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In many applications small parts, such as nuts and bolts, are counted using a scale.
With scale counting the number of parts is estimated by weighing them and
dividing the total weight by the (estimated) average weight of an individual part.
This procedure avoids counting individual parts and can thus save time and
money and improve the accuracy of counts. In this article the effect of the
estimation procedure used to determine the average weight, sample size,
measurement error, and measurement resolution on the accuracy of the scale
count are explored and quantified. General rules of thumb that suggest when scale

counting is likely to be beneficial are presented. Changes in the standard

implementation of scale counting are suggested.

1. Introduction

In many applications small parts are counted using a weighing method, called scale
counting. See Figure 1 for an illustration, and Anonymous (1981) for more background. Using
scale counting we count the parts by weighing them and dividing the total weight by the

(estimated) average weight of each individual part. This procedure avoids counting individual



parts and can thus save time and money and improve the accuracy of counts. However, as far as

we are aware, the statistical properties of scale counting have never been extensively studied.

Figure 1: Counting Scale in Action

The effectiveness of scale counting, measured in terms of the accuracy of the count,
depends on the variability of the weights of the individual parts, the measurement bias,
variability and resolution, the number of parts being counted, and the procedure used to estimate
the average weight of individual parts.

This article was motivated by an application in the automotive industry. In the applicatidn
the goal is to package automotive parts in crates for shipment overseas (where the vehicles are
assembled). The warehouse from which the shipments originate contains over 3000 different
parts or components. The parts range in cost and size from engines to small fasteners. The parts
are shipped in crates that are designed to contain all parts on a particular list of parts needed to

build around 100 vehicles. In this application obtaining the correct number of parts of each type
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in each crate is extremely important. If there are too few of any component not all the vehicles
can be assembled, whereas too many of particular component leads to waste, or worse if attempts
are made to use the excess components in some other assembly operation. The parts needed for a
particular crate are loaded by pickers who roam the warehouse adding all the parts on their pick
list. The number of pieces needed of each part varies from around 100 pieces to over 3500 pieces
(e.g. some common bolts). Currently many of the parts are hand counted, but some of the smaller
and cheaper parts are counted using scales. Specific aspects of this example will be explored in
more detail in this article.

This article is organized in the following manner. First, in Section 2, we detail the current
standard scale counting procedures. We explain the calibration procedures and discuss the
different goals of scale counting achieved through bulk and dribble counting. We also develop
some approximations that show how the accuracy of the scale counting results depends on the
number of pieces used in the calibration step, the number of parts to be counted, and the
coefficient of variation for the individual part weights. The results in Section 2 are derived
assuming a perfect weighing device and ignoring the discretization needed to yield an integer
count. In Section 3, we quantify the effect of relaxing these assumptions, and provide guidelines
when measurement error and/or the discretization can substantially effect the count. Section 4 we
turn to issues of importance to implementation of scale counting. We make some
recommendations for changes to the standard practice. In addition, a new procedure, called
multiple scale counting is proposed that yields much more accurate counts than the standard

procedure in some circumstances. Finally, in Section 5 we summarize our results.



2. Current Scale Counting Approaches

Consider two different goals when using scale counting. First, we may be interested in
determining the number of parts in a given group. To estimate the number of parts using a
weighing scale all the parts are placed on the scale at once, and the total weight is divided by the
(estimated) average weight of the parts to obtain an estimate for the total number of parts. This is
called bulk counting. Second, we may wish to create a group (or groups) of a specified number
of parts. This second goal can be accomplished by adding and removing parts from the scale
until the estimated total number of parts (again derived by dividing the total weight by the
estimated average weight) equals the desired value. This second goal has the descriptive title of
dribble counting. For both scale counting goals, an estimate for the average weight of the parts is
required. The average part weight is estimated using a calibration step where a small number of
parts are manually counted and weighed. We discuss the calibration step of scale counting in
Section 2.1. Although the two procedures, bulk and dribble counting have different goals, we
shall show that the analysis to determine how well these goals can be attained is the same.

To set notation and to simplify the analysis we assume the individual parts have true

weights that follow a normal distribution. This is denoted X, ~ N (ﬂ, az), where x4 and o are

the mean and standard deviation of the individual part weights respectively. In addition, we

assume the weights of the individual parts are independent.

2.1 Calibration Step

The precision of the estimate for the average weight is crucial to the success of scale
counting. It is possible to use an average weight derived from historical records, but usually, like
in our motivating example, due to concerns about a possibly drifting mean weight, a small

sample of the current parts is used.



In the calibration step we count out p parts and determine their total weight. We estimate
the average part weight, denoted 2, by dividing total weight of those p parts by p, i.e. i = fp / P,
where fp is the estimated total weight of the p parts. Usually the calibration sample size p will be
much smaller than the number of parts we ultimately wish to count. Then, for the moment
ignoring measurement error, the corresponding estimator, denoted g, has distribution
N (u, 0'2/ p). For more information on the effect of measurement error see Section 3.2. Note that
by using this calibration procedure it is not possible to estimate the variability in the individual
weights. This is of concern since, as will be shown later, the variability in the individual weights,
through the coefficient of variation of i, is a crucial parameter that strongly influences the
effectiveness of scale counting.

In the motivating automotive example a calibration sample size of 25 parts (i.e. p = 25) is
used for all scale counting. Due to possible variability from shipment to shipment in g this
calibration is repeated whenever a picker needs to count some parts. For simplicity, the
calibration is repeated even if the parts come from a shipment batch that has been used earlier.
Note that p equals 25 is chosen regardless of the coefficient of variation of 1 of the individual
part weights. This is done for simplicity, but also because the large number of different parts

makes estimating all the different coefficients of variation a daunting task.

2.2  Bulk Counting
Say we wish to count a group of roughly » parts, where » is unknown. Assume we have
previously estimated the average part weight using a sample of p parts as described in Section

2.1. Then, an estimate of the total number of parts is

A =ilh, )



where 7, is the measured (by the scale) total weight of all » parts and / is the estimated average
part weight given in Section 2.1. In practice the results from (1) are rounded off to the nearest
integer. For the moment we ignore the effect of rounding. In Section 3.1 we explore the effect of
rounding in more detail, and show that, except when the variability in the count is very small the

effect of rounding is not important. Assuming no measurement error, the estimator
corresponding to the estimate fn, denoted 7,, has distribution N (n,u, no’ ) Thus, the estimator
corresponding to fn/ I, denoted fn/ 4, will have distribution N (n,u, naz)/N(,u, o’/ p). There is
no dependency between 7, and u since we assume they come from two different samples and
we assume independence between the individual weights.

The probability density function of the estimator f,,/ 4 is the ratio of two normally
distributed variables. We may approximate the distribution of t~,,/ 4 using method proposed by

Cabuk and Springer (1990). The estimator is not unbiased, since its expected value is not n, and
it is not normally distributed. However, in most cases of interest in this application, i.e. where n
and p are large (say larger than 100 and 5 respectively) and of 4 = y, the coefficient of
variation, is small (say smaller than .05) the estimator is approximately unbiased, has only
negligible skewness, and is closely approximated by a normal distribution. If we assume
approximate normality we need only estimate the mean and standard deviation of 7, / 4. This can
be accomplished through the method of statistical differentials (i.e. Taylor series expansion)

retaining terms up to second order (Kotz and Johnson, 1982). We obtain
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where 8, = ny*[p and o, are the bias and standard deviation of the continuous estimator. Note
that the bias is always positive. The approximations (2) and (3) have been found to quite accurate
for cases of interest in this application. In some implementations of bulk counting, we add to the
calibration sample rather than starting a fresh. The bias and standard deviation in the count that
arise in this case are equivalent to what we would get if we simply bulk count n-p parts.

It is apparent from (2) and (3) that the effectiveness of scale counting depends strongly on
the variability in the individual part weights (quantified by the coefficient of variation of thé
individual part weights y) and the calibration sample size, p. This dependency is shown

pictorially in Figures 2 and 3. Figure 2 plots contours of the percent bias, given in terms of a
percentage of the total number of parts (i.e. 100%° / P ). We see that the percent bias is very small

unless of u is large and p is very small. The bias is at most 0.05% if we assume y < 0.05 and p

> 5.
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Figure 2: Percent Bias of the Estimated Total Number of Parts
The variance of the estimator for the total number of parts, also expressed as a percentage

of n, is a function of just the coefficient of variation and the percent of the total sample used in

the calibration step, i.e. 100p/n. In most applications p<<n. Figure 3 shows contours of the



percent variance 100y° (1+n/ p). The variance can be large, especially if a small calibration

sample size is used.
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Figure 3: Percent Variance of the Estimated Total Number of Parts
Consider an example where the actual number of parts is close to =800, p=25 (i.e. around
3.1% of sample is used to estimate the average part weight), #=.15 and o=.005 (i.e. coefficient
of variation is ¥ =.033). Then, from (2) and (3) the expected bias and standard deviation in the
scale count are approximately .036 and 5.4 units respectively. In this example, the bias is
exceedingly small, but the standard deviation in the scale count is very large, and we will not

consistently be able to accurately count the number of parts.

2.3  Dribble Counting

In dribble counting, the goal is to create a group or groups of n parts rather than to count
the number of parts in a group. This goal is achieved by adding and possibly removing parts
from the scale until the correct count is obtained. An automatic scale counting machine we have
seen used in practice dumps parts onto the scale until it contains close to the correct number of

parts. Then, additional parts are added one at a time until the scale first concludes there are n (or



greater) parts. More general procedures that allow removing parts are also possible. However,
the dribble procedure makes little difference to the statistical properties of the results.

With dribble counting the random variable is the actual number of parts on the scale, while
with bulk counting the random variable is the scale count. We can write the probabilities of
different outcomes in dribble and bulk counting as follows. Assume 7 is the target number of
items for the dribble counting procedure. Let y be the actual number of parts on the scale at the
end of the dribble counting, and let Y be the corresponding random variable. Then the
distribution of Y is discrete and Pr(Y = y) = Pr(sc(y) =n), where sc(y) is the estimated number
of parts we obtain from bulk counting y parts. Similarly, when bulk counting »n parts the
distribution of the scale count is Pr(¥ = y) = Pr(sc() = y). When y is small, dribble counting
and bulk counting are statistically equivalent because both procedures will always yield the
correct result. For large y, dribble counting and bulk counting are approximately equivalent in
terms of their statistical properties because, assuming o is small enough that scale counting a
single item always yields unity, through symmetry Pr(sc(y)=n) = Pr(sc(n)=y). Thus, all the

results from Section 2.2 derived for bulk counting are equally applicable to dribble counting.

3. Effects of Measurement Error, Resolution and the Discretization

In Section 2 we derived approximations for the bias and variability of the scale count
results under the assumption of a perfect measurement device, and ignoring the rounding off of
the count to an integer. In this section, we explore the effect of relaxing those assumptions on the
accuracy of the scale count. First, in Section 3.1 the effect of rounding off to integers is
examined more closely. It is shown that unless the variability in the scale count is very small the

effect of the discretization can be ignored or modeled using a simple approximation. In Sections



3.2 and 3.3 we quantify the effects of measurement error and measurement resolution
respectively. Using these results it is possible determine when the properties of the measurement

device may negatively effect scale counting.

3.1 Effect of Discretization

The scale count is always an integer. That is, the estimated number of items is
round (fn / ,[1) Here we examine the effect of the discretization on the properties of the estimator

f,/ir studied in Section 2. The effect of this discretization is not always intuitive. In some cases
the rounding off greatly reduces the variability, while in most cases the variability increases
slightly.

As suggested in Section 2.2, fn/ 4 is approximately normally distributed with bias and

standard deviation &, and o, respectively i.e. 7,/ ~ N(n+ 3,,0° ) For the discretization, the

magnitude of » makes no difference since we are rounding to the nearest integer. As such, to

explore the effect of the discretization generally we consider round(X), where X ~ N (9,, 0',2),

6, = 8, —round(5,), the non-integer part of the bias, and —.5<6, <.5. We denote the mean and
standard deviation of round(X) as 8, and o, respectively. The resulting bias in any given
problem is then given by round(8,)+6,. In many applications round (8,) is zero. To determine
the effect of the discretization we compare &, and o, with 8, and o,. We may calculate §, and

o, easily from the resulting discretized normal distribution. For example, assume &, equals

zero, then we get o, = 0.03 when o, =0.15, and o, = 0.57 when o, = 0.5. These two examples

illustrate that the effect of the discretization can either increase or decrease the standard

deviation. Figure 4 shows contours of J, and o, when —.5<6,<.5 and 0 <o, <1.
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From Figure 4 we see that for large o, the discretization has no effect on the bias, i.e. §, =
6, , however, when both 8, and o, are small the discretization greatly reduces the bias, i.e. J,
<< .. Similarly, for large o, the discretization results in a slight increase in the standard
deviation but, when both 6, and o, are small the discretization greatly reduces the standard
deviation, i.e. o, << o,.

We may closely approximate the effect of the discretization in most case by modeling
round(f” / ,Zt) as 7, i1+ U, where U is a continuous uniform random variable that ranges between
—1/2 and 1/2. It is well known that E(U) = 0 and Var(U) = 1/12. This approximation for the

rounding is good when the variance of f,,/ 4 is large, say greater than 0.5. Using this
approximation o, = J o’ +1/12.
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Figure 4: Plots of the Mean and Standard Deviation of round(X) as a Function of &, and o,
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Note that from Figure 2 the bias &, is typically very small. Also, from Figure 3, in most
cases of practical interest the magnitude of o, is large relative to the units of measurement and

thus the discretization in the scale counting procedure has little effect. However, there are
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potentially dramatic beneficial effects of discretization when both §, and o, are small. This

property will be exploited in Section 4.3 where we introduce the idea of multiple scale counting.

3.2  Effect of Measurement Error

To derive the expressions (2) and (3) we assumed no measurement error. In most
applications this assumption is not realistic. We now relax the assumption of no measurement
error, and show that the negative effect of measurement error is usually very small, or can be
avoided.

Suppose the measurement bias and standard deviation are J,, and o,, respectively. Then,
assuming normally distributed measurement errors we have u ~ N (u +6,/ p,(pd2 + o',z,,)/p2 )

and f, ~ N (n,u+6m, no’ + o’ ), with 7, and u independent. Applying the general results from

statistical differentials given by (2) we obtain the approximations

2 2
~ |~ nu+ ) po’ +o,
26/ pH+8,[p [l oursy ) and @)

2
. ,w+5m_) (no’z+0'2m_ po-2+0’2m_J
var(./in) = (ﬂ"‘ 5up) v 6,y " (pu+s,)

n

We see from (4) that the additional bias and variability in the estimated total number of
parts introduced by the measurement variability (o,,) is small if o,, is substantially less than o,

and thus that o’ << po’. This assumption implies that the measurement device does not add

much variability over and above the variability in the parts themselves when weighing the

calibration sample. However, the effect of measurement bias can be substantial, mostly because
6,/p may be non-negligible relative to . Substantial measurement bias (i.e. J,, is large) will

have a large negative effect on the results mostly by introducing a bias in the total count.
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However, we can avoid the problem by eliminating measurement bias through weighing both a
container and the parts in a container, and calculating the weight of the parts as the difference
between the two observed weights. This procedure is used in the motivating example as
illustrated in Figure 1. Using differencing will eliminate the measurement bias, at the expense of
a small amount of added variability, so long as the amount of bias does not depend on the weight

of the part weighed.

3.3  Effect of Measurement Resolution

All the previous analysis has ignored the possible effect of poor measurement resolution.
Measurement resolution is defined by the small unit of measurement. For example, we may
measure weights to the nearest two grams. Then, any collection of units that actually weighed
between 99 and 101 grams would yield a weight of 100 grams. In situations where the
measurement unit is small compared with the expected uncertainty due to measurement
variability the measurement resolution has little effect. However, when the measurement unit is
greater than say o, resolution can have a substantial negative effect on scale counting. We
quantify the resolution of a measurement device, denoted r, using one over the scale’s minimum
discrimination weight (or measurement unit). Then, ignoring measurement error, a measurement
device with resolution r that weighs a part of weight w yields the result round(rw)/r. For
example, if a scale has a capacity of 20 kilograms and is capable of 10000 divisions, the scale’s
minimum discrimination is 2 grams and r is 1/2 (when parts are weighed in grams). Similarly,
for example, » =100 means that the measurement device is capable of providing around 2
decimal points.

To determine the effect of measurement resolution on the results of scale count we need to

know how the resolution effects the distribution of f"/ 4. We can approximate the effect of the
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rounding due to the measurement resolution by modeling round(X) as X +U, where U is a
continuous uniform random variable that ranges between —1/2 and 1/2. This is the same
approximation used in Section 3.1. Using our definition of , and assuming no measurement

error we can write

roufﬁi_I-N (rny, nric? )]/r _ p[N(rn,u, nric® )+ U]

flu = = . 5
& round [N (rp,u, pric® )]/pr N (rp,u, pro’ )+ U )
Applying the method of statistical differentials, as in (2) and (3), to the ratio (5) we get
o f~ o’ 1 )
E(¢ = (1 + + d 6
(n/.u) n pﬂz 12p2r2,u2) an (6)

. o’ 1 no? no)
Var(t = (—
ar(n//‘) n 7 + 12024 + il + 12p2r2,u2)

In any application we can quantify the expected negative effect of poor resolution on the
bias and variability of the count by comparing (6) with (2) and (3). However, in any application
the effect of poor measurement resolution can be larger than the expected difference if rup
happens to lie halfway between two integers. This is especially important if rup is small. It is
unfortunately not possible to predict how often this worst case would be achieved since we have
no control over u.

The differences between the expressions given by (6) and those given by (2) and (3), where

we ignored the effect of measurement resolution, are the terms that include the parameter .

2
5 . Also, typically ncri > %. Thus, to
PH

n 1
Since generally n >> p, we know >>
! g y p 12p2r2,u2 12nr2,u

bound the effect of the measurement resolution on both the bias and variability of the count we

n
need to compare —5 and

——— . Limiting the variance and bias in the scale count
pu 12p°r'u

introduced by poor resolution to be smaller (say less than half the size) than that introduced by
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errors in the estimation of the average part weight seems a reasonable goal. With that goal in

2
mind we want the measurement resolution to be good enough so that (r,u)z > Z-EI— (g) or
14

equivalently » > 2
a Yr> iz

In the motivating example, the minimum discrimination of the scales used is two grams.
Thus, when measuring parts in grams the measurement resolution r is 0.5. The calibration step
uses p equal to 25 parts. Assuming a coefficient of variation equal to 0.025 the rule of thumb
introduced in the previous paragraph implies we want ru > 4.6, i.e. the average weight of
individual parts should be greater than around 9 grams. Otherwise the effect of measurement

resolution on the scale count results is substantial.

4. Implementation of Scale Counting

This section addresses some issues in the practical implementation of scale counting. First,
as discussed in Section 2, the coefficient of variation of the individual part weights is critical in
understanding the effectiveness of scale counting, but is not estimated using the standard
procedures. In Section 4.1 we discuss alternative strategies for estimating the coefficient of
variation. Second, in Section 4.2, we explore how mistakes in the hand count of the calibration
sample can influence the scale count. In addition, we suggest a simple checking procedure that
can quickly verify the hand count. Third, in Section 4.3, we consider how different consequences
of over or under estimating the actual number of parts when scale counting can be
accommodated by adjusting the target. Finally, Section 4.4 proposes a new scale counting
procedure that uses multiple scale counts. Multiple scale counting is shown, in some

circumstances, to greatly reduce the bias and variability in the final count while slightly
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increasing the complexity of the procedure. Guidelines are provided showing when multiple

scale counting should be considered.

4.1 Estimating the Variability of Individual Part Weights

As shown in Section 2 the bias and variability of the scale count are highly dependent on
the coefficient of variation of the individual part weights ¥ =0/ 1. With the standard calibration
procedure, as described in Section 2.1, a single group of parts is weighed. However, to estimate
the variability of the individual weights we must weight a number of parts (or groups of parts)
separately. One possible approach to obtaining an estimation of ¥ is to change the calibration
step so that each of the p parts is weighed individually. This small change in procedure would
require somewhat more effort, but would not effect the precision of the estimate for the average
part weight if there is no measurement error or resolution problems. However, this may not be a
good idea since when weighing individual parts the effect of poor measurement resolution and
measurement error will be more pronounced than when weighing a group of p parts. Also, there
is probably no need to re-estimate y as often u since the coefficient of variation is not needed to
determine a scale counting result. The value of y relevant more from a planning perspective
when making decisions such as how large a calibration sample is necessary to ensure the desired
count accuracy. Knowing » would allow derivation of a confidence interval for the scale count
result. Generally what is needed is some idea of the magnitude of y for different parts and lots
of the same parts. As such, we recommend a separate study to estimate y . For this separate study
we would weigh a number of parts individually, and estimate the mean and standard deviation
(and thus y) using the sample mean and standard deviation of the observed weights. If the

results in Sections 3.2 and 3.3 suggest there will be a substantial negative effect due to
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measurement problems when weighing individual parts a possibility is to estimate the variability
in individual part weights by weighting many groups of parts. The size of the groups could be

chosen so as to reduce the measurement effects to manageable levels.

4.2 Checking the Calibration Sample Size

The results derived in Sections 2 and 3 assume no error is made in the hand-counting of the
calibration sample size. An error in the hand-counting can lead to a substantial bias in the scale-
counting procedure. For example, assume the calibration sample was suppose to be 25 parts but
is actually only 24 parts, then using (2) the bias in the count is around 4%. A larger calibration
sample reduces the uncertainty of the estimate for the average part weight but also increases the
likelihood of miscounting. Thus, there is an inherent tradeoff. Often in practice procedures are
employed that allow a check of the hand-count of the number parts in the calibration sample.

One sample size checking procedure is to add a specified number of additional parts to the
scale and verify that the scale count matches the expected total. For instance, in our example
application the calibration sample size is intended to be p = 25. To check the count the operator
adds an another 15 parts and verifies that the scale count reads 40. To assess this hand count
checking procedure in the general case we denote the number of additional parts g, and the actual
number of parts used in the calibration step as p". Using the approximations provided by

statistical differentials and some algebra it is possible to show that the distribution of calculated

2
count is approximately normally distributed with mean p+ P ? (1+ /4 ,) and variance
p p

2,2
gEL(1+ q‘ J , where y is the coefficient of variation for the weights of the individual parts.
p

(»)

We want to choose g large enough so that if p° does not equal the desired amount, i.e. p’ #p,
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the resulting scale count will likely not yield p + ¢ . Figure 5 shows contours of minimum value
of g needed so that 95% of the time the checking procedure would identify a calibration sample

whose size differs from the desired number p.
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Figure 5: Minimum Additional Size Sample Needed to Check Hand Count
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4.3 Asymmetric Loss Functions

Scale counting will not always yield the correct count. The estimated number of parts may
be less or greater than the actual number of parts on the scale. The actual number could be either
over or under estimated. In some applications of scale counting the consequences of making a
mistake may depend on whether the actual number of parts was overestimated or underestimated.
This seems especially relevant for dribble counting. For example, in our motivating example
packages of 100 or more scale count parts are sent to customers. In this application sending too
few parts is a more severe problem than sending too many parts. Similarly, in bulk counting
incorrect estimates of the number of parts in a group may result in errors in the inventory count
with overestimates and underestimates perhaps not being equally undesirable.

Unequal consequences for over and under estimation suggest an asymmetric loss function.

As a result, when dribble counting it often makes sense to aim for more parts than are actually
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needed to make sure at least the desired number of parts are obtained. Similarly in bulk count we
may wish to purposely under report the observed scale count. This idea is employed in our
motivating example where the costs associated with picking too few parts is greater than the cost
of too many parts. As a result, in the example, specification limits on the actual number of parts
picked are set at » and » plus 4%, and we aim to count » plus 2%. In other words, if 500 parts are
needed the dribble counting target is set at 510 parts.

The amount by which the target should exceed the actually desired number of parts
depends on the variability and bias in the dribble count, and the level of protection against too
few parts desired. As shown in Section 2.2 the bias and variability in turn depend mostly on the
coefficient of variation of the individual part weights, and the sample size used in the calibration
step.

As an example, suppose p = 25 and we aim for 2% over the actual target. Figure 6 explores
the effect of the coefficient of variation, and changing either the aimed for percent over target, or
the calibration sample size on the chance the dribble counting will yield less than » parts. We
focus on the problem of too few parts since in our application this is the major concern. The
probability of too few parts are determined using (2), (3) and a normal approximation. Figure 6 is
based on the assumption that » = 500 parts are desired, thought the results are not very
dependent on the value for n. Notice the strong dependency on the coefficient of variation of the

individual part weights.
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4.4 Multiple Scale Counting

As shown in Section 3.1, the rounding off to an integer number of parts usually increases
the variance in the scale count by approximately 1/12. However, when the variance (and bias) in
the continuous count is small, say less than around 0.2, the discretization can reduce the
variability (and bias) in the integer count dramatically. In most scale counting applications this
is not important since the variability in the continuous count is relatively large. However, this
large potential reduction in variability suggests an alternative strategy using multiple scale
counts. Multiple scale counting is useful in situations where obtaining an accurate count is
essential, yet the number of parts needed is too large to reliably count by hand, and automatic
counting is not feasible. The idea is simple. To scale count » parts, we divide the » parts into &
subgroups of around m parts each, where km = n. Then, rather than scale count all » parts at
once we scale count each subgroup of parts separately and combine the results. By choosing m
sufficiently small we can obtain count results that are extremely accurate. Of course there is a
tradeoff between accuracy and effort required since with multiple scale counting & separate scale

counts are needed and their results need to be combined.
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To see that the use of multiple scaling counting must be useful in some circumstances
consider two extremes: scale count all items together in one group (standard scale counting), and
scale count each item individually. The latter approach is, of course, equivalent to individually
counting the items which we wanted to avoid due to expense. It is clear that unless there is
extremely large variability in the individual part weights that using the latter method will always
result in the correct estimate for the total number of items, i.e. the method will have no
estimation bias or variability. The former approach on the other hand, as we saw in Section 2,
could have substantial bias and variability. Is there some compromise between these two
extremes where the benefits of reducing estimation variability out weighs the disadvantage of the
additional time and effort?

When using multiple scale counts, the estimate of the overall number of items would be

given by

ﬁmull = Zj=1round(img)/;l) (6)

where 7, . is the observed weight of all the m items in the j™ subgroup, x is the estimated

m(Jj)
average part weight obtained from the calibration step, and mk=n. Note that z is the same for

all subgroups since the calibration step is performed only once. When all items are weighed

together, as in standard scale counting, the estimate for the total number of items is given by (1).
The estimators corresponding to (6) and (1) denoted Z;lround G’” 0 / [1) and round(fn / Zz) can

be very different due to the rounding. Usually the latter is a better estimator since it has less
variability. But in some circumstances, i.e. when m is small, the former has much less variability

and bias than the latter estimator.
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Obtaining the distribution of the estimator Z;; round (i,,

4

@ / ,&) is difficult since we need to

consider the distribution of the estimator 7,/ for each individual scale count and how the
individual results could be combined. Some combinatorial algorithms to determine the
distribution when 7 is relatively small have been developed by the authors.

As an example, consider a situation where we wish to scale count approximately 2000
items, the coefficient of variation of the individual part weights is approximately .01, and we use
a calibration sample of size p=25. Figure 7 plots the standard deviation of the final count as a
function of the number of subgroups we employ. We see that the standard deviation in the total
count is quite large when we perform a single scale count of all the items. We obtain a
substantial reduction in uncertainty in the final count by using as few as 20 scale counts of

around 100 items each.
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Figure 7: Expected Standard Deviation in Count with Multiple Scale Counting

n=2000, of u=.01, p=25

Although the distribution of ZL round (fm 0 / [1) is very complex, we can derive a simple

rule of thumb to determine when multiple scale counting could be beneficial. The rule of thumb

is derived from Figure 4 and an approximation for the variance of the scale count given by either
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expression (3), (4), (5) or some combination of these expressions. In Figure 4 we see that the
discretization reduces the variability in the count whenever Var(f/ [t)<0.22=0.04. Combining this

result with the approximation given by (3) suggests that multiple scale counting with subgroups

2
of size at most / ZI; 3 +£4— —g will reduce the variability in the total count. For example, say
/4

p=25 and of u=.01 the rule of thumb suggests that to be effective the subgroup size should be
less than around 88 units. This matches closely the results given by Figure 7. Figure 8 plots
contours of the maximum subgroup size suggested by the above rule of thumb. Figure 8 can be

used to determine if multiple scale counting can be economically justified in any given example

application.
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Figure 8: Contours showing the Maximum Subgroup Size for Effective Multiple Scale Counting
One potential problem with multiple scale counting is that the incorrect number of
subgroups will be used. To avoid this problem we recommend finishing the multiple scale count
with a scale count of all subgroups together. If the result of all subgroups together is close to the

desired value this verifies that the correct number of subgroups was used.
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5. Discussion and Recommendations

The results derived in this article suggest that scale counting can be an effective method of
counting small parts. However, the accuracy of the count depends critically on a number of
factors, including the sample size used to estimate the average part weight, the number of part we
wish to count, and the coefficient of variation of the individual part weights. The effects of these
factors are approximated in Section 2. The effect of poor measurement resolution and
measurement variability can have a substantial negative effect on scale counting. However, the
results show that for reasonably good measurement devices the negative effect of measurement
variability and resolution is small. Measurement bias, on the other hand, could have a substantial
effect, but can be avoided using differencing. Finally, the discretization used to obtain integer
estimates of the count usually has little effect, but can be very beneficial in eliminating the bias
and variability in the total count estimate in certain circumstances.

One important aspect of the results is that the standard deviation of the weights of the
individual parts plays an important role in determining whether scale counting will be successful.
However, estimation of this standard deviation is not possible with the current standard practice
since in the calibration step p parts are weighed together. To estimate the standard deviation of
the part weights individual parts or groups of parts must be weighed separately. This suggests
that separate studies are needed in each application to determine how best to conduct the scale

counting.
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