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ABSTRACT

Most of the classical literature on linear hypothesis testing assumes that the
errors are normally distributed. In situations where the distribution of the
error variable has heavier tails than the normal, several authors have studied
the problem using other distributions such as the multivariate-t distribution.
In this paper, we consider linear hypothesis testing problems in which the
error variable follows the generalized multivariate modified Bessel distribution.
This distribution is a much more general distribution that includes both the
multivariate normal and multivariate-t as special cases.
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1 INTRODUCTION

Consider the general linear regression model given by
Y=XB+e (1)

where Y is the n X 1 observed response vector, X is the n X p matrix of fixed predictor

variables, B is the p x 1 parameter vector, and € is the n x 1 error vector. Most of
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the classical literature on this model assumes that € ~ N(0,02I,) where I, denotes
the n x n identity matrix. However, there exists numerous practical situations where
this assumption may not be suitable. For instance, in quality control studies of
gage and measurement system capability, the random error component (consisting
of differences among instruments, differences among operators, instability over time,
environmental changes, different setups, etc.) of the measurement error may have
a distribution with heavier tails than the traditionally-used normal distribution. In
these kinds of situations, it is more appropriate to use a thicker-tailed alternative like
the multivariate-t distribution (cf. Blattberg and Gonedes [1], Zellner [2], Sutradhar
and Ali [3], and Sutradhar [4] among others). In particular, Zellner [2] considered
the renowned “market-model” in which the errors associated with the linear market
model for stock data have a common variance with an inverted gamma density. Other
authors have used the assumption of spherical errors (cf. Dawid [5], Jammalamadaka
et al. [6], and Chib et al. [7] to mention a few). Box and Tiao [8] have explored
the consequences of non-normality of the error distribution by assuming a class of
symmetric power distributions such as the exponential power distributon.

Generally, a broader assumption of mixture distributions can be employed. One
such choice is the generalized multivariate modified Bessel distribution considered by
Thabane and Haq [9]. More specifically, we assume that the errors € = (e, ..., €)'
have joint probability density function (pdf) given by
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where K, (z) denotes the modified Bessel function of the third kind of order v (cf.
Gradshteyn and Ryzhik [10], p. 970) and the domain of the shape parameters (1, A, v)

is given by:

>0, A>0 for v <0,



»>0,A>0 for v=0,
v>0,A>0 for v>0. (3)

It is to be noted that the pdf (2) is: (i) a member of the spherically symmetric class
of distributions (cf. Fang et al. [11]), and (ii) a special case of the symmetric multi-
variate hyperbolic distributions of Barndorff-Nielsen [12]. Moreover, the distribution
of the errors (e€j,...,€,) can be expressed as a mixture of the multivariate normal
distribution with the generalized inverse Gaussian pdf as follows (cf. Thabane and

Haq [9] for further details):

plery.... €)= /p(el,...,en]'r)p(r)dr,
0

where
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The model described by (2) would be applicable in various practical situations
where the error distribution is symmetric, but with heavier tails than the normal
distribution. This model also has added advantage because of its rich parametric
structure, as different values of (1, A,v) correspond to different model choices. The
great flexibility in the choice of these parameters allows us to study how our inferences
are affected by changes in model assumptions. This is normally referred to as inference
robustness (cf. Box and Tiao [8]). Table 1 provides some special cases of the model
for different values of (1, A, v).

As (2) is a member of the spherically symmetric class of distributions, we would ex-
pect inferences concerning linear combinations of the regression parameters to remain
robust under the null hypothesis (cf. Giri [13]). Sutradhar [4] made this observation
for the multivariate-t model, which is a special case of (2). However, we would expect

the non-null distribution of the corresponding test statistic to be different from that
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obtained under either the normal or t-models. In the following section, we derive the
non-null distribution of the test statistic under the generalized multivariate modified
Bessel distribution. The derived distribution is then used to calculate powers for sev-
eral different choices of error distributions in the simple linear regression model. We
also obtain a confidence region for the regression parameter estimates. Concluding

remarks are given in Section 3.

2 THE NON-NULL DISTRIBUTION OF THE
TEST STATISTIC

Returning to the linear model (1), consider the problem of testing
Hy:CB=0 versus H,:CB#0 (5)

where C is an m X p matrix of known elements with rank(C)=q. Let r = p — q.

It is well known that when € ~ N(0,021,), one tests (5) by using the classical test

statistic
Sy — 51
T= A
where
S, =Y'(I, - X(X'X)"'X")Y/o? (6)
and

S, =Y'(I, — 2(2'2)'Z")Y/o>.

In the above, S; is the residual sum of squares of the full model (1), and S is the

residual sum of squares of the reduced model
E(Y) = Z~, (7)

which is obtained from (1) under the restriction C8 = 0. In (7), Z is an n x r design

matrix and 4 is an r X 1 parameter vector. We now present the following result:



Theorem 1 Consider the linear model (1) and the test defined by (5). Let
8 =(XB) (I, - 2(2'2)*2)XB /> (8)

If the error vector € has pdf (2), then the pdf of the test statistic T for testing Hy

versus H, is given by

( +a=) 152 ir(% +j) K,; (\/m
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Proof: If € has pdf (2), the conditional distribution of € given 7, where 7 has pdf
(4), is normal with mean vector 0 and covariance matrix 702I,. Therefore, given 7,
it is well known that F = (n — p)T'/q has a non-central F-distribution with ¢ and
n — p degrees of freedom and non-centrality parameter 6/7. That is, the conditional

pdf of F given 7 has the form (cf. Anderson [14], p. 174):

g (n —p)7* exp{ }_fg-'_2 %0 I‘(P-gi+1) ( &qf )j.
h(flr) = I‘(ﬂ)(n—p+qf) j=0j!]_"($2l+j) 2r(n—p+4qf)/) ’ f>0.

(10)

Integration with respect to 7 subsequently yields

1l
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Applying formula 9 of Gradshteyn and Ryzhik [10], p. 340, we get
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and substituting (12) back into (11) gives rise to the marginal pdf of F:

r
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Finally, by making a simple transformation, one obtains the distribution of T" as given

in the theorem. O

We observe that (13) is the pdf of the non-central F-Bessel distribution with
parameters (g,n — p,é%,%, A, v). Thabane and Drekic [15] first introduced this dis-
tribution and have studied some of its statistical properties. Furthermore, if the null
hypothesis is true, the full model (1) corresponds with the reduced model (7). This
implies 62 = 0 from (8), and it is easily verified via direct substitution into (13) that
the distribution of F' simplifies to the central F-distribution with ¢ and n — p degrees
of freedom (cf. Evans et al. [16], p. 91). We point out that this is identical to the
null distribution obtained under the classical multivariate normal model (cf. Draper

and Smith [17]) as well as the multivariate ¢ model (cf. Sutradhar [4]).

2.1 A Special Case

Consider the special case of C = [0* | I,], where 0* is a ¢ X (p — ¢) matrix of zeros,
B = (Bo,B1,---,Pp-1), and design matrix given by

1 231 -+ Zp-n
1 22 -+ T(p-1)2

X =

1 Z1n o0 Z(p-1)n
Testing the null hypothesis Hy : CB = 0 is equivalent to testing Ho : fp—q = -++ =
Bp-1 = 0. Clearly, g=rank(C). Also, note that the reduced design matrix Z under

this restriction becomes an n x (p — q) matrix. If we let p = 2 (i.e., the simple linear

regression model), then C = [0 1] with g=rank(C)=1. For this particular case, the



corresponding non-centrality parameter in Theorem 1 reduces to

5 = B2 (z; — 7))o
j=1

It is of great interest to investigate the power of this test under the generalized
multivariate modified Bessel model. Tables 2 and 3 give power calculations for p = 2
at levels of significance a = 0.05 and o = 0.01 respectively, and various values of n
and ¢%. The calculations are conducted for several different choices of (3, A, v), cor-
responding to varying model assumptions. Among the more heavily-tailed variants
considered are the multivariate ¢ (the (5,0,-2.5) column), Bessel (the (0,2,2) column),
Pearson Type VII (the (2,0,-1) column), and Cauchy (the (1,0,-0.5) column) distribu-
tions. All calculations were carried out using the computational package Mathematica.

It is interesting to observe from the tables that in most cases: (i) the powers are
generally lower than the powers obtained under the normal model, and (ii) differences
become more pronounced for larger values of §2. This suggests that if the errors are
truly non-normal, then power calculations of T based on the classical normal model
would generally result in an overestimation of the true power, particularly if the

non-centrality parameter §? is large.

2.2 Confidence Regions For Regression Parameter Estimates

Suppose we wish to construct a confidence ellipsoid for 3. Let B = (X' X)1X'Y be
the vector of least-squares estimators. Under the assumed model (2), it is readily ver-
ified from Thabane and Haq [9] that B = B,..., Bp)' has a generalized multivariate
modified Bessel distribution with pdf

, X Xk (3)F

p(B) = L

(2n0?)5 K, (\/W) {1 + Yo?
X Ku (\/w [1 + E}ﬁ(ﬁ _BYX'X(B - B)]) . —wo<fj<oo Vi

(B-B)X'X(B - ﬁ)} ‘

Furthermore, conditional on 7 where 7 has pdf (4), ﬁ is normally distributed with

mean vector @ and covariance matrix 70%(X X)! (cf. Thabane and Haq [9] for
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details). Therefore, ,
(B-p) XX (B-B)

T0?

Q1=

~ Xk
That is, Q; has a chi-squared distribution with p degrees of freedom. Moreover,

conditional on 7, Q2 = S1/70? has a chi-squared distribution with n — p degrees of

freedom where S; is given by (6). It then follows that the quantity

Q/p _(n-p)(B-B) XX(B-8)
Q2/(n - p) pSy
Note that this result is independent of 7. Thus, the standard 100(1 — )% confidence

~ Fp,n—p'

region for B given by

(B ”ﬂ),X’X (ﬁ “ﬁ) S npflpr,n—p,a

remains robust under this model. In the above, F,,_pq is the upper a-point of a

central F-distribution with p and n — p degrees of freedom.

3 CONCLUDING REMARKS

In this paper, we have considered the linear model (1) and the general linear hy-
pothesis testing problem defined by (5) under the assumption that the errors follow
the generalized multivariate modified Bessel distribution. We have derived the non-
null distribution of the test statistic for testing Ho : C8 = O against the alternative
H, : CB # 0. This distribution was then used to calculate powers for the special
case of the simple linear regression model. Several different error distributions were
considered, including the normal and ¢ distributions. Although inferences under the
generalized multivariate modified Bessel model remain robust, our analysis does in-
dicate that an incorrect normal model assumption for the errors typically leads to an

overestimation of the power.
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Table 1: Special Cases of the Generalized Multivariate Modified Bessel

Distribution

Distribution Values of (1, A, v)
Multivariate Modified Bessel |4 >0,A>0,v > 5
Pearson Type VII v>0,A=0,v=—(M-5), M >3,
Multivariate-t Type v>0,A=0,v=-3,7r>0
Multivariate-t Y=r,A=0,v=-5r>0
Mean-Variance Representation | =r, A=0,v=—5,7>2

of Multivariate-¢
Multivariate Normal Yp=r,A=0v=-L,r =00
Multivariate Cauchy Yp=1A=0,v=—3
Multivariate Bessel p=0,A>0,vr>0
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Table 2: Powers of T for p =2, a =0.05

(¢1Aau)
n §2  Normal (5,0,=25) & L0) (0,42 (50,-1) (LLD (L,0,-0.5)
5 0.5 0.0806 0.0806 0.0784  0.0798 0.0806 0.0714 0.0805
1.0 0.1113 0.1111 0.1067  0.1080 0.1108 0.0926 0.1099
2.0 0.1721 0.1707 0.1614 0.1604 0.1682 0.1339 0.1635
4.0 0.2888 0.2803 0.2609 0.2515 0.2680 0.2097 0.2498
8.0 0.4900 0.4553 0.4188 0.3943 0.4150 0.3353 0.3666
16.0 0.7550 0.6702 0.6198 0.5841 0.5860 0.5118 0.4964
10 0.5 0.0960 0.0962 0.0929  0.0948 0.0964 0.0822 0.0965
1.0 0.1433 0.1435 0.1366 0.1375 0.1432 0.1149 0.1416
2.0 0.2390 0.2363 0.2211  0.2155 0.2305 0.1781 0.2198
4.0 0.4211 0.3990 0.3667  0.3455 0.3702 0.2902 0.3326
8.0 0.6985 0.6207 0.5688 0.5319 0.5448 0.4599 0.4642
16.0 0.9367 0.8238 0.7751  0.7417 0.7100 0.6648 0.5913
15 0.5 0.1006 0.1009 0.0973  0.0992 0.1011 0.0855 0.1012
1.0 0.1529 0.1531 0.1455  0.1459 0.1526 0.1215 0.1506
2.0 0.2587 0.2550 0.2379  0.2306 0.2475 0.1907 0.2343
4.0 0.4571 0.4294 0.3937  0.3696 0.3949 0.3115 0.3516
8.0 0.7438 0.6555 0.6017 0.5634 0.5716 0.4894 0.4842
16.0 0.9582 0.8485 0.8028 0.7719 0.7320 0.6959 0.6091
20 0.5 0.1028 0.1031 0.0994 0.1013 0.1034 0.0870 0.1034
1.0 0.1575 0.1577 0.1496  0.1499 0.1571 0.1246 0.1547
2.0 0.2679 0.2636 0.2457  0.2375 0.2553 0.1966 0.2408
40 04734  0.4420 04058 0.3805 04057  0.3211  0.3599
8.0 0.7627 0.6701 0.6157  0.5770 0.5830 0.5023 0.4927
16.0 0.9655 0.8582 0.8141  0.7843 0.7411 0.7090 0.6166
25 0.5 0.1041 0.1044 0.1006 0.1025 0.1047 0.0879 0.1047
1.0 0.1601 0.1603 0.1521  0.1521 0.1596 0.1263 0.1571
2.0 0.2732  0.2686 02501 0.2415  0.2597  0.1999  0.2445
. 4.0 0.4826 0.4505 0.4126  0.3866 0.4118 0.3266 0.3645
8.0 0.7730 0.6781 0.6235 0.5846 0.5892 0.5095 0.4974
16.0 0.9691 0.8633 0.8201 0.7911 0.7460 0.7161 0.6206
30 0.5 0.1049 0.1053 0.1013  0.1033 0.1055 0.0885 0.1056
1.0 0.1618 0.1620 0.1536  0.1536 0.1613 0.1275 0.1586
2.0 0.2767 0.2718 0.2530  0.2441 0.2626 0.2021 0.2469
4.0 0.4886 0.4554 0.4169  0.3905 0.4157 0.3301 0.3675
8.0 0.7794 0.6832 0.6284 0.5895 0.5932 0.5141 0.5003
16.0 0.9712 0.8665 0.8239  0.7953 0.7490 0.7206 0.6232
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Table 3: Powers of T for p =2, a = 0.01

(¥, A v)
n §2 Normal (5,0,-2.5) (2,1,0) (0,2,2) (2,0,-1) (1,1,1) (1,0,-0.5)
5 0.5 0.0172 0.0173 0.0168  0.0175 0.0174 0.0151 0.0175
1.0 0.0248 0.0250 0.0240  0.0253 0.0253 0.0205 0.0258
2.0 0.0408 0.0415 0.0394  0.0416 0.0424 0.0319 0.0433
4.0 0.0757 0.0773 0.0725  0.0747 0.0787 0.0562 0.0795
8.0 0.1519 0.1526 0.1411  0.1388 0.1514 0.1066 0.1467
16.0 0.3077 0.2950 0.2684  0.2527 0.2771 0.2022 0.2516
10 0.5 0.0236 0.0240 0.0231  0.0250 0.0246 0.0198 0.0255
1.0 0.0393 0.0408 0.0389  0.0424 0.0427 0.0314 0.0451
2.0 0.0764 0.0806 0.0761  0.0798 0.0850 0.0582 0.0887
4.0 0.1672 0.1736 0.1601  0.1561 0.1759 0.1180 0.1719
8.0 0.3758 0.3584 0.3213  0.2960 0.3320 0.2363 0.2958
16.0 0.7204 0.6164 0.5534 0.5081 0.5274 0.4269 0.4393
15 0.5 0.0261 0.0267 0.0257  0.0280 0.0275 0.0217 0.0287
1.0 0.0452 0.0473 0.0450  0.0490 0.0498 0.0358 0.0529
2.0 0.0913 0.0968 0.0910  0.0940 0.1020 0.0687 0.1056
4.0 0.2053 0.2110 0.1930  0.1848 0.2102 0.1412 0.2010
8.0 0.4583 0.4238 0.3779  0.3453 0.3828 0.2792 0.3337
16.0 0.8167 0.6867 0.6209 0.5740 0.5803 0.4881 0.4780
20 0.5 0.0274 0.0281 0.0270  0.0295 0.0290 0.0226 0.0304
1.0 0.0483 0.0506 0.0482  0.0523 0.0535 0.0381 0.0568
2.0 0.0990 0.1051 0.0986  0.1011 0.1105 0.0741 0.1139
4.0 0.2248 0.2294 0.2091  0.1986 0.2264 0.1527 0.2143
8.0 0.4972 0.4532 0.4037  0.3681 0.4051 0.2993 0.3500
16.0 0.8527 0.7148 0.6489  0.6023 0.6019 0.5149 0.4940
25 0.5 0.0282 0.0289 0.0278  0.0304 0.0299 0.0232 0.0314
1.0 0.0502 0.0526 0.0501  0.0543 0.0557 0.0395 0.0592
2.0 0.1037 0.1101 0.1032  0.1054 0.1156 0.0773 0.1187
4.0 0.2364 0.2403 0.2185  0.2067 0.2359 0.1594 0.2219
8.0 0.56195 0.4698 0.4183 0.3811 0.4176 0.3108 0.3591
16.0 0.8709 0.7297 0.6642 0.6180 0.6136 0.5299 0.5027
30 0.5 0.0287 0.0295 0.0283 0.0310 0.0305 0.0236 0.0321
1.0 0.0514 0.0540 0.0514  0.0556 0.0572 0.0404 0.0608
2.0 0.1069 0.1134 0.1062  0.1082 0.1190 0.0795 0.1219
4.0 0.2442 0.2474 0.2247  0.2120 0.2420 0.1639 0.2268
8.0 0.5339 0.4804 0.4276  0.3895 0.4255 0.3183 0.3649
16.0 0.8817 0.7389 0.6737  0.6278 0.6209 0.5394 0.5082
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