2 1.0 2.9 0.0 0.2 [5.6
S2 || 2.2 3.2 4.7 4.3 2.4 0.3 0.5 2.8 0.0 0.0 0.1 5.1
S3 | 3.1 2.7 4.5 5.1 1.4 0.9 1.7 1.6 0.4 0.0 09 }4.9
S4 || 4.1 3.4 4.1 5.2 2.4 1.0 2.1 0.9 0.1 0.3 2.6 6.0
S5 || 4.0 2.6 5.4 4.0 |0.0 1.7 1.1 1.7 0.9 0.0 0.5 6.0
S6 | 2.9 3.3 4.5 5.2 2.8 0.8 1.1 1.3 0.3 0.0 0.0 5.7
S7 | 2.7 2.1 4.9 4.2 1.2 2.0 0.5 0.9 4.2 0.8 0.0 6.6
S8 || 4.8 3.0 4.5 44 |22 1.5 3.0 1.7 2.5 2.2 2.6 5.2
S9 (| 1.5 3.3 4.5 46 |[0.5 0.4 0.5 2.8 0.0 0.0 4.0 (5.0
S10{| 3.3 3.3 4.5 4.5 2.6 1.2 0.9 1.1 3.8 0.0 0.1 16.0
S11{| 4.9 3.3 4.7 44 2.6 0.5 3.8 0.8 4.0 0.5 0.5 (5.2
S12|| 3.5 3.1 4.9 4.2 1.6 1.0 1.6 1.0 0.0 1.8 0.0 6.1
S13 || 3.6 2.8 4.6 4.1 |0.6 1.9 0.7 0.7 1.0 0.1 0.2 7.0
S14 (| 3.4 3.6 5.2 4.8 |3.1 1.3 1.4 1.1 0.0 0.0 0.1 6.1
S15 1| 3.0 3.3 4.4 4.2 3.1 0.9 2.8 1.8 0.7 0.0 3.5 [5.6
S16 || 3.5 2.7 5.0 43 |09 1.4 1.3 0.4 0.4 0.0 0.1 5.4
S171| 2.2 2.8 5.2 3.5 |04 0.4 0.6 1.6 0.0 0.0 0.0 6.7
S18 (| 0.9 2.6 4.6 3.7 0.6 0.8 0.0 0.5 0.0 0.0 0.0 5.5
S19 (| 2.0 2.5 4.8 5.0 1.0 1.2 0.0 0.9 0.0 0.0 0.3 5.2
S20 || 3.9 3.4 4.6 4.0 1.9 0.9 2.2 1.5 3.2 0.0 3.5 6.1
S21 || 4.2 3.2 4.3 4.2 2.6 1.1 1.5 1.8 0.4 0.7 2.3 5.0
S22 (| 4.0 2.8 4.7 39 |21 1.0 2.8 1.7 0.4 0.2 09 6.7
S23 (] 2.6 3.5 4.7 4.4 1.9 0.7 1.5 2.0 2.3 0.0 0.1 5.5
S24 | 3.8 3.2 4.2 4.4 2.2 0.7 3.2 0.5 3.8 0.0 0.8 15.0
S25 || 2.5 3.4 4.2 44 |3.1 0.8 1.7 2.5 2.2 0.0 0.0 6.3

Table 2: Average scores of the trained tasters on the last 12 characteristics of
the 25 brands. Scores are expressed on a scale between 0 and 12.
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Scores are expressed on a scale

Table 3: Overall likings of the 10 customers.

between 0 and 10.
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Algorithm A 1 Algorithm for the computation of the solutions for objective
function (3.33. TEST at step 4 refers to some stopping rule to be defined.

0) Initialize centering and scaling X and Y.

1) a; =1,//p, dj =14/\/q, t; = Xaj, r; =Yd;, H=0,,j =1
2) iterate until a; or d; converge

2.1) a= (I, - H) {aX't;(t}r;) + X'r;(t]t;) }

2.2) a; *‘aa/llaall t; = Xa,

2.3) d; = BY'r;j(tir;) + Y't;(r)r;)

2.4) d; «d;/||djl], r; =Yd;

- XX T(j-1) 7 Ty

4) if TEST = FALSE: j + (j + 1) goto 1

3) H=X'T(;_(T} X

5) exit

The solutions of the simplified objective function (3.35) can be computed
from this algorithm omitting Steps 2.3 and 2.4 and substituting YY't; for r;
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