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Cell-Based Analysis of High Throughput Screening Data for Drug Discovery 
 

Abstract 

 

One of the first steps of drug discovery is finding chemical compounds with some activity for the chosen 

biological target. This search is often done by randomly screening very large numbers of compounds, 

thousands to hundreds of thousands.  In contrast, we propose a cell-based analysis method that guides 

selection of compounds for screening.  Starting with a screen of a relatively small subset of compounds, 

we identify small regions in a high-dimensional descriptor space that have a high proportion of active 

compounds. We use these regions to score and prioritize untested compounds for further screening.  Our 

method is capable of finding multiple active regions and increasing the rate of finding active compounds 

many times over random screening.  

 

KEY WORDS: Uniform coverage designs, High-dimensional space, Multiple mechanisms, Recursive 

partitioning, Classification, Scoring. 

 

1. Background 

 

In screening for drug discovery, thousands to hundreds of thousands of chemical compounds are screened 

in the hope of discovering biologically active compounds. The evaluation of a single compound can cost 

from a few cents to several dollars depending upon the complexity of the assay. At the next stage of drug 

development, the active compounds or “hits” found by screening are typically modified atom-by-atom to 

improve activity and other important characteristics, such as tissue distribution, plasma half-life, toxicity, 

etc.  The aim of the initial screen, then, is to find active compounds of several structurally different 

chemical classes, to provide a variety of starting points for subsequent optimization.  

 

In addition to finding active compounds among those screened, it would be very useful to know how to 

find additional active compounds without having to screen each compound individually.  We might 

initially screen part of a collection and use these data to predict which compounds in the remainder of the 

collection are likely to be active.  Several cycles of screening are expected to be more efficient than 

screening all the compounds in a large collection (Jones-Hertzog et al. 2000).  To do this we need to 

analyze the initial high throughput screening (HTS) data to find association rules linking biological 

activity (response variable) to specific values of the compound descriptors (explanatory variables).   
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The first step in the process of determining features of compounds that are important for biological 

activity is describing the molecules in a relevant, quantitative manner.  A drug-like molecule is a small 

three-dimensional object that is often drawn as a two-dimensional structure. This two dimensional graph 

is subject to mathematical analysis and can give rise to numerical descriptors to characterize the molecule. 

Molecular weight is one such descriptor. There are many more. Ideally, the descriptors will contain 

relevant information and be few in number so that the subsequent analysis will not be too complex. To 

exemplify our methods we use a system of 67 BCUT descriptors (Section 2.3).   

 
The relationship between descriptors and activity is extremely complex for HTS screening data, and there 

are several challenges in statistical modeling.  First, the potent compounds of different chemical classes 

may be acting in different ways.  Different mechanisms might require different sets of descriptors within 

particular regions (of the descriptor space) to operate, and a single mathematical model is unlikely to 

work well for all mechanisms. Also, activity may be high for only very localized regions.   Second, even 

though a design or screen may include thousands of compounds, it will usually have relatively few active 

compounds.  The scarcity of active compounds makes identifying these small regions difficult.  Third, 

there are many descriptors (i.e., curse of dimensionality) and they are often highly correlated. This is the 

case for BCUT numbers.  Fourth, many HTS data sets have substantial measurement error.  Because of 

some or all of these complexities, common statistical analysis methods such as linear regression models, 

generalized additive models, and neural nets are ineffective in handling these analysis problems (Young 

and Hawkins, 1998) and tend to give low accuracy in classifying molecules as active.   

 

The rest of the paper is organized as follows.  In Section 2 we describe two motivating data sets.  Section 

3 expands on the difficulties that current methods face with complex structure-activity relationships.  In 

Section 4 we present a cell-based analysis method that overcomes these problems.  It divides a high-

dimensional (descriptor) space into many small, low-dimensional cells, scores cells according to the 

activities of their compounds, and uses the scores to prioritize further compounds for screening.  This 

analysis method is highly related to the uniform cell coverage approach described by Lam et al. (2001) for 

selecting molecules for screening.  Thus, the earlier work and the current article together provide an 

overall strategy for design and analysis of HTS data.  In Section 5 we evaluate our analysis approach on 

the two data sets and show that it can improve prediction accuracy compared with recursive partitioning 

(trees), one of the few successful methods for HTS structure-activity data.    Finally, Section 6 makes 

some conclusions and discusses further work. 
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2. Motivating Applications 

 

The new method described here can be applied to both continuous and discrete responses.  For 

illustration, a data set with continuous activity outcome (Core98) and a data set with binary activity 

outcome (NCI) are included. 

 

2.1. Core98 Molecular Data (Continuous Response) 

Core98 is a chemical data set from the GlaxoSmithKline collection.  Activity is available for 23,056 

compounds.  The response is % Inhibition for a given biological target and theoretically should range 

from 0 to 100%, with more potent compounds having higher scores. Biological and assay variations can 

give rise to observations outside the 0-100% range. Typically, only about 0.5% to 2% of screened 

compounds are rated as potent.  

 

2.2. NCI Molecular Data (Binary Response) 

An AIDS antiviral screen chemical database can be obtained from the National Cancer Institute (NCI) 

web site http://dtp.nci.nih.gov/docs/aids/aids_data.html. It provides screening results and chemical 

structural data on compounds.  When we downloaded the database in May 1999, there were about 32,000 

compounds. GlaxoSmithKline computational chemists generated BCUT numerical molecular descriptors 

(see Section 2.3) for these compounds.  However, due to poor structural representation and samples that 

contain unusual chemical substances that would normally not be considered drug candidates, some BCUT 

descriptors could not be computed for some compounds.  These compounds were removed, leaving about 

30,000 compounds with computed descriptors.   

 

Unlike the Core98 data where the response is continuous, the NCI compounds are classified as 

moderately active, confirmed active, or inactive.  We combine the first two categories into a single active 

class to give binary response data, as there are only 608 (roughly 2%) active compounds.   

 

2.3. Descriptor Variables 

For both data sets we use BCUT descriptors based on the work of Burden (1989) to describe the 

compounds.  The BCUT descriptors are eigenvalues from connectivity matrices derived from the 

molecular graph.  The square connectivity matrix for a compound has a diagonal element for each heavy 

(non-hydrogen) atom.  The diagonal values are atomic properties such as size, atomic number, charge, 

etc.  Off diagonal elements measure the degree of connectivity between two heavy atoms.  Since 
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eigenvalues are matrix invariants, these numbers measure properties of the molecular graph and hence the 

molecule.   

 

When we first started this research, only six BCUT descriptors were available to us.  They were used in 

development of a uniform coverage design method (Lam et al., 2001).  Subsequently, GlaxoSmithKline 

computational chemists also provided a larger set of 67 descriptors for the motivating applications.  The 

larger set was suggested by Pearlman and Smith (1998).  We found that the 67 BCUT descriptors are 

highly correlated in the two data sets.  A reason for the high correlations is that scientists often devise 

descriptors that measure the same general property of a compound. 

 

While our software for the cell-based analysis method can handle 67 descriptors, the computational time 

is much larger.  For example, it takes roughly 100 hours versus 5 minutes for 67 versus 6 descriptors.  

Thus, we primarily use the smaller set in this paper.  The current software (written in SAS code) was 

aimed at testing the new methods and did not focus on efficiency in dealing with large data sets with 

many variables.  We plan to implement the cell-based analysis algorithm using C++ code, which should 

run hundreds of times faster than the current software. Whether the larger set of descriptors has 

substantially more predictive power is a question of some interest to the computational chemists, 

however, and we make some comparisons in Section 5. 

 

2.4. Dividing Data into Training and Validation Sets 

For the purpose of demonstrating the validity of the new methods, we divide each of the original data sets 

into training and validation sets.  We use the training data (treated as screened compounds) to build 

models (i.e., find active regions) and the validation data (treated as unscreened compounds) to evaluate 

prediction accuracy (i.e. verify if the activity in these regions remains high). The validation set gives a 

more unbiased evaluation of the statistical method than the training set.  In real applications we would use 

all the assayed compounds to find active regions, as more data increases the prediction power.  

 

There are 608 active compounds (roughly 2%) in the NCI data set.  This population or random hit rate of 

2% gives us a benchmark for the performance of our analysis method.  If an analysis method gives hit 

rates (proportion of active compounds amongst those selected) in the validation set many times higher 

than the random hit rate, then it performs well 

 

For the Core98 compounds, the activity response variable is on a continuous scale.  The mean, standard 

deviation, and median of the measured activities are 7.8, 8.9, and 5.9%, respectively.  We refer to the 
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mean activity as the population or random activity value.   As well as analyzing the data on this scale we 

can also classify the compounds with the top 1% of measured activities as active.  This 1% random hit 

rate corresponds to 34.8% inhibition on the continuous scale.  The population mean activity of 7.8% 

inhibition  (continuous response) or the population active hit rate of 1% (binary response) again provide 

benchmarks for the analysis methodology.   

 

We will use relatively small training sets, as one of our goals is to predict from a small screening design.  

The training molecules will be selected either using the Lam et al. (2001) uniform-coverage design 

algorithm or at random.   With a 1-2% hit rate, a sample size of 4096 compounds gives roughly 40-80 

active compounds, which should be sufficient to build a sound prediction model.  (A sample size of 4096 

is a convenient number for the design algorithm.)  Table 1 shows the expected division of active 

compounds between the training and validation sets for the NCI data and for the Core98 data (binary 

response). 

 

Table 1. Expected Distribution of Active Compounds Between a Training Set of 4096 
Compounds and a Validation Set of the Remaining Compounds For Random Designs 

 
 
 
Data set 

 
All data 

# actives / # compounds 

 
Training set 

# actives / # compounds 

 
Validation set 

# actives / # compounds 
NCI  608 / 29 812 84 / 4 096 524 / 25 716 
Core98  231 / 23 056 41 / 4 096 190 / 18 960 

 

 

3. Existing Methods 

Here we describe two statistical analysis methods commonly used for analyzing chemical data sets. 

 

3.1. Cluster Significance Analysis  

Cluster significance analysis (CSA), introduced by McFarland and Gans (1986), aims to find embedded 

regions of activity in a high dimensional chemical space.  CSA considers every subspace that can be 

formed by the predictors, from all one-dimensional subspaces up to the space of all predictors.  A 

subspace is simply a subset of the descriptor variables, ignoring the rest.  For each subspace, CSA 

computes the average distance between the active compounds and compares the average to the 

distribution of average distance for an equal number of compounds randomly selected from all 

compounds (active or inactive).  If the actives are clustered tightly, as measured by a randomization 

significance test, this is evidence that the descriptors forming the subspace and the regions where the 

actives are clustered are important for activity.  



 

RR-02-02  Page 7 of 30 
 

 

A synthetic data set is instructive of the method and the potential problems.  CSA tacitly assumes that 

there is only one class of active compounds forming one cluster in one or more subspaces.   Suppose, 

however, that there are two mechanisms operating.  (In practice, we would not necessarily know which 

mechanism is causing activity, nor even how many there are.)  Mechanism M1 active compounds require 

that the descriptor molecular weight is between 400 and 500 and that the melting point is between 160 

and 205 degrees C. These active compounds are denoted by squares in Figure 1(a).  Mechanism M2 

active compounds require that the descriptor LogP (the octanol and water partition coefficient) is in the 

range 3.0-4.0; they are shown by circles in Figure 1(a).   Dots represent inactive compounds.  Because 

molecular weight and melting point are unimportant for mechanism M2, the circles are spread throughout 

the subspace, making it difficult to detect clustering of the actives.  Similarly, if we look at a subspace 

that includes LogP, as in Figure 1(b), the M1 actives are spread across the LogP dimension. Even in this 

somewhat simple situation, the CSA algorithm could have trouble.  Similarly, if there are two or more 

active regions in a single subspace, in principle, a single measure of clustering might not detect them. 

 

3.2. Recursive Partitioning Approach 

The analysis of multi-mechanism data is difficult, and many statistical methods are not expected to be 

successful. Recursive partitioning (RP), Hawkins and Kass (1982) and Breiman et al. (1984), is one 

method that has been successful with multiple mechanisms arising in drug-screening data (Hawkins et al. 

1997, Young and Hawkins 1998, Rusinko et al. 1999, and Jones-Hertzog et al. 2000).  RP selects a 

descriptor to partition the data into two or more groups or nodes that are more homogeneous. Each 

daughter node is partitioned in turn until the nodes are judged homogeneous or some minimum sample 

size is reached. This separation of the data into smaller groups can, at least in principle, isolate the active 

compounds due to a single mechanism.  

 

As successful as RP has been for the analysis of HTS data sets, there are a number of possible problems. 

These problems are at least partially due to particular implementations of RP in existing software 

products, rather than the overall concept.  First, RP selects one descriptor at a time to split the data set, but 

a single descriptor may not provide adequate information for the splitting process. In addition, when the 

descriptors are highly correlated, selecting one will likely lead to never selecting several others.  It is 

important to keep the following observation in mind: two compounds must have fairly close values of all 

critical descriptors for similar biological activity (McFarland and Gans, 1986) when there is a single 

mechanism. This means that partitions have to be narrow, and in several dimensions simultaneously, if all 

molecules from a partition are to have similar activity.  The second problem relates to multiple  
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Figure 1.  Distributions of Active Compounds from Two Mechanisms.  Squares and circles represent 
compounds active via Mechanisms 1 and 2, respectively, while dots are inactive compounds.  Active 
regions corresponding to these mechanisms are shown by dashed lines: (a) locations of compounds in the 
subspace formed by Molecular Weight and Melting Point, and (b) locations of compounds in the 
subspace formed by Molecular Weight and LogP.   
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Figure 2.  Recursive Partitioning of Two-Mechanism Data.  Recursive partitioning (S-Plus tree with 
default settings, e.g., minimum node size of 5) is used to split the data illustrated in Figure 1.  (a) Nodes 
in the tree are classified as active and inactive and are labeled by 1 and 0, respectively.  Terminal nodes 
are represented by rectangles.  Under each node, the hit rate is printed. (b) The corresponding partitions 
are displayed. 
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mechanisms when active compounds from these mechanisms cannot be easily separated.  The two-

mechanism data shown in Figure 1 illustrate the problem.  Figure 2(a) gives a tree, generated by recursive 

partitioning. Because logP is never chosen as a partitioning variable, the logP subinterval containing the 

Mechanism 2 active compounds is not identified.  The tree partitions are displayed in Figure 2(b); RP 

incorrectly splits the subspace formed by Molecular Weight and Melting Point into six regions.  Here, 

partitioning one variable at a time is ineffective in dealing with multiple mechanisms.  The third problem 

relates to the use of binary splits in many implementations. Problems can result if the activity pattern is 

inactive-active-inactive for a descriptor variable.  With a single cut point, actives will be combined with 

inactives, possibly leading to the variable not being selected. 

 

4. Cell-Based Analysis 

 

For convenience, we refer to a small region of a d-dimensional (sub)space as a d-dimensional cell.  For 

example, a 2-D cell is a region of a 2-D space. 

 

We introduce a cell-based analysis method that first identifies small regions (cells) with several active 

compounds in low-dimensional subspaces (projections) of a high-dimensional descriptor space and then 

uses the information on these cells to score new compounds and prioritize them for testing.  The cell-

based analysis algorithm involves five stages.   

1. Divide the high-dimensional space into many tiny cells (Section 4.1).   

2. Make a preliminary identification of good cells: those cells with several active compounds 

(Section 4.2).  Cells with too few active compounds are removed as there is not enough evidence 

to achieve statistical significance. 

3. Derive ranking scores for the good cells (Section 4.3).  

4. Determine which of these cells have activity that is statistically significant (Section 4.4).  Note 

that a cell might have some active compounds by chance and, because there are very many cells,  

multiplicity issue arises.  We propose a permutation test to overcome this issue.  

5. Score and prioritize untested compounds based on the good cells identified (Section 4.5).  New 

compounds appearing frequently amongst the good cells are promising candidates for testing. 

 

4.1. Forming Subspaces and Cells 

We use the data-driven binning method described by Lam et al. (2001) to divide a space into cells.  Then 

we shift these cells in the various dimensions to allow for forming active regions of different shapes.  
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Binning the Descriptor Space into 1-D, 2-D, and 3-D cells. 

The advantage of dividing a space into cells is that a number of methods can be developed to identify 

good cells, i.e., those with a high proportion of active compounds.  It is also inherently local, allowing for 

the isolation of small active regions.  We now review some methods for dividing a high-dimensional 

space into many small, low-dimensional cells. 

  

In a conventional cell-based method, the range for each of the descriptors is subdivided into m bins of 

equal size.  With the 67 BCUT descriptors, we would have m67 cells.  Even with m=2, there are 267 (or 

1.5x1020) cells generated, most of which are empty even for the largest ever-existing chemical database.  

There would be more cells than data points.  In addition, most compounds will be densely clustered in 

relatively few cells, making it difficult or impossible to separate active and inactive regions. 

 

Following Lam et al. (2001), we focus our attention on low-dimensional subspaces, typically all 1-D, 2-

D, and 3-D subspaces.  This strategy is motivated by Pearlman and Smith’s (1999) “receptor-relevant 

subspace” concept.  They argued that often only two or three BCUT descriptor variables are important for 

activity against a particular biological receptor and that activity is highly localized within the relevant 

subspace.  Secondly, we keep the number of cells constant over each subspace, avoiding the exponential 

increase in the number of cells with dimension.  Consequently, the (average) number of compounds per 

cell does not decrease with dimension, maintaining statistical power for separating active and inactive 

regions (cells).   Furthermore, if only a few descriptors are relevant for a particular mechanism, some low-

dimensional cells containing only important variables are likely to be identified, facilitating 

understanding.  In contrast, higher-dimensional cells would include unimportant variables.  To keep the 

number of cells constant, higher-dimensional cells would also have to be larger in the subspace of 

important variables, possibly too large to isolate a localized active region.  Lastly, to avoid empty cells 

caused by the scarcity of molecules towards the limits of a descriptor’s range, we adopt a data-driven 

hybrid binning method that makes bins larger towards the extremes.   

 

Briefly, cells are created as follows.  Initially, we divide each descriptor into m bins.  For each descriptor, 

these bins are immediately the cells for its 1-D subspace.  To form the cells for a given 2-D subspace, 

amalgamate the m 1-D bins into m1/2 larger bins for each of its dimensions.  There are m1/2 x m1/2 = m 2-D 

cells from combining these larger bins.  Similarly, to form 3-D cells, we amalgamate each dimension’s 1-

D bins into m1/3 bins; these are combined to give m1/3 x m1/3 x m1/3 = m 3-D cells.  Thus, all subspaces, 

whether 1-D, 2-D, or 3-D, have the same number of cells.  To generate integer numbers of bins, it is 

convenient if m is an integer raised to the power of 6, e.g., 26 =64 or 46 =4096.  We give further guidance 
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below on choosing m.  For more details in binning a high dimensional space into low-dimensional cells 

see the sections ‘Forming Cells’ and ‘Data-Driven Binning’ in Lam et al. (2001). 

 
With k descriptors, there are   

k k k
k k
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1-D, 2-D, and 3-D subspaces in total.  For every subspace, a molecule is in one and only one cell.  The 

goal is to find a set of cells in which there are many active compounds and a high proportion of active 

compounds.  

 

How large should the bin size be?  Cells formed from large bins may contain more than one class of 

compounds.  Moreover, if only part of the cell is good, active compounds will be diluted by inactive 

compounds and the cell may be deemed inactive.  (Two compounds must have fairly close values of all 

critical descriptors for similar biological activity.)  On the other hand, a cell formed by very fine bins may 

not contain all the compounds in the same class.  Furthermore, very small cells will tend to have very few 

compounds and there will be little information to assess the quality of the cell.  We make the bins fine, 

but not too fine, given N, the number of assayed compounds.  For reliable assessment of each cell’s hit 

rate, we would like at least 10 compounds per cell.  This suggests that the number of cells per subspace 

should be no more than N/10. 

 

Intra-subspace cells (not including the shifted cells described below) within a subspace are mutually 

exclusive and cover different sets of compounds.  On the other hand, inter-subspace cells, cells from 

different subspaces, can cover the same set of compounds.  The compound-selection method described in 

Section 4.5 takes advantage of the collective strength of inter-subspace cells and makes use of the small 

amount of extra information available when further highly correlated descriptors are added. 

 

Shifted Cells 

The data-driven binning method generates non-overlapping cells within a subspace.  We call these the 

original, unshifted cells.  Because the location and the shape of an active region are unknown, it is not 

possible to define the exact boundaries of a cell that perfectly fit an entire active region.  The cell 

boundaries are fixed prior to analysis.  For example, an active 2-D region with four active compounds can 

be sliced, by chance, into four 2-D cells with one active compound in each cell.  In this case, none of the 

four 2-D cells will be identified as good cells and thus the active region will not be found.   

 



 

RR-02-02  Page 12 of 30 
 

To allow for the fact that the original binning may not be optimal, we also shift the original cells in the 

various dimensions to create overlapping cells (shifted cells).  For example, Figure 3 shows the locations 

of 10 active compounds in the subspace formed by two descriptors, x1 and x2.  To form 2-D cells, the 

range of each descriptor is divided into five bins here.  We generate four sets of cells: one set of original, 

unshifted cells, two sets of cells with only one dimension shifted by half a bin, and one set of cells with 

both dimensions shifted half a bin.  These four sets of cells are shown in Figures 3(a)-(d), respectively. 

The good cells identified in analysis are then used to form active regions.  If a good cell has to have at 

least three active compounds (as in Section 4.2), there is one active cell in each of Figures 3(a) and 3(b) 

and there are two active cells in each of Figures 3(c) and 3(d).  The region formed by these overlapping 

active cells is shown in Figure 4.  The counts are the number of times each active compound falls in an 

active cell.  The dashed lines show how the active region could be adjusted to exclude sub-regions with 

no actives.  Note that parts of the active region missed by the original binning are found. 

 

The shifted cells provide an effective means of handling different shapes of active regions, at the price of 

looking at more cells.  The number of cells created for a d-dimensional subspace is increased by a factor 

of 2d and the number of bin cut-off points for each dimension is doubled.  For example, if a 3-D subspace 

is divided into 4×4×4 = 64 cells, shifting will lead to a total of 8×64 cells, which is as many as an 8×8×8 

arrangement.  Therefore, this method allows us to use larger bins for the analysis, with more compounds 

per cell, and hence higher power for detecting activity. 

 

We also investigated several methods for determining the shape and the size of an active region.  

However, we found that growing and shrinking a cell around an original, active cell to cover adjacent 

active cells was more complex and not as effective and efficient as shifting cells.   

 

4.2. Preliminary Identification of Good Cells 

We make a preliminary reduction of the huge number of cells that can be generated, particularly when 

there are many descriptors.  We search every cell and note the ones with several (say three) active 

compounds.  These are preliminary good cells.   Then we adjust the boundaries of the preliminary good 

cells to exclude sub-regions with no active compounds.  In later stages of the analysis, the hit rate and 

other related statistics will be computed for each of the re-sized cells.  Those cells with a low proportion 

of active compounds will be removed.  Active regions will be created by combining the remaining good 

cells. 
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Figure 3.  Shifted Bins (Five per Descriptor) and Overlapping Cells for 10 Active Compounds in a 2-D 
Subspace Formed by x1 and x2 : (a) original, unshifted cells; (b) only the x1 bins are shifted by half a bin; 
(c) only the x2 bins are shifted by half a bin; and (d) both the x1 and the x2 bins are shifted by half a bin. 
 
 
 

 
Figure 4.  Overlapping Shifted Cells to Form an Active Region.  The box denotes the active region.  The 
counts are the number of times each active compound is selected by active cells (those with at least three 
active compounds).  The dashed lines show how the active region could be adjusted to exclude sub-
regions with no actives. 
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Preliminary Good Cells 

After the (original and shifted) cells are constructed, the next step is to search for preliminary good cells: 

those with at least a certain number of active compounds. The required number of active compounds will 

depend on the total number of active compounds found in the data set.  If only a few active compounds 

are available (e.g., less than 20), then all cells with two or more active compounds might be of interest.  

On the other hand, if there are hundreds of active compounds, then it is more efficient to pay attention to 

only those cells with, say, at least five active compounds.  Of course one can examine every single cell 

with one active compound but this will generate many preliminary good cells by chance.  For the 

examples described in Section 5, there are about 80 active compounds in the NCI training data set and 

about 40 active compounds in the Core98 training data set.  In these examples, requiring two active 

compounds gives similar results to requiring three, but the latter generates fewer preliminary good cells. 

 

The search for the preliminary good cells is straightforward.  In principle, we just need to count the 

number of active compounds in every cell in every subspace.  Because active compounds are usually rare 

in the data set, the search can be made computationally efficient by tracking them to the relatively few 

cells that they occupy.  Subsequent stages of analysis are made much faster by working with the much-

reduced list of preliminary good cells. 

 

Re-sizing Cells 

As the cell boundaries are fixed prior to analysis, a cell may cover both active and inactive regions and 

hence the observed hit rate of a cell can be misleading (active compounds may be diluted by inactive 

compounds, yielding a very low hit rate).  To get a more focused region, we re-size each cell by trimming 

off the borders with no active compounds.  Then, in each trimmed cell, we use the compounds remaining 

to determine the hit rate and other related statistics.  These trimmed cells will be used later on to form 

active regions and to score and prioritize untested compounds for screening. 

 

4.3 Ranking Cells 

The next stage is to rank the re-sized cells (original and shifted).  These rankings will be used in the later 

stage to score new compounds.  All the ranking criteria are based on measures for individual cells.   

 

With active/inactive binary-response data, a natural first choice for the identification of active cells is to 

compute the proportion of all the compounds in the cell that are active (the observed hit rate) and then 

rank the cells by these proportions. The main problem with this method is that it favors cells that happen 

to have a small number of compounds.  Consider two cells with 2/2 and 19/20 active compounds, 
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respectively.  The first has a hit rate of 100%, but this is based on two compounds, a very small sample.  

The 95% hit rate for the second cell is based on 20 compounds and is much more reliable.  Thus, in 

addition to the raw hit rate (H), we describe below two further criteria that take into account the statistical 

variability from sampling: p-value (P) and the binomial hit rate lower confidence limit (HL95). 

 

With a numerical assay value Y (e.g., percentage inhibition) for activity, we will similarly describe the 

raw mean activity score (Y ) and two criteria penalizing a small sample size: the lower confidence 

interval for the mean Y ( 95LY ) and the hit rate lower confidence limit based on a normal distribution for Y 

( Y
LH 95 ).   Quantitative data of this type may also be converted to active/inactive classes by defining 

“Active” as Y > c for some cut-off c, allowing all criteria to be used. 

 

P-value (P) 

Let N be the total number of compounds in a data set (e.g., 4096 compounds in the Core98 training set), 

and let Na be the number of active compounds in the data set (e.g., 41 active compounds).  Consider a 

given cell in a given subspace, which has n compounds, of which a are active. 

 

Suppose the Na active compounds are distributed such that they fall in or outside the given cell at random.  

Under this statistical null hypothesis, the probability of observing a actives out of n compounds is given 

by the hypergeometric distribution: 
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The p-value is the probability of having at least a active compounds out of n: 

p-value = Prob(A ≥ a | n compounds) 
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If the p-value is small, there is little chance of seeing a or more active compounds out of n.  Therefore, 

small P-values provide the most evidence against the null hypothesis of random allocation of actives 

in/outside the cell (and hence most evidence that the number of actives in the cell is better than chance).  

The P-value is computed for all cells and the cell with the smallest P-value is the top-ranked cell, etc.   

 

The p-value approach tends to pick cells with large numbers of compounds even if they have fairly low 

hit rates.  Suppose there are 40 active compounds in a data set of 4,000 compounds.  Then 8 actives out of 

80 (hit rate=0.10) gives p=8.24x10-7 but 3 out of 3 (hit rate=1.00) gives p=9.3x10-7.  The statistical 

evidence is stronger in the first case because of the larger sample size, even though the hit rate is much 

lower.  This illustrates the major drawback of the P criterion: it tests whether the hit rate is significantly 

larger than random, not whether the hit rate is large.  

 

Hit Rate (H) 

In the above notation, the hit rate for a cell is a/n.  It ignores the increased reliability from a larger sample 

size.  For example, 1/1 gives a 100% hit rate but 9/10 gives a 90% hit rate, yet the cell with 9/10 seems 

more promising.  Although commonly used, it is not a sensitive criterion for ranking active cells 

(regions).  The next criterion introduced considers both the hit rate and its variability. 

 

Binomial Hit Rate Lower Confidence Limit (HL95) 

One can obtain an exact lower confidence limit on the hit rate for new compounds based on the binomial 

distribution.  For the many possible compounds that would fall in a given cell, suppose that a proportion h 

are active, i.e., h is the hit rate.  Assuming that the n compounds in the cell that have been assayed are a 

random sample of all the cell’s possible compounds, the number of actives, A, is a random variable 

following a binomial distribution with n trials and probability h.  The smallest value of h such that 

Prob(A≥ a | h, n)  = 0.05 is the 95% binomial hit rate lower confidence limit (HL95).  It considers both the 

hit rate and its variability.  Some examples of cell rankings using the HL95 method are given in Table 2. 

 
Table 2.  Illustrative Cell Rankings Using HL95. 

 
Cell 

  
a / n (Hit Rate) 

 
HL95 

 
Ranking 

1 9/10 (0.9) 0.6058 1 
2 3/3 (1.0) 0.3684 2 
3 8/80 (0.1) 0.0507 3 
4 1/1 (1.0) 0.0500 4 
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Mean Activity Score (Y ) 

When a numerical assay value, Y, is available, the mean over all compounds in a cell gives the mean 

activity score (Y ).  Because it is easier by chance to obtain a high mean from fewer compounds than 

from more compounds, Y  tends to pick cells with few compounds and high activity values.  Although 

commonly used, it is not a sensitive criterion for ranking active cells (regions).  The next criterion 

introduced considers both the observed mean and its variability. 

 

Lower Confidence Limit for Mean Y ( 95LY ) 

Analogous to HL95, with a numerical assay value, Y, one can use the lower confidence limit for the mean 

of the distribution giving the Y values, based on an assumption of sampling from a normal distribution. 

This criterion, 95LY , considers both the observed mean and the variability and is defined as 

95LY = )95.0,1(/ˆ −×− ntnY σ , 

where, based on n-1 degrees of freedom, σ̂  is the sample standard deviation within the cell and t(n-1, 

0.95) denotes the 95% quantile of the t distribution.   

 

Normal Hit Rate Lower Confidence Limit ( Y
LH 95 ) 

With a numerical measure of activity, Y, and a cut-off for activity, c, one can derive a lower confidence 

limit for the hit rate, i.e., the probability Prob(Y>c), based on the assumption that the observed activities 

in a cell are randomly sampled from a normal distribution.  This criterion is called Y
LH 95 . 

 

If the Y values are randomly sampled from a normal distribution with mean µ and variance σ2, then by 

definition, Y
LH 95  is 
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where Φ is the standard normal cumulative distribution function.   

 

Suppose σ is known or a good estimate is available  (the pooled estimate described below will usually 

have many degrees of freedom).  Then we can estimate Φ by 
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cYˆ , where Y  is the average Y value for the n compounds in the cell. 
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where Z.95 is the 95% quantile of the standard normal distribution. 

Rearrangement of the inequality gives 
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We use a common estimate of σ for all cells within a subspace.  For a given subspace, it is computed by 

pooling the sample variances over all cells: 
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where 2
is is the sample variance for cell i, and cell i has ni compounds. 

 

Relationships between the criteria 

If a numerical measure of activity is available, all six criteria can be used.  The cut-point c for activity (a 

hit) is used as follows.  For P, H and HL95, c is used to convert the data to “Active” / “Inactive” before 

they are computed.  Both Y  and 95LY  ignore c.  For Y
LH 95 , the Y distribution is modeled and c is used at 

the end to determine Y
LH 95 .  
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4.4 Assessing the Impact of Multiple Testing  

With 67 descriptors, there are a total of 50,183 1-D, 2-D, and 3-D subspaces.  If each subspace is divided 

into 64 cells and the cells are shifted in the various dimensions (see Section 4.1), there are 25,101,952 

(shifted and unshifted) cells.  With so many cells, it is possible that by chance alone we will see cells with 

moderate activity. 

 

Consider the p-value criterion.  To adjust it for the total number of cells examined, C, we simply multiply 

each p-value by C. This is the Bonferroni correction (Miller 1981).  In the training data, a cell is said to be 

a good cell by the p-value criterion if the Bonferroni adjusted P is small (say <0.05). 

 

The Bonferroni correction tends to over-correct, but we can impose a minimum number of active 

compounds to define the cells relevant for correction.  In the NCI example with 67 BCUTs and 

25,101,952 cells, for example, only 5,587,591 cells have at least two active compounds, a smaller 

adjustment factor. 

 

Probably the best way of addressing the multiple testing problem is to define the cut-off between active 

and inactive cells using a random permutation of the assay values.  The Active/Inactive indicators or Y 

values in the training data are randomly reordered, i.e., randomly assigned to the descriptor combinations 

in the data set.  If p-value is the criterion for ranking cells, one can set the cut-off as a small p-value in the 

lower tail of the distribution induced by randomization.  Under random permutation of the data, no cells 

should be identified as good cells and the smallest p-value is just due to chance.  For the actual data 

(without permutation) one can then use all cells with p-value smaller than this cut-off point. 

 

Ideally, to estimate the p-value corresponding to a true significance level of say 5%, we would like to 

perform many random permutations.  The sets of p-values from these randomizations would be combined 

into an empirical distribution, and the 5% point from this distribution is a multiplicity-adjusted critical 

value.  This is too computationally expensive, however.  Fortunately, for the cell-based analysis, one 

permutation provides many p-values (e.g., 25,101,952 cells and hence p-values).  Thus, we take the 5% 

point from one permutation as the cut-off to determine whether there are any real active cells (versus false 

alarms).  This procedure can be applied to any of the cell-ranking criteria in Section 4.3.   

 

Cells with ranking scores in the actual data that beat the random-permutation cut-off are used to score and 

select new compounds.  The subspaces and descriptor ranges associated with these cells indicate 

descriptors that are likely relevant to activity and subregions of activity, respectively.  New compounds 
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appearing in the most highly ranked cells or frequently amongst the good cells are promising candidates 

for testing, as described next.  

 

4.5. Selection of New Compounds 

 

We present three selection methods for choosing untested compounds for biological screening: ‘Top Cells 

Selection’, ‘Frequency Selection’ and ‘Weighted Score Selection.’  All the methods first rank cells 

according to one of the criteria in Section 4.3 and apply the random-permutation method of Section 4.4 to 

generate a list of good cells.   

 

Top Cells Selection 

In a database of new, unassayed compounds, top-cells selection chooses all the compounds falling in the 

best cell, then all those in the second best cell, and so on until the desired number of compounds to be 

tested is reached or until there are no good cells remaining.  This approach does not combine strength 

from several good cells when scoring a compound.  The next method takes advantages of the collective 

strength of the good cells, thus increasing the prediction power. 

 

Frequency Selection 

Frequency selection scores a new compound by the number of times it appears in the list of highly ranked 

cells.  The first compound selected for screening is the one occurring with the maximum frequency, the 

second compound selected has the second largest frequency, and so on.   

 

Frequency selection scores a compound based on many good cells and possibly many descriptors.  A 

single cell belongs to a subspace involving only one, two or three variables, and cells are scored 

individually. In contrast, under frequency selection, if a new compound appears in several good cells in 

different subspaces, information is combined from the union of all the subspaces’ descriptors.  Thus, 

frequency selection can potentially make use of the small amount of extra information available when 

further highly correlated descriptors are added (see the comparison of 6 and 67 descriptors in Section 5.3).   

 

Frequency selection provides a powerful way to rank new compounds for screening, often leading to a 

very high hit rate for the top ranked compounds.  The next method introduced further improves the 

compound ranking by incorporating information on the order of the cells in the list.   
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Weighted Score Selection 

Instead of just counting the frequency of occurrence in the list of good cells, we can give each cell in the 

list a weight and score a new compound based on the total weight over the cells in which it resides. 

 

The cell-ranking criteria described earlier can be adapted as weight functions.  We could use the HL95 

value or –log(p-value) as weights, for example.  The weight function should have several desirable 

properties: (1) If the list of good cells is extended, the relative weights of the cells in the original list 

should not change; (2) the weight function should be a smooth monotonic decreasing function of the 

cell’s rank; and (3) the same weight should be assigned to cells rated equally by the cell ranking criterion. 

For the numerical evaluations in Section 5, we use weighted score selection with HL95 (NCI binary- 

response data) or 95LY  (Core98 continuous-response data) values as weights.  These are the criteria used 

for cell ranking to generate the list of good cells.   

 

5. Performance Evaluation 

 

We evaluate the performance of our cell-based analysis method using the 23056 Core98 compounds and 

the 29812 NCI compounds.  The objective of this evaluation is (1) to determine if the new methods lead 

to higher hit rates than random selection, (2) to assess the effect of the six cell selection criteria on hit 

rate, and (3) to determine whether our cell selection method can find real active cells or false alarms.   

 

In addition, we compare the cell-based analysis method with recursive partitioning (the tree function in S-

Plus, Clark and Pregibon 1992) in terms of identifying active compounds.  Often, V-fold cross-validation 

is used to control tree size, but here this tends to result in a very small tree, sometimes with only a root 

node.   This problem seems to arise because active compounds are rare in the training data, and the 

smaller hold-out samples have too few active compounds to compare different tree sizes.  For simplicity, 

then, we use the default S-Plus tree (from default fitting options, e.g., minimum 5 observations per node) 

and do not attempt to prune this tree.  (Some preliminary work by graduate student Marcia Wang also 

suggests that tree pruning is ineffective anyway.) 

 

5.1. Evaluation Plan  

To evaluate the cell-based analysis method for the two data sets, we carry out the following steps. 

1. Divide the data into Training and Validation sets.  Samples of 4096 compounds are selected to form 

the training data set; the rest of the compounds form the validation data set. Samples are chosen 

randomly or using uniform coverage designs (Lam et al. 2001). 
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2. Apply the data-driven hybrid binning method to bin all subspaces, and create 64 cells per subspace. 

This gives 64 compounds per cell on average.  Create shifted cells from the original bins (Section 

4.1). 

3. Training set: Search for preliminary good cells with two or more active compounds (Section 4.2). 

4. Training set: Compute summary statistics for the preliminary good cells: HL95 for the NCI binary-

response data or 95LY  for the Core98 continuous-response data (Section 4.3).   Perform a permutation 

test (Section 4.4) to find the cut-off point to separate good cells from false alarms.  This generates a 

list of good cells (considered as ‘real’). 

5. Validation set: Score and select new compounds from the validation set based on the good cells 

identified from the training set.  Here we can rank the validation-set compounds using weighted score 

selection  (Section 4.5). 

6. Validation set: As compounds are successively selected, evaluate the hit rate (binary response) or 

mean activity value (continuous response) as performance measures. 

 

We first look in detail at the multiplicity correction in Step 4, then present the final hit rate and mean 

activity performance results. 

 

5.2. Good Cells Versus False Alarms 

 

Bonferroni Correction 

To test whether our cell-based method would give false-positive results, the activity values are randomly 

re-assigned to the compounds.  The cell-based analysis is carried out on the permuted data.  Using the p-

value correction method described in Section 4.4, few cells are declared good.  On the other hand, many 

good cells are found using the real activity values.  This approach addresses the false positive problem, 

but is probably quite conservative. 

 

Permutation Test 

To illustrate how the permutation test in Step 4 works, we examine a random sample of 4096 compounds 

from the NCI data set with 67 descriptors.  For this sample, we generate 25,101,952 cells (see Section 

4.4) and analyze these cells twice, once with the original activity values and once with randomly re-

arranged activity values.  Under random permutation, the best cell had 7 out of 7 active compounds, with 

P=2.29×10-12 and HL95=0.6518, as shown in Table 3.  With the real data, Table 3 also shows there are 

5,256 cells with a smaller p-value and 449 cells with a larger HL95 value, suggesting that these cells are 

indeed good active regions and that the descriptors are relevant to the activity.   
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Table 3.  P and HL95 Values for Different Cut-Off Points and the Corresponding Number of 
Cells with a Better Value. 

 
Under  Random Permutation  

Criterion value (#actives/#compounds)
Real Data 

#cells with better value 
 P HL95 P HL95 
Best value 2.29E-12 (7/7) 0.6518 (7/7) 5,256 449 
The 5% point 1.04E-4 (6/35) 0.2236 (2/2) 782,864 493,962 

 

For defining the list of good cells and hence selecting new compounds for screening, we use a less 

conservative cut-off: the 5% point of the distribution under randomization. Using the 5% point, many 

more cells are found with better values.  Collectively, these cells enhance the prediction power of the 

compound selection methods.  Scoring new cells using weighted frequency of occurrence in the list of 

good cells (Section 4.5) is insensitive to adding some possibly spurious cells to the bottom of the list: 

these cells have low weights. 

 

In this example, two practical issues are also revealed.  As mentioned earlier, the raw hit rate H is not a 

sensitive cell-ranking criterion, and the permutation test based on H often leads to a hit rate cut-off at 

100%, making identification of good cells difficult.  Also, one has to be careful in the implementation of 

the P criterion as the p-values for good cells can be extremely small.  In addition, P tends to pick cells 

with large numbers of compounds (Section 4.3), hence our use of HL95 as the primary ranking criterion for 

data with binary response.  Similar comments apply to the Core98 continuous-response data and our 

preference for the 95LY  criterion.  

 

5.3. Validation Hit Rates 

 

A total of 80 training sets were generated, 40 from each of the NCI and Core98 data sets.  Half of the 

training sets were generated using random selection and the other half were generated using uniform 

coverage designs (Lam et al., 2001).  For comparisons between the cell-based (CB) analysis method and 

recursive partitioning (RP), the S-Plus classification and regression tree method with default settings is 

used (Venables and Ripley, 1999).  Except where we specifically compare 6 and 67 descriptors, all 

analyses are performed using the original 6 descriptors to reduce the burden of computational effort. 

 

Cell-Based Analysis Versus Recursive Partitioning 

Twenty training sets of 4096 compounds were randomly generated from each of the NCI and Core98 

compounds.  These training sets were analyzed using both CB and RP analysis methods.  The mean hit 
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rates and mean activity results based on the validation sets are shown in Figure 5.   For the NCI 

compounds, the CB analysis clearly dominates the RP analysis.  Both methods generate hit rates many 

times higher than the random hit rate.  For the Core98 compounds, the CB analysis outperforms the RP 

analysis for the first 50 compounds selected; thereafter the two methods are comparable.  Again, both 

methods perform much better than the random-activity baseline.  The Core98 activity values have much 

larger measurement error than the NCI activity; in addition, the Core98 compounds have fewer hits.  Both 

of these facts make predicting active compounds difficult.  

 

Impact of Design on Cell-Based Analysis: Uniform Coverage Designs Versus Random Selection 

Here we investigate the impact of different designs for the training data on the performance of the CB 

analysis.  Two types of designs are compared: simple random sampling (as in the CB versus RP 

comparison) and uniform coverage designs (Lam et al., 2001).  By keeping the sample size within each 

cell fairly constant, the uniform coverage designs should provide good power across all cells.  Twenty 

training sets of 4096 compounds are generated, using the two methods, from each of the NCI and Core98 

data sets.  These training sets are analyzed using the CB analysis method.  The mean hit rate and activity 

results are shown in Figure 6.  Using the uniform coverage designs, additional improvement in hit rate or 

mean activity is found for the first 100 compounds selected.  The bumps in Figure 6(a) when only 1-25 

compounds are selected are likely due to the discreteness of the binary response: a few extra hits will 

make a big impact on the hit rate. 

 
Six Versus 67 Descriptors 

Because of high computational cost, only two samples from the 20 random training sets for the NCI 

compounds are chosen to evaluate the information gain from using more BCUT descriptors.  The two 

samples have the highest and lowest validation hit rates at the 100th compound selected in the six-

descriptor cell-based analysis: 74/100 hits and 47/100 hits, respectively.  Re-analysis of the same two 

samples using the 67 descriptors gives the hit rate results shown in Figure 7.  In both samples, the 67 

descriptors lead to higher hit rates for the CB analysis.  The CB analysis gains predictive power despite 

the strong correlations among the descriptors.  This is not so for the RP analysis.  The hit rate results at 

100 compounds selected are summarized in Table 4. 

 

Figure 7 also indicates that CB analysis is fairly robust to variability due to random sampling.  Designs 

generated by different random samples will lead to training data with little overlap.  Therefore, CB 

analysis will probably be working with rather different sets of preliminary good cells, cell scores, and 

compound scores.  Nonetheless, as Figure 7 shows, the hit-rate performance is similar, especially if 67  
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  (a) NCI data       (b) Core98 data 

 
 
Figure 5.  Average Performance of Cell-Based Analysis (Solid Line) and Recursive Partitioning (Dashed 
Line) for 20 Random Samples When the 200 Validation-Set Compounds With the Highest Scores Are 
Selected: (a) Mean Hit Rate for the NCI Binary Data and (b) Mean Activity for the Core98 Continuous-
Response Data.  The horizontal line near the bottom shows the expected performance under random 
selection of new compounds. 
 
 
 
 
 (a) NCI data    (b) Core98 data 

 
 
Figure 6.  Average Performance of 20 Random Designs (Solid Line) and 20 Uniform Coverage Designs 
(Dashed Line) When the 200 Validation-Set Compounds With the Highest Scores are Selected By Cell-
Based Analysis: (a) Mean Hit Rate for the NCI Binary Data and (b) Mean Activity for the Core98 
Continuous-Response Data.  The horizontal line near the bottom shows the expected performance under 
random selection of new compounds. 
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(a) Cell-Based Analysis, Sample 1  (b) Cell-Based Analysis, Sample 2 

 
 
 (c) Recursive Partitioning, Sample 1  (d) Recursive Partitioning, Sample 2 

 
 
Figure 7.  Hit Rates for Two Random Samples from the NCI Data Using Either 6 Descriptors (Solid Line) 
or 67 Descriptors (Dashed Line).  The figure also compares CB and RP analyses. 
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descriptors are used.  The differences between the hit-rate profiles for the two samples are small here 

relative to the differences between CB analysis and recursive partitioning.  In general, CB analysis is not 

likely to be sensitive to small changes in the data (e.g., adding or removing a few compounds), because 

such changes will only affect a few cells and the method is inherently local. 

 

Table 4.  Hit rates, at the 100th Compound Selected, by Different Analysis 
Methods and by Different Sets of Descriptors. 

Cell-Based Analysis Recursive Partitioning  
Sample 6 BCUTs 67 BCUTs 6 BCUTs 67 BCUTs 

1 0.740 0.760 0.508 0.421 
2 0.470 0.640 0.418 0.407 

 

  

6. Conclusions and Discussion 

 

These results confirm that (1) the cell-based analysis method is useful in identifying good cells, (2) many 

good cells are found, not false alarms, and (3) the BCUT descriptors are informative. Our cell-based 

analysis method leads to hit rates many times higher than the random hit rate.  It consistently leads to very 

high hit rates for the top ranked compounds.  To get a sense of the possible increases in efficiency, 

consider the following. Using random screening, one would expect to screen 1,000 NCI compounds to 

find 20 active compounds; however, using the CB prediction one can identify 20 active compounds by  

screening just 20 compounds: see the curves for 67 descriptors in Figures 7(a) and 7(b).  The CB 

prediction method compares favorably with RP here. 

 

In principle, because it is inherently local, a cell-based analysis should be able to handle nonlinear, 

threshold, and interaction effects as well as multiple activity mechanisms.  By combining scores from 

many cells (low-dimensional projections) it should also be able to extract further information from highly 

correlated descriptors. 

 

On the other hand, linear regression models are not effective in handling these modeling issues.  For 

illustration, polynomial regression models of degree 3 including interaction terms of 2 and 3 descriptors 

were fitted to the Core98 data using the stepwise-selection method.  The ‘best’ model had R2 = 0.01 and 

poor prediction accuracy in identifying compounds as active. For the NCI data, logistic regression models 

were also investigated.  Overall, low prediction accuracy in classifying compounds as active and high 

prediction accuracy in classifying compounds as inactive were found. As only about 2% of compounds 
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are active, any methods claiming all compounds as inactive will give an overall accuracy of 98%. The 

real challenge is to find a high proportion of active compounds. 

 

Our goal is to find a set of regions (cells) in which there is a high proportion of active compounds. It is 

much easier to divide and cover low-dimensional subspaces and to identify low-dimensional active cells.  

Whereas RP evaluates one descriptor at a time, CB analysis evaluates 1-D, 2-D and 3-D cells (i.e., 

evaluates one, two and three descriptors at a time) and combines these cells when scoring to form high-

dimensional active regions.  Furthermore, the low-dimensional cells are formed from all combinations of 

different subsets of descriptors, so all descriptors can be effectively evaluated and the impact of irrelevant 

variables on analysis is reduced or eliminated.  Therefore, focusing on low-dimensional subspaces is 

effective in finding active and inactive regions (cells). 

 

Shifted cells provide an efficient and effective method for handling different shapes of active regions.  In 

combination with re-sizing of cells, the boundaries of active regions can be better aligned.  In compound 

selection, a compound appearing in more than one cell within the same subspace will be counted only 

once to avoid over-counting from the shifted cells.  This is analogous to (1) forming an active region 

within a subspace, and (2) ranking the new compounds based on their (weighted) frequency in all active 

regions across all subspaces. 

 

Designed experiments (e.g., uniform coverage designs) can enhance the predictive power of cell-based 

analysis.  The actual improvement in prediction can be much greater and can be better evaluated if a real 

test set (instead of a hold-out set for validation) is available, as compounds in the hold-out set are not 

always available in every cell identified from the training set.  Uniform coverage designs tend to select 

roughly the same number of compounds from both crowded and sparse regions and might not leave 

compounds in the sparse regions for validation. 

 

A good prediction method should obtain more hits for the highest ranked compounds.  Because the total 

number of hits is a constant, the hit rate or the activity value typically decreases as the number of tested 

compounds increases, all the way down to the random rate when all compounds are tested.  The CB 

analysis method is particularly effective in finding hits when few compounds are selected. 

 

We primarily used HL95 for binary response data and 95LY  for continuous response data.  These criteria 

take account of uncertainty from the sample size and have fewer assumptions.  
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CB analysis is a multi-stage automated analysis process, which requires extensive computing power. 

There are many opportunities to make the algorithm more efficient as well as to further enhance the 

prediction accuracy.  We are currently investigating these opportunities.  One can use a combination of 

different ranking criteria (e.g., the P and HL95 values) to define a ‘common’ cut-off or even to select 

multiple sets of good cells (different criteria may select different types of active cells).  For a very large 

data set (e.g., millions of compounds with many descriptors), a fast algorithm to store and evaluate 

billions of cells is needed.  Tuning parameters such as the minimum number of active compounds 

required for a preliminary good cell, choosing cut-offs for the good cells, and more sensitive weighting 

functions for scoring cells and hence compounds, will be studied.  The current cell re-sizing method 

(Section 4.2) re-sizes each cell by trimming off the borders with no active compounds. This is done by 

setting the new boundaries of a cell to the descriptor ranges of the active compounds.  The more active 

compounds available in the cell, the better the boundaries can be located.  Using this simple re-sizing 

method alone, without the shifted cells method, may leave holes within an active region.  The shifted and 

unshifted cells overlap each other, thus reducing or minimizing possible holes in an active region.  Other 

cell re-sizing methods will be investigated.   
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