Uniform Coverage Designs for Molecule Selection

Raymond L.H. Lam, William J. Welch & S. Stanley Young

IIQP Research Report
RR-01-06

July 2001



Uniform Coverage Designs for Molecule Selection

Raymond L.H. Lam William J. Welch S. Stanley Young
Biomedical Data Sciences Department of Statistics & Actuarial Statistical Research Unit
GlaxoSmithKline Inc Science GlaxoSmithKline Inc
Mississauga, Ontario L5N 6L4 University of Waterloo Research Triangle Park,
Canada Waterloo, Ontario N2L 3Gl North Carolina 27709-3398
Canada USA

Monday, March 19, 2001



In screening for drug discovery, chemists often select a large subset of molecules from a very large
database (e.g., select 1,000 molecules from 100,000). To generate diverse leads for drug optimization,
highly active compounds in several structurally different chemical classes are sought. Molecules can be
characterized by numerical descriptors, and the chosen subset should cover the descriptor space, or
subspaces formed by several descriptors. We propose a method that concentrates on low-dimensional
subspaces, a criterion for uniformity of coverage, and a fast exchange algorithm to optimize the criterion.

These methods are illustrated using a National Cancer Institute database.

KEY WORDS: Drug discovery; High throughput screening; Space-filling design; Projection; Binning;
Exchange algorithm.

1. INTRODUCTION

The use of robotics and miniaturization is now allowing researchers to quickly screen thousands of
chemical compounds (molecules) for biological activity. Combinatorial chemistry provides the logistics
of mass production of compounds and a wide range of molecular diversity for drug discovery. The
automation of biological assays, High Throughput Screening (HTS), allows for investigation of thousands
of chemical compounds against biological targets per week. While this brute-force approach to lead
generation certainly has its place in the field of drug discovery, it is not practical, given the size of today’s
chemical libraries (e.g., hundreds of thousands to millions of compounds), to test every available

compound for every new target of potential importance.

Various molecular descriptors (explanatory variables) can be readily computed to describe the chemical
properties of every molecule in the database. When there is no prior model relating biological response to
these descriptors, the generally accepted procedure is to screen (test) a diverse subset of the overall
database to find active compounds of several structurally different chemical classes, and then examine

further compounds that are structurally similar to any promising leads. If multiple chemical classes can

unifcov6.doc 19-Mar-01 Page 2 of 31



be found, they provide optional starting points for further optimization of activity, physical properties,
tissue distribution, plasma half-life, toxicity, etc. Ideally, selected objects should be as dissimilar as
possible and any candidate not selected should be near a molecule in the experimental design. Measures
of “diversity” and “similarity” are based on the numerical descriptors. The assumption here is that similar
chemical objects are more likely to have similar biological responses. Thus, if an initial subset is to be
selected, the subset should “fill” or “cover” the numerical space. In high dimensional space, nearly all
data sets are sparse, and it is not possible to densely cover a high-dimensional space with thousands of
design points. Therefore, we focus on filling or covering low-dimensional projections of the space

instead.

To measure the “coverage” of a descriptor space, we will be dividing the space into cells. Ina
conventional cell-based method, each of k numerical descriptors is subdivided into m bins of equal size,
yielding m* cells or hypercubes, and the experimental design chooses at least one molecule from every
cell. A good experimental design will ideally have at least one molecule in every cell. If so, we say the
space is covered. Cummins et al. (1996) and Menard et al. (1998) used cell-based methods to compare

the relative diversity of molecular databases and to select diverse subsets of molecules.

Such cell-based methods are attractive for several reasons. It is easy to divide the descriptor space into
cells, and allocating even a very large dataset to these cells is straightforward. Choosing a design by

random sampling is also easy. Missing diversity (i.e. empty cells) can easily be identified.

The key problem with the conventional cell-based method is that a high-dimensional space will have too
many cells to be covered by a modest number of compounds (design points). As two molecules must
have fairly close values of all critical descriptors for similar biological activity (McFarland and Gans
1986), the number of bins, m, should be relatively large. If &=6 and m=10, say, we have one million cells,

which cannot be covered by only thousands of design points. This is just the curse of dimensionality.

unifcov6.doc 19-Mar-01 Page 3 of 31



To reduce the number of cells, a common approach is to use fewer, wider bins in each dimension, even
though these bins may include rather dissimilar compounds. For example, Cummins et al. (1996) and
Menard et al. (1998) restricted the number of descriptors and the number of bins per descriptor. They
also excluded hundreds to thousands of outlying candidate points (as outliers lead to an artificially large
space). Even with these compromises, they reported a large proportion of empty cells, many compounds
densely clustered in a few cells, and many cells being singleton. Indeed, a very low cell occupancy (i.e.,
at least one compound) rate is expected by Menard et al. (1998) — they recommended a target occupancy
of 12-15%. If most cells are empty and hence most of the space is ignored, however, the utility of

covering the remaining space is questionable, calling for new methods of binning and creating cells.

If only a few descriptors are responsible for the particular biological activity, however, it is possible to
densely cover their low-dimensional subspace with just thousands of design points. A subspace is simply
a subset of the descriptor variables, ignoring the remaining descriptors. Different sets of critical
descriptors may be relevant to structurally different chemical classes, but hopefully only a few variables
are involved at a time. If we knew, in advance, that certain subsets of descriptors were critical we could
choose design points to give good coverage of the relevant subspaces. At the outset, we will probably not
know which descriptors are critical, and we therefore aim for uniform coverage in every low-dimensional
projection. With m=10 bins per descriptor, for example, it is theoretically feasible to cover all 10° cells in
any three-dimensional subspace with about 1000 points. This is analogous to a fractional-factorial design

projecting down to a full factorial in a few critical variables.
Thus, because of the practical difficulty of covering the numerical space of all descriptors, and the belief

that probably relatively few descriptors are active for any given mechanism, we will concentrate on low-

dimensional subspaces throughout this article, typically involving one, two, or three descriptors.

unifcov6.doc 19-Mar-01 Page 4 of 31



Designs with good coverage of low-dimensional subspaces have been suggested in many other contexts.
For example, Dalal and Mallows (1998) proposed plans for testing software such that for any finput
factors, all combinations of their levels occur at least once. Typically, fis 2, 3, or 4. Thus, these designs
exhaustively cover the input-factor space when projected down onto f~-dimensional subspaces. Although
the objectives are similar, these plans cannot be directly applied to molecule selection. Suppose we
grouped each descriptor's values into a moderate number of bins to generate "levels". For an
experimental run, the Dalal and Mallows (1998) designs can choose any combination of levels (bins) over
all factors (descriptors). Unfortunately, a set of candidate molecules will typically have some bin
combinations that are empty. We start with a candidate set of molecules, and we cannot necessarily select
an arbitrary combination of descriptor values and place a design point there. The haphazard combinations
of descriptor values similarly rule out plans based on Latin hypercubes and orthogonal arrays with good
projective properties (Owen 1992 and Tang 1993) that have been proposed for computer experiments.
The same difficulty arises with many other designs aiming for uniform space-filling properties, for
example, the uniform shell designs of Doehlert (1970) or number-theoretic methods for generating

representative points motivated by discrepancy measures (e.g., Fang et al. 1994).

Algorithmic, rather than combinatorial, methods can generate space-filling designs from any given set of
candidate points. They typically optimize some function of the inter-point distances. Johnson et al.
(1990) proposed two classes of designs, based on either minimax or maximin distance criteria. Maximin
designs maximize the minimum distance between design points. By making the design points maximally
dissimilar they spread throughout the space; the algorithm of Kennard and Stone (1969) has this
underlying objective. Alternatively, minimax distance designs minimize the maximum distance between
candidate points and the design points. This criterion tries to make every candidate close to a design
point and hence the design covers the candidate space. Similarly, Zemroch (1986) clustered the candidate

points and chose a member of each cluster to cover or represent the entire set. Thus, distance-based

unifcové6.doc 19-Mar-01 Page 5 of 31



algorithms appear to be useful for molecule selection and have been applied in this context (Higgs et al.

1997) and are readily available in SAS (Tobias 1995, pp. 657-728).

There are several difficulties, however, with distance-based design criteria. All of the methods mentioned
above are based on distance metrics calculated from all descriptors. As we have already noted, it is not
possible to densely cover a high-dimensional space with only thousands of points. Low-dimensional
coverage, which is more relevant if few descriptors are critical, is not directly considered and could be
quite uneven (some results will be presented in Section 6.4). Moreover, the definition of an appropriate
metric is problematic for molecular descriptors. Two molecules with fairly close values of all critical
descriptors are likely to have similar biological activity (McFarland and Gans 1986), but beyond some
(unknown) threshold, there may be little relationship between distance and similarity of activity.

Finally, the presence of relatively few outlying observations leads to large, dominating inter-point

distances. Very often this requires removal of many molecules to generate a sensible design.

The simplest designs are based on random sampling. In fact, most new leads have been discovered
through random screening, in which large numbers of compounds are tested for a specific biological
activity, and the active compounds are then selected for optimization. Young et al. (1996) used a constant
radius hypersphere around each randomly selected compound to measure the coverage of the descriptor
space. They concluded that, unless a very large number of compounds are used to fill space, randomly
selected compounds will cover as much space as carefully selected compounds. Again, however, if
relatively few descriptors are important, then a rational selection should be more effective than a random
design. In Section 6.2 we examine the coverage of designs generated by simple random sampling and

stratified random sampling.

The approach proposed in this article is to divide all low-dimensional subspaces into small cells and

attempt to find a design that has one point in every cell of every subspace, so covering every low-

unifcov6.doc 19-Mar-01 Page 6 of 31



dimensional subspace. In Section 2 we describe a National Cancer Institute (NCI) database that we will
use to motivate and illustrate our methodology and notation for the general case. Section 3 discusses a
data-adaptive descriptor binning method that leads to two- and three-dimensional cells such that only a
small proportion are empty with respect to the candidates. To guide the choice of the design points from
the candidates, we develop a uniform cell coverage (UCC) criterion in Section 4, and Section 5 describes
a fast exchange algorithm to implement it. In Section 6 we apply the UCC criterion to the NCI data and
compare computational time and quality of coverage relative to other methods. Finally, Section 7

provides some conclusions and discussion of further work.

2. CHEMICAL DATABASES AND DESCRIPTORS

2.1. The NCI Candidate Set

We illustrate our methods with the NCI AIDS antiviral screen database, because it is a large database in
the public domain and represents a problem of practical importance. The activity data can be obtained
from the web site http://dtp.nci.nih.gov/docs/aids/aids_data.html. When we downloaded the data in May
1999, there were 32,1 10v compounds in the database. Some were removed, because their descriptors

could not be computed, leaving 29,812 molecules.

We use six continuous BCUT variables as descriptors. They are based on the work by Burden (1989),
who found that structurally similar compounds have similar BCUT values. They tend to characterize
molecular bonding patterns and atomic properties such as surface area, charge, hydrogen-bond donor and

acceptor ability. The BCUT values for the 29,812 molecules are available from the first author.
Figure 1 shows the univariate distributions of the six descriptors for the NCI candidate molecules. The

distributions exhibit multimodality and outlying values. The pairwise plots in Figure 2 show that the two-

dimensional projections are complex, with much empty space. Either the collection is missing chemicals

unifcov6.doc 19-Mar-01 Page 7 of 31



or it is not possible to make compounds with certain combinations of descriptors. In more than two

dimensions this problem will be even worse.

o
S . ] ; _
B g ] 8 ]
4 o
g g8 g3
[} [} [} 4
§- g T o
- O 9 Qo-‘
=1 L o <]
811 ] g1 }L] ST ]
O" - ; ; '—' . O' e ————— O' - - : : .
5 4 3 -2 -1 0 0.2 0.5 0.8 1.1 0 2 4 6 8 10
x1 x2 x3
— o- -
[=]
—~ 8-
o N o
28 5 58
[= =4 c o
[} [ i (7]
oy Fo g
8 g8 | g
uw o wo w o
Sl ﬂn[ﬂ ] = |l ] S Lﬂ ]
N I N
S e S —
0.5 1.5 25 -20 10 -5 0 b5 -0.2 04 08 12
x4 x5 x6

Figure 1. Univariate Distributions of the Descriptors in the NCI Data.
The “[“ and “]” symbols denote a descriptor’s range.

2.2.Notation
In general, denote the & continuous descriptors by xy, xa...., X, and let X, be a candidate set of compounds
with N points. The objective is to choose a representative set of n design points, X, to cover the

descriptor space occupied by the candidate set.

Within the full k-dimensional descriptor space, a p-dimensional (p-D) subspace is defined by p of the k
descriptors (1< p< k). For convenience, Xi will denote the 1-D subspace involving only x;. Similarly,

Xij, Xijl, etc. will represent 2-D, 3-D and higher-dimensional subspaces. For example, X1 is a 1-D

unifcov6.doc 19-Mar-01 Page 8 of 31



subspace defined by x;, and X12 is a 2-D subspace formed by x, and x,. A subspace, then, is simply a

subset of the descriptor variables, ignoring the remaining descriptors.

04 08 10 26 = 00 08

-5

-15

<15 -5

Figure 2. Pairwise Plots of the Descriptor Values in the NCI data.

3. CELL-BASED APPROACH

We use a number of techniques to keep the cells small, yet limit their number, and to ensure that
relatively few cells are empty in the candidate set. First, when we bin each descriptor, we adopt a data-
driven hybrid binning method that makes bins larger towards the extremes. This avoids empty bins
towards the limits of a descriptor’s range, where molecules tend to be sparse. Second, we focus attention

on low-dimensional subspaces, typically all 1-D, 2-D, and 3-D subspaces. By considering no more than

unifcov6.doc 19-Mar-01 Page 9 of 31



three variables at a time, fewer cells are required to represent a subspace. Selecting a design with good
coverage of all low-dimensional subspaces is analogous to a two-level fractional factorial design of
Resolution IV. Such a design is a complete factorial for any subset of three or fewer variables (Box,
Hunter, and Hunter 1978, p. 388) and can estimate all interaction effects if only three factors are found to
be important. Third, every subspace considered has the same number of cells, avoiding the exponential

increase with dimension.

3.1. Data-Driven Binning

For each descriptor, we first divide its range into mutually exclusive and exhaustive sub-ranges or bins
(e.g., we use 729 bins in Section 6 for the NCI data). The bins for descriptor x; immediately become the
cells for the 1-D subspace Xi. For subspaces of higher dimension, cells will be formed from the bins of

the descriptors forming the subspace (Section 3.2).

To construct bins, we use a hybrid of two shnple-to—implerﬁent methods: equal width (EW) and equal
frequency (EF). The EW method simply divides a descriptor’s range into equal-width intervals.
Alternatively, EF bins have their cut-points chosen to make the frequency of candidate molecules

approximately equal in each bin.

In regions where there is a reasonable density of descriptor values, EW bins are compelling. When a
molecule is chosen to represent a bin (and hence a cell), it is the size of the bin that determines the quality
of coverage in the descriptor space, not the number of molecules in a bin. Another way of looking at this
is that EF bins are very small where there is a high density of candidate molecules. Such regions will be
over-represented in an experimental design, to the detriment of coverage in regions where candidates are

sparse and bins are wide.

unifcov6.doc 19-Mar-01 Page 10 of 31



On the other hand, outlying or extreme descriptor values may inflate a descriptor’s range, making many
EW bins empty towards the extremes. This problem is compounded when we form cells in multiple
dimensions (Section 3.2). To avoid empty bins, extreme candidates are sometimes removed from
consideration (Cummins et al. 1996 and Menard et al. 1998). By definition, the EF method has candidate
points in every bin and hence none are empty. Empty cells in 2-D or 3-D subspaces can still arise, but EF

bins will tend to have fewer empty cells.

To combine the best features of EW and EF bins, we use a data-driven, hybrid method. EF bins are
constructed for the extreme values. For example, the first percent of a descriptor’s values can be placed
in one bin, with a similar bin for the last one percent. EW bins are then used between these extreme bins.

Thus, EW bins predominate, while the EF method for the extreme values avoids empty bins.

Figure 3 illustrates the advantage of this hybrid binning strategy, applying it to x, from the NCI data.
Here, to keep the demonstration of binning and cell construction simple, we use 64 bins. (When we apply
these methods to a realistic sized design in Section 6 we will use 729 bins.) With EW bins the
frequencies shown in Figure 3(a) are very uneven: Of the 64 bins, 32 in the long tail to the left are empty.
In contrast, all of the 64 hybrid bins shown in Figure 3(b) are occupied. The 62 equal-width bins in
between the two 1% end bins are much narrower on the original x, scale. Compounds within these

narrower bins are more likely to have similar activity.

unifcové6.doc 19-Mar-01 Page 11 of 31



(a) Equal-width bins (b) Hybrid bins

[=]
=
[=)
(=
3 o ] 3
g3 8
[ “e
n
o o A
1 16 32 48 64
x1 bin index x1 bin index

Figure 3. Candidate-Point Bin Frequencies for Descriptor x; in the NCI data (64 Bins).

After binning, we make no further use of the raw x; values; our uniform-coverage algorithm only uses the
hybrid-bin index to characterize a molecule according to x;. The data-adaptive binning procedure is

repeated for each descriptor.

3.2. Forming Cells

To form cells for, say, a 2-D subspace, we combine the 1-D bins for each of its two descriptors. We keep
the number of cells constant over subspaces, however, and hence avoid the curse of dimensionality. This
is effected by amalgamating 1-D bins when working in a higher-dimensional subspace. For example, if
we have used 64 bins for each 1-D subspace, as in Figure 3(b), we divide the 2-D subspace X12 for
descriptors x; and x, into 8 x 8 = 64 cells, as illustrated in Figure 4. The first cell, in the lower left corner,
for instance, is formed from the first eight 1-D bins for X1 and the first eight 1-D bins for X2. This gives
the 64 2-D cells shown. Similarly, we form 3-D subspaces of 4 x 4 x 4 = 64 cells by amalgamating 1-D

bins 16 at a time for each descriptor.

unifcové6.doc 19-Mar-01 Page 12 of 31



64

57

x2 bin index

WWWW
1 8 57 64

x1 bin index

Figure 4. Construction of 64 2-D Cells From Descriptors With 64 Bins.

In general, suppose we consider 1-D, 2-D, and 3-D subspaces and want m cells per subspace. For 2-D
subspaces, analogously to Figure 4, cells are formed in an m"? xm'” array, and for 3-D subspaces there is
an m'® xm"® xm'" array of cells. Thus, convenient values of m have integer square roots and cube

roots: 2°°=64, or 37°=729, or 4°°=4096, etc.

With k descriptors, there are

(G (3)-3ew0

1-D, 2-D, and 3-D subspaces in total. When k=3, for example, there are 7 subspaces: X1, X2, X3, X12,
X13, X23 and X123. When k=6, there are 41 subspaces and when k=10, there are 175 subspaces. For

larger k, it might be necessary for computational reasons to reduce the number of subspaces by focusing

on only 1-D and 2-D subspaces.

unifcové.doc 19-Mar-01 Page 13 of 31



Including subspaces of 4-D and higher will usually not be practical. Chemists believe that two molecules
must have fairly close values of all critical descriptors for similar biological activity (McFarland and Gans
1986). This means that bins have to be small if one molecule from a bin is to represent the rest. Yet,
even with 10 bins per dimension, which is probably too few, there are 10,000 cells per 4-D subspace.
Clearly, we would need to choose at least this many molecules if the experimental design is to cover
every cell. Thus, it is not possible to give dense coverage of a 4-D subspace with a modest subset of
molecules. For analysis, this implies that interaction effects are hopefully limited to no more than three

factors.

How big should m be? Even with the data-driven binning method in Section 3.1, there will be some
multi-dimensional cells with no molecules. The proportion of empty cells, which varies from subspace to
subspace, will tend to increase with m. In addition, if # design points are to be selected, we would like
nonempty cells per subspace, so the space-filling design can cover distinct nonempty cells. These two

considerations suggest that m should be approximately equal to » or a little larger.

4. CRITERIA FOR EVALUATING COVERAGE

In a conventional cell-based design (Section 1), there is one set of cells based on all k descriptors. Simply
picking a point from each occupied cell would guarantee a good coverage design. As already noted,
however, this approach often generates many more cells than the number of design points, making good
coverage impossible. In Section 3.2 we defined cells based on low-dimensional subspaces to overcome
this problem. With more than one subspace, it is no longer straightforward to select a set of candidate
points to give good coverage simultaneously in many subspaces. If, say, one point is chosen from each
cell in a particular subspace, these points may be unevenly distributed in other subspaces. We now
describe two measures of the quality of coverage; the second will be used in Section 5 as an optimization

criterion to drive the numerical search for a good experimental design.

unifcové.doc 19-Mar-01 Page 14 of 31



We first need some definitions and notation. Let X denote a set of points (molecules) in the descriptor
space; X will typically be the entire set of candidate points, X, or a trial experimental design, X;. The set
X is said to cover cell i in subspace s if at least one of the points falls in that cell. Mathematically, we set

up indicator variables cy;(X) taking the value 1 if cell i in subspace s is covered and 0 otherwise.

4.1. Average Percentage of Cells Covered

The first experimental design criterion simply computes the percentage of cells that are covered by a
design, averaged over all subspaces. Some cells are not covered by the candidate set, X, and so cannot be
covered by any choice of design; these cells are eliminated from consideration when computing the

criterion.

In subspace s, the percentage of cells covered by a design X is defined to be

chi(Xd)
P =<t———x100%,
: chi(Xc) * ’

where the summation is over all cells in the subspace (i.e., i=1, ... , m). We can then define the average

percentage coverage over, say, all 1-D subspaces as

2R
P] _ S€S,

-D I Sll 2
where S is the set of all 1-D subspaces and /S, | is the number of such subspaces. For 2-D subspaces we

define P,p analogously, and so on.

We can then obtain the average percentage coverage, P. For example, if 1-D, 2-D, and 3-D subspaces are
being considered, we have

- Rp+P p+h, )
3

P

)

unifcové.doc 19-Mar-01 Page 15 of 31



The average could also be weighted, for example giving more weight to 1-D subspaces.

One deficiency of this criterion is that it ignores the distribution of design points in the covered cells. For
instance, consider two very different designs: one has two points in each of 50 cells and the other has 1
point in each of 49 of these cells and 51 points in the remaining cell. With respect to these 50 cells, the
coverage is 100% for both designs, yet we would prefer the first as the distribution of points is more
uniform. Thus we report the criterion P in Section 6, but the selection of a design is a based on a

modification that takes the uniformity of coverage into consideration.

4.2. Uniform Cell Coverage (UCC)

Suppose design X, places n,(X,) points in cell i of subspace s. If the candidate set X, does not cover this
cell, i.e., csi(X) =0, then ng(X;) also has to be 0. For cells that are covered by X, i.e., cu(X) =1, we
want the n(X,) counts to be approximately 1. Thus, ideally, n.(Xy) = cq(X,) for every cell. In subspace

s, then, a measure of lack of uniformity is
U, = Zn(X)-ca(X] - @

Again, we can average these quantities over subspaces. The total lack of uniformity for 1-D subspaces,

for example, is

XU,

__ S€ES,
UI-D - ’

Isi
and analogously for Uy, etc. Averaging with weights across, say, the 1-D, 2-D, and 3-D subspaces, we

have the uniform cell coverage (UCC) criterion:

U

_wU.,p+ WUy p+WiUs p
W, +w, + W,

3)

where wy, wy, and ws are user-supplied weights. A user might want to give more weight to 1-D coverage

and least to 3-D coverage, for example. In all of the examples in Section 6 we use equal weights.

unifcov6.doc 19-Mar-01 Page 16 of 31



Minimizing U in (3) discourages uncovered cells in the design and tends to avoid having more than one

design point per cell. This is the criterion used by the optimization algorithms of the next section.

The indicator variables cg;(X,) in (2) provide the target numbers of points per cell in the UCC criterion.
With a simple modification to these targets, a generalized UCC is obtained. For example, suppose that the
number of design points allows about two design points in each cell. We can set the target for a cell to 0,
1, or 2 if there are no candidate points, one point, or at least two points, respectively. In the examples of

this paper, we use (2) without modification.

5. FAST EXCHANGE ALGORITHM

5.1. Basic Exchange Algorithm

An optimization algorithm is needed to implement the minimization of the UCC criterion in (3). In other
contexts, primarily efficient experiments for fitting regression models, there are many algorithms for
optimizing a design criterion; see Cook and Nachtsheim (1980) and Tobias (1995, pp. 657-728) for
reviews. Most of these algorithms are variants on the basic idea of an exchange. Starting with » points in
a trial design, they exchange a point in the design for one in the candidate set to improve the design
criterion and iterate until the criterion cannot be improved further. However, these methods were not
intended for problems of the magnitude considered here (i.e., select thousands of points from hundreds of

thousands) and would be far too slow.

We could modify any one of several implementations of this idea. We choose to start with the Wynn
(1972) algorithm, which we call the basic exchange algorithm below, because it is fast relative to other
methods (Tobias 1995, pp. 657-728) and its simplicity facilitates adaptation. The modifications greatly

reduce the computational effort, especially when dealing with very large candidate sets.

unifcov6.doc 19-Mar-01 Page 17 of 31



The basic exchange algorithm starts with a random subset of 7 points (an initial design) from the N
candidates. The optimization criterion is then sequentially improved by a series of exchanges. (Wynn
worked with the D optimality criterion, but we will use UCC.) In each exchange, a point in the candidate
set replaces a point in the current design. An exchange is broken down into two steps. First, a point in the
candidate list is found to add to the current design. The point added from the candidate list is the one with
the best value of the design criterion for the modified design of n + 1 points. Second, a point in the new
design of n + 1 points is removed; this point is chosen to give the best criterion value for the new design
of n points amongst those that are subsets of the n + 1 points available. These exchanges continue until the

criterion cannot be improved. We now describe the adaptations to this exchange concept.

5.2. Identifying Good Candidates for Exchange

The basic exchange concept is computationally inefficient for large candidate lists. In principle, we have
to loop through the whole candidate list, X,, to find only one candidate to add. Moreover, many of the
initial # points will have to be replaced, requiring many loops if n is moderately large. The adaptations
we first describe are aimed at obtaining many exchanges per X loop, thereby reducing the number of X,
loops required. Every time a candidate is visited, we note the improvement in the criterion if it were
added to the design. Hence, an approximation to the distribution of improvements can also be
maintained. As we pass through the candidates, whenever a candidate’s change is in the upper tail of this
distribution, it is deemed “good” and considered for an exchange. (A similar process will be described in
Section 5.3 to search for a design point to delete and complete the exchange.) Thus, each X loop might

identify many “good” candidates and carry out several exchanges.

Specifically, let §; denote the improvement (i.e., reduction) in the UCC criterion Uin (3) if candidate j

were added to the current n design points to give n + 1 points. The algorithm for identifying good

candidates, with some explanation in parentheses, is as follows:

unifcov6.doc 19-Mar-01 Page 18 of 31



1. Initialize the 8 distribution. Randomly select 100 candidate points. Compute their 8 values, and
denote the sorted values by 81,2 ... = 8100 Set A=n/N and 8* = §(,), where g = max(1, 1002). (In
Step 2, if candidate j has §; > 8*, it will be considered for an exchange. This rule will try
approximately # of the N candidates during the first X loop, because all n initial design points may
have to be replaced.)

2. Loop through the candidates. Forj=l,..., N do the following steps:

e Compute §;and note the value for later use in updating &*.
o If §; > 8*, then:
o Try exchanging candidate j with one of the current design points (see Section 5.3).
o If candidate j was exchanged, then
e Set §;=-100. (As candidate j is now in the design, introducing it again is
undesirable.)
else
o Replace 8* by 8* + 10A. (A failed exchange suggests that 8* is allowing poor
candidates to be considered, i.e., 8* is too small.)

3. If there was no improvement in the criterion in the last X, loop, then stop.

4. Update 8* for the next X, loop. Sort the §; values from the last X. loop and denote them by 8¢, 2 ...
> 8. Set A to half the previous value and §* = 8, where ¢ = max(10, NA). Go to Step 2.
(Decreasing A reduces the number of exchanges considered, because fewer exchanges are likely to
improve the criterion with successive passes through the list. We always want to consider at least 10

promising candidates in the next X, loop, however, to be conservative about termination.)

Note that when a good candidate is found in Step 2, we do not re-start the X loop at the beginning.
Rather we continue with the next candidate. These “floating” loops allow many exchanges in one X,

loop.

unifcov6.doc 19-Mar-01 Page 19 of 31



5.3. Identifying Design Points for Exchange
Whenever a “good” candidate for inclusion in the design is identified by the rules in Section 5.2, a design
point must also be removed if an exchange is to take place. We evaluate the design points and identify a

“bad” point, i.e., one that should be removed, using similar rules.

Specifically, for a fixed candidate j under consideration for inclusion, let A;denote the overall
improvement in the UCC criterion in Equation (3) if design point i of the » current design points is
replaced by candidate j. Thus, A; includes the §; contribution from adding candidate j. A distribution of
A; values is maintained, and we implement an exchange as soon as a “good” A;value is found, rather than

search all n design points. The details are as follows:

1. Initialization of the A distribution. If this is the first search of the design list, then:
o Randomly select 100 design points, compute their A; values, and denote the sorted values by
ApyZ ... 2 Agoo,
e Set A* =max(0.01, A ), where ¢ = max(1, 1001), using the A value in effect for searching the
candidate list. (Exchanges with A; > A* will be implemented.)
e Set i=1. (Start at the top of the design-point list.)

2. Compute A; and note the value for later use in updating A*.

3. IfA; 2 A*, then
o Implement the exchange of design point i with candidate j.

else if all design points have been tried, then
e Let A,y be the maximum A value over all the design points. If Apax 2 0, then
o Implement the exchange of the design point giving Ay with candidate j.

4. Ifi=n,then

unifcov6.doc 19-Mar-01 Page 20 of 31



e Update A*. Sort the A; values from the last X, loop and denote themby A(j)2 ... 2 A,). Set

A* =max(0.01, A ;)), where ¢ = max(1, nA) , using the A value in effect for searching the
candidate list.
e Set i=1;

else
o Setitoi+l.

5. If an exchange occurred in step 3 or all design points had been tried in step 3, then

e Return to searching for the next “good” candidate to add. The next search for a “bad” design
point to remove will start at Step 2 with the current value of i.

else

e Go to Step 2.

Note that in Step 3, an exchange can occur with Ay, =0, i.e., it does not change the criterion. Allowing

“neutral” exchanges of this type may be useful to break away from a design that is only locally optimal.

5.4. Updating the UCC criterion
Finally, we describe how the criterion can be efficiently updated when only one point is changed, either

when adding a candidate or when removing a design point.

When a point is added to or removed from the design, it will affect only one of the m cells in each
subspace. Let z, be the number of design points in the affected cell in subspace s. If we are adding a

point, then z; becomes z, + 1, and the change to U; in (2) is

[z, +1)-1F =(z, -1 =22, -1.

unifcové.doc 19-Mar-01 Page 21 of 31



Note that c.;(X;) in (2) must equal 1, as a cell must be covered by at least one candidate if a point is to be

added (or removed). Similarly, when a design point is removed, the change to U in (2) is

[z, -1)-1F - (z, -1 =3-2,.

6. RESULTS
We now apply our data-driven binning method and our fast design algorithm to select 729 molecules from

the 29,812 NCI molecules.

6.1. Forming Cells

The distributions of the NCI molecules in 1-D and 2-D projections for all six descriptors are shown in
Figures 1 and 2. To apply the hybrid binning method described in Section 3.1, the first and last
percentiles are assigned to EF bins, with EW bins between. There are six 1-D, 15 2-D, and 20 3-D
subspaces, and each of these 41 subspaces is divided into 729 cells. Over the 41 subspaces, on average
there are 81.4% nonempty cells in the candidate set of molecules; the worst subspace is X246 with 63.0%
nonempty cells. Figure 5 shows the bin (1-D cell) counts for the 1-D subspaces. The plot for x4 shows
that adding a few extra EF bins in sparse regions could further increase the proportion of nonempty bins,
but we do not pursue this. For 2-D subspaces, bins are amalgamated 27 at a time to generate 27 X 27 =
729 cells. Figure 6 depicts cells with at least one candidate point with a dot. It is seen that the 2-D cells
are fairly well covered by the candidates. Similarly, the 3-D subspaces (not shown) have 9 x 9 x 9 cells

formed by amalgamating 81 bins at a time in each dimension.

unifcov6.doc 19-Mar-01 Page 22 of 31



250
250
250

Frequency
150
Frequency
150
Frequency
150

i

8 - 8 uo, ‘ M
o - . : o p o - b "
1 729 1 729 1 729
x1 bin index x2 bin index x3 bin index
o
8. R g,
- ] g o
zg R 38,
c Q] £ o c e
3 28 g
3 o g -~ g °
w g 1 w A w 8 1
o |
? | Jddy |
o -, ' o - . o - ,
1 729 1 729 1 729
x4 bin index x5 bin index x6 bin index

Figure 5. Candidate-Point Bin Frequencies for the NCI data (729 Hybrid Bins).

6.2. UCC Optimization Algorithm Versus Random Designs

The algorithm in Section 5 to minimize the UCC criterion in (3) gives a U value of 585. For comparison,
we also generate 100 designs based on simple random sampling (SRS) of 729 points from the 29,812
candidates and compute their values of the UCC criterion. Figure 7 shows that the U value give by the
UCC optimization algorithm compares very favorably with the distribution of values under SRS. As a
further comparison, we use stratified simple random sampling (StratRS) to choose another 100 designs.
Following conventional cell-based approaches, the entire 6-D space is divided into 3° = 729 cells, one
design point is randomly selected from each nonempty cell, and then further points are randomly chosen
to reach 729 points. The distribution of U values under StratRS also depicted in Figure 7 indicates that
StratRS is preferable to SRS according to the UCC criterion, but the UCC optimization algorithm still

performs considerably better. The SRS and StratRS distributions demonstrate that the simple strategy of

unifcov6.doc 19-Mar-01 i Page 23 of 31



randomly sampling many designs and choosing the best according to the UCC criterion is a poor

substitute for the optimization algorithm.

27
1
x
[O)
°
£
®
(&}
27
1
Figure 6.

R
R

PR

335152 2s8naesan s osaey
S5isissistaniase sttt isey
i i i
I L

FRCER
sEsinnnnasnny

T

Frrevenevsomsersonoen. oo 4
procsasescdmasssrnse’

)
Sniinniinegs
LT

x!
X il
..... i
111
§it
i

1. tinmmn..d | .
oL

ottt o
AR b

E2f

Hn
I

HEnnnnaainnn
anpnasiainEn
EEEEERT
2.332322 522888 53222202,
!ﬂﬂﬂﬂﬂﬂ!sﬂ!ﬂﬂh

1 27 1 27
Cell index

Candidate-Point 2-D Coverage for the NCI Data (729 Cells).
A dot in a cell denotes at least one candidate point.

Table 1 gives some numerical summaries of these comparisons. For SRS and StratRS, the numbers given

are means across the 100 random designs. We report the UCC criterion U in (3), the percent coverage

criterion P in (2), and the 1-D, 2-D, and 3-D contributions to these two criteria. Note that U and its

components are smaller the better measures, whereas P and its components are larger the better. In all

cases, the design produced by the UCC optimization algorithm performs best. For example, P is 75% for

unifcov6.doc 19-Mar-01

Page 24 of 31



the design from our algorithm versus 53% on average under StratRS. Note also that Usp is the largest

contributor to U, probably because there are slightly more empty cells in the 3-D subspaces

Density
0.002 0.004 0.006

Min UCC

0.0

SRS

1000 2000
UCC criterion, U

3000

Figure 7. Distributions of UCC Values for 100 Simple Random Samples (SRS) and 100 Stratified
Random Samples (StratRS), and the Value Obtained by the UCC Minimization Algorithm (+).

Design UCC Criterion, U | Average Percent| Time
(Uip/ Uyp/ Usp)| Coverage, P |(hh:mm)

(Pip/ Pyp/ Pip)

UCC (Fast exchange 585 75.1 0:25

algorithm) (463/ 597/ 693) [(74.9/ 74.5/ 76.0)

Simple Random Sampling 3188 45.5 0:01

(mean over 100 designs) (2035/ 2937/ 4592)((49.9/ 44.8/ 41.9)

Stratified Random Sampling 2193 534 0:02

(mean over 100 designs) (1979/ 2050/ 2551)|(53.4/ 52.5/ 54.4)

UCC (Basic exchange 606 74.5 12:19

algorithm) (489/ 615/ 714) |(73.8/ 74.2/ 75.5)

SAS PROC OPTEX 3839 59.4 2:32

Spread Design (Sequential) (7122/2365/2031) |(55.1/ 59.0/ 64.1)

SAS PROC OPTEX 3556 454 133:29

Uniform Coverage Design (2255/ 3107/ 5306)|(50.4/ 45.1/ 40.8)

(Sequential)

Table 1. Coverage Criteria and Run Times for Various Designs

unifcov6.doc 19-Mar-01

Page 25 of 31



Figure 8 compares the UCC design with the first StratRS design in terms of cell frequencies in 1-D
projections. Descriptor x,’s candidates are fairly well behaved after hybrid binning; in contrast x4’s
distribution is more difficult to handle. In both cases the UCC design is seen to have a much more
uniform distribution of design points. For all descriptors, the UCC design has one or two design points in
most cells. Some analogous 2-D projections of the design points are shown in Figure 9, where a dot is
plotted in a cell if there is at least one design point. It is clear that the UCC design has superior coverage

of 2-D cells. Similar plots for the 3-D projections show the same pattern.

(a) UCC design (b) Stratified random sampling
@ ©
3e; g e
[= c
Q (]
3 3
g g
L w ‘ I e
(= . . o - . o’
1 729 1 729
x1 bin index x1 bin index
o . o .
< <
8 1 8 1
g Foy
§ 8
g & g &
o o
Lo Lo |
o | mbltiitik o kN o )
1 729 1 729
x4 bin index x4 bin index

Figure 8. Design-Point Bin Frequencies for the NCI data (729 Points in 729 Hybrid Bins).

6.3. Comparison With Basic Exchange
Compared with the basic exchange algorithm, our algorithm makes about three times as many exchanges

(2308 versus 754). It achieves this even though the number of passes through the candidate points is

unifcov6.doc 19-Mar-01 Page 26 of 31



reduced by a factor of about 50 (15.2 passes versus 754). The reduction in iterations through the
candidates leads to a run time of less than half an hour, whereas the basic exchange algorithm takes more
than 12 hours (with the fast UCC update described in Section 5.4). These times relate to implementations
in SAS PROC IML on a Pentium III 550MHz computer with 256MB RAM. Some preliminary runs with

a C++ implementation indicate that the modified algorithm runs in less than a minute for problems of this

magnitude.
(a) UCC design (b) Stratified random sampling
3 3
° ©
£ £
8 3
R X
1 27 1 27
x1 cell index x1 cell index
& 1 N
3 3
he) ©
£ £
8 3
P’ X
1 27
x1 cell index x1 cell index

Figure 9. Design-Point 2-D Coverage for the NCI Data (729 Cells).
A dot in a cell denotes at least one candidate point.
In Table 1 we see that our fast exchange algorithm produces slightly better values of P and U here than
does the basic exchange method. The increase in number of exchanges, including neutral exchanges,

improves the ability to escape from local minima. Similar results were obtained with another database

from GlaxoSmithKline.

unifcové.doc 19-Mar-01 Page 27 of 31



6.4. Comparison With SAS PROC OPTEX

We also make comparisons with PROC OPTEX in SAS. There are two difficulties. First, our criteria
focus on low-dimensional coverage whereas PROC OPTEX computes spread and coverage measures
using all descriptors. Therefore, the U and P values reported in Table 1 for PROC OPTEX are
unfavorable. Secondly, problems of this magnitude (729 points selected from 29,812) require substantial
computing time. Even when design points are optimized one at a time in the sequential option, PROC

OPTEX with the uniform coverage criterion requires over five days.

7. CONCLUSIONS AND DISCUSSION

Our design problem is somewhat special for the following reasons. The candidate set of possible
explanatory variable combinations is discrete, because only certain compounds can be made. Moreover,
the set of discrete points can be large and highly irregular (see, for example, Figure 2). To have similar
properties, it is believed that two compounds must have very similar values of all critical descriptors.
Thus, the design needs to cover the space densely. It is clearly impossible to achieve dense coverage in
more than three dimensions at a time without an extraordinarily large design.{ Hence, we have proposed

designs that aim for uniform coverage in all 1-D, 2-D, and 3-D projections.

The aim of such experimental designs is not just to discover highly active compounds but to find several
structurally different chemical classes. These provide options for further optimization of activity,
physical properties, distribution, half-life, toxicity, etc. By covering the descriptor space uniformly, there

is more chance of discovering multiple classes.
The design algorithm proposed here can efficiently deal with tens of thousands of compounds in the

candidate set. Much larger sets of compounds will be of interest as technology advances. We are

currently working to implement the algorithm with multiple processors, for example.

unifcov6.doc 19-Mar-01 Page 28 of 31



An open question is how to analyze the data resulting from very large designs. Current practice often
simply ranks the compounds by potency and selects the few top-ranking compounds for further
development. One challenge in statistical modeling is that the potent molecules are likely to be acting in
several different ways: Different descriptors might be critical for the various mechanisms. A single
mathematical model is unlikely to work well for all mechanisms. There has been some success using
partitioning methods on these problems (e.g., Hawkins et al. 1997, King et al. 1992, and Klopman 1984).
In a multi-stage design strategy, the initial design should cover the descriptor space as uniformly as
possible. Analysis of the resulting data would be used to directing subsequent designs to subregions of

high activity in critical descriptor projections.

ACKNOWLEDGMENTS
We are grateful for the help of Eugene Stewart in providing the chemical descriptors. Welch’s research
was funded by NSERC of Canada. We thank the editor, associate editor, and two referees for numerous

suggestions which clarified the presentation.

unifcov6.doc 19-Mar-01 Page 29 of 31



REFERENCES

Box, G.E.P., Hunter, W.G., and Hunter, J.S. (1978), Statistics for Experimenters, New York: Wiley.

Burden, F.R. (1989), “Molecular Identification Number for Substructure Searches,” Journal of Chemical
Information and Computer Sciences, 29, 225-227.

Cook, R.D., and Nachtsheim, C.J. (1980), “A Comparison of Algorithms for Constructing Exact D-
Optimal Designs,” Technometrics, 22, 315-324.

Cummins, D.J., Andrews, C.W., Bentley, J.A., and Cory M. (1996), “Molecular Diversity in Chemical
Databases: Comparison of Medicinal Chemistry Knowledge Bases and Databases of Commercially
Available Compounds,” Journal of Chemical Information and Computer Sciences, 36, 750-763.

Dalal, S.R., and Mallows, C.L. (1998), "Factor-Covering Designs for Testing Software," Technometrics,
40, 234-243.

Doehlert, D.H. (1970), “Uniform Shell Designs,” Applied Statistics, 19, 231-239.

Fang, K.T., Wang, Y., and Bentler, P.M. (1994), “Some Applications of Number-Theoretic Methods in
Statistics,” Statistical Science, 9, 416-428.

Hawkins, D.M., Young, S.S., and Rusinko III, A. (1997), “Analysis of a Large Structure-Activity Data
Set Using Recursive Partitioning,” Quantitative Structure-Activity Relationships, 16, 296-302.

Higgs, R.E., Bemis, K.G., Watson, LA., and Wike, J.H. (1997), “Experimental Designs for Selecting
Molecules from Large Chemical Databases,” Journal of Chemical Information and Computer Sciences,
37, 861-870.

Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990), “Minimax and Maximin Distance Designs,”
Journal of Statistical Planning and Inference, 26, 131-148.

Kennard, R.W., and Stone, L.A. (1969), “Computer Aided Design of Experiments,” Technometrics, 11,
137-148.

King, R.D., Muggleton, S., Lewis, R.A., and Sternberg, M.J.E., (1992), “Drug Design by Machine
Learning: The Use of Inductive Logic Programming to Model the Structure-Activity Relationships of
Trimethoprim Analogues Binding to Dihydrofolate Reductase,” Proceedings of the National Academy of
Sciences, 89, 11322-11326.

Klopman, G. (1984), “Artificial Intelligence Approach to Structure-Activity Studies. Computer
Automated Structure Evaluation of Biological Activity of Organic Molecules,” Journal of the American
Chemical Society, 106, 7315-7321.

McFarland, J.W., and Gans, D.J. (1986), “On the Significance of Clusters in the Graphical Display of
Structure-Activity Data,” Journal of Medicinal Chemistry, 29, 505-514.

Menard, P.R., Mason, J.S., Morize, 1., and Bauerschmidt, S. (1998), “Chemistry Space Metrics in

Diversity Analysis, Library Design, and Compound Selection,” Journal of Chemical Information and
Computer Sciences, 38, 1204-1213.

unifcov6.doc 19-Mar-01 Page 30 of 31



Owen, A.B. (1992), "Orthogonal Arrays for Computer Experiments, Integration, and Visualization,"
Statistica Sinica, 2, 439-452.

Tang, B. (1993), "Orthogonal Array-Based Latin Hypercubes," Journal of the American Statistical
Association, 88, 1392-1397.

Tobias, R. (1995), SAS QC Software. Volume 1: Usage and Reference, Cary, N.C.: SAS Institute.

Wynn, H.P. (1972), “Results in the Theory and Construction of D-Optimum Experimental Designs,”
Journal of the Royal Statistical Society Ser. B, 34, 133-147.

Young, S.S., Farmen, M., and Rusinko III, A. (1996), “Random Versus Rational: Which is Better for
General Compound Screening?” Network Science,
http://www.netsci.org/Science/Screening/feature09.html.

Zemroch, P.J. (1986), “Cluster Analysis as an Experimental Design Generator, With Application to
Gasoline Blending Experiments,” Technometrics, 28, 39-49.

unifcov6.doc 19-Mar-01 Page 31 of 31



	

