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Abstract:

An important use of experimental designs is in screening, in which experimenters seek to
identify significant effects (both main effects and potentially interactions) from a large set of
candidate effects. This paper goes further than identification of effects, introducing a design
criterion that seeks to maximize the ability to discriminate between models. The criterion
is based on the Hellinger distance between predictive distributions under competing models,
and motivated by Meyer, Steinberg and Box (1996). A bound for the criterion is obtained,
greatly improving interpretability. The set of all possible models to compare is huge, and
not all models are equally plausible. This challenge is addressed via a Bayesian approach.
This approach uses prior distributions on the space of models, indicating preference for
intuitively appealing models, such as those with few effects, more low order than high order
effects, and inheritance structure between active main effects and interactions. Techniques for
evaluating the criterion and searching for optimal designs are presented. The effectiveness
of the criterion is illustrated via a number of examples, which consider regular and non-
regular designs, robust designs, and scenarios with partial prior knowledge of which effects
are significant.

Key Words: Bayesian design, complex aliasing, effect sparsity, effect hierarchy, effect
heredity, Hellinger distance, model discrimination

1 Introduction

Screening designs are frequently used by experimenters to help understand the impact of a
large number of factors in relatively few trials. By varying factors of interest over specified
level settings and performing trials, experimenters gain insight into which factors or effects
are important. The choice of the best experimental design is among the first and most
fundamental issues facing an experimenter.

In many situations, however, designs are chosen because of their ability to estimate certain
effects rather than for screening properties. This article considers techniques that directly
address this problem, seeking designs which will provide maximal information for model
selection, while at the same time allowing for optimal estimation. An important innovation
in this approach is the ability to incorporate into the design optimality criterion a flexible
means of specifying preference for plausible classes of models. Before outlining our approach,
we review past work in experimental design and how it relates to screening.

Common choices of experiment plans are the 2q−k regular fraction factorial (FF) designs
(designs with an associated defining contrast sub-group), where q factors are investigated in
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2q−k trials. FF designs are most often ranked by the minimum aberration (MA) criterion
(Fries and Hunter, 1980), which sequentially minimizes the elements of the word-length
pattern. There are two underlying assumptions which motivate the use of the MA criterion:

A1. Effect Sparsity: The number of important effects is relatively small.

A2. Effect Hierarchy: Lower order effects are more likely to be important than higher order
effect and effects of the same order are equally important.

An alternative class of designs are non-regular fractional factorials (NFF) such as Plackett-
Burman (1945) designs. These designs have typically been used as main effects plans because
of the complex aliasing structure between main effects and two-factor interactions (2fi’s). Re-
cently, methods have been proposed for analyzing complex aliasing designs that entertain
models with both main effects and 2fi’s (Hamada and Wu, 1992; Chipman, Hamada and Wu,
1997). These iterative approaches rely on an additional assumption to help sort through the
complex aliasing structure:

A3. Effect Inheritance: An interaction is more likely to be important if one or more of its
parent factors are also important.

In light of this additional assumption, Hamada and Wu (1992) viewed the complex alias-
ing of NFF’s as an advantage because NFF’s give the opportunity to identify promising
interactions as well as main effects. NFF’s can be rank-ordered by the maximum estima-
tion capacity (EC) criterion (Sun, 1997; Cheng and Mukerjee, 1998; Chen, Steinberg and
Sun, 1999), which computes the proportion of models containing all main effects and a fixed
number of 2fi’s that are estimable. It has been noted that NFF designs are frequently better
suited for screening because they provide more information for a broader class of models and
thus have higher EC than some competing regular fractional factorial designs. The difficulty
with ranking design by EC is that the criterion does not recognize the effect sparsity princi-
ple when there are many factors. Typically models that are smaller than those counted by
EC are preferable, and, as a consequence EC can underestimate the merits of a design. This
is important because some models are more likely than others. If the estimability of some
models must be sacrificed in order to achieve run-size economy, one would likely prefer to
sacrifice less likely and less parsimonious models.

This belief that estimation of some models is more important than others is not easy to
incorporate into criteria such as MA and EC in some practical applications. For instance, in
robust parameter design, experimenters are particularly interested in estimating interactions
between control and noise factors. In these cases, the design criterion should be adjusted so
that the experiment maximizes the information about such interactions (e.g., see Bingham
and Sitter, 2001; Bingham and Li, 2002; Wu and Zhu, 2001). Another example is when
experimenters have prior knowledge about the significance of some of the effects (Franklin
and Bailey, 1977). In these situations, the best experiment design is frequently not the best
in terms of MA or EC.

In this article, we consider a different kind of optimality, which seeks designs that best
facilitate discrimination between competing models. Two key components of this approach
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are an optimality criterion that explicitly measures the ability of the design to discriminate
between competing models, and a flexible framework for specifying which models are most
important.

The measurement of the ability to discriminate among models is accomplished via a
Bayesian approach, which has similarities to the model discrimination criterion (MD) (Meyer,
Steinberg and Box, 1996, henceforth MSB) which is based on the Kullback-Leibler informa-
tion. We propose a different criterion, based on the Hellinger distance between predictive
densities, to help distinguish between competing models. The Hellinger distance is preferable
to the Kullback-Leibler information in this setting because it requires half the computational
expense and is bounded. The ability to easily calculate an upper bound greatly improves
the interpretability of the Hellinger distance. Also, the Hellinger distance has appealing
properties that allows experimenters to use it as a basis for choosing an appropriate run size.

The second key component of our approach is the ability to flexibly specify which models
are important. This is accomplished by specifying a prior distribution on the set of all models
under consideration. This prior incorporates assumptions A1-A3, and assigns a weight (i.e.
prior probability) to each model. This allows for a smoothly varying way of specifying
preferences for models. This approach was briefly explored in Chipman and Hamada (1996),
and offers additional flexibility to the approach of MSB. In contrast, criteria like MA and
EC take a much more discrete view of the model space, counting numbers of estimable
effects. For example, consider a 6 factor experiment estimating only main effects and two-
way interactions. Traditional criteria such as MA would place a higher priority on main
effects than interactions, implicitly assuming that the model A+B+C+D+E+F is more
plausible than the model A+B + AB.

Beliefs such as a preference for a small model with inheritance (e.g. A+B+AB) can lead
to surprising results. In Section 4, we show that if a design criterion representing such a belief
is used, a non-regular design may be preferable, even in contexts where a regular fractional
factorial design is available. Other situations arise in which there is prior preference for
certain models, such as the robust design problem and having prior knowledge of some effect
significance, as discussed earlier in this section.

The article is organized as follows: In Section 2, the design criterion is introduced, along
with the Bayesian specification, including priors on the model space. Section 3 discusses
methods to identify optimal designs, including some computational techniques unique to
this problem. The approach is illustrated with an example in Section 4, involving a situation
in which a regular design exists. Section 5 discusses a bound for the criterion, and illustrates
how it can be effectively used to choose an appropriate number of runs. Further examples
are given in Section 6, including non-regular fractional factorial designs, screening designs
in which some effects are a priori more likely, and robust design experiments. Section 7
concludes with a discussion.
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2 Models, priors, and model discrimination criteria

In this section, we introduce the design criterion and the associated Bayesian formulation.
Section 2.1 gives the design criterion based on the Hellinger distance. Section 2.2 introduces
the Bayesian formulation of the linear regression model and the associated model selection
problem, including priors representing assumptions A1-A3.

2.1 The design criterion

We begin by outlining the design and analysis setting that motivates our methodology. Our
aim is to identify the “optimal” design with q two-level factors in n trials for estimating the
parameters of the linear model:

Y = Xβ + ε, (1)

where Y is the N × 1 vector of observations, X is the model matrix, β is the vector of
factorial effects and the intercept, and ε is the vector of iid N(0, σ2) random errors.

The model selection problem amounts to identifying a subset of predictors as active, and
in this setting there are typically more parameters to estimate than unique treatments. The
possible models will be labeled as M1,M2, . . . ,MK . We defer discussion of priors for Mi and
(βi, σ) until Section 2.2.

To evaluate a design’s ability to distinguish between two models (say, Mi and Mj), we
use the Hellinger distance between predictive densities:

H(fi, fj) =
∫

(f
1/2
i − f

1/2
j )2dY = 2− 2

∫

(fi fj)
1/2dY. (2)

It is easiest to discriminate between models if they make different predictions, hence HD is
a larger-the-better criterion. The experimental design enters this criterion through fi and
fj, since the predictive densities are evaluated at the values of the factors specified in the
design. The fact that the Hellinger distance is bounded between 0 and 2 will be used later
in Section 5 to establish bounds on the corresponding design criterion.

Why is disagreement between predictive densities a good design criterion? From a phi-
losophy of science perspective, the different models can be thought of as different scientific
hypotheses or theories. One of the most effective ways to decide between competing theories
is to find situations in which they predict different states of nature, and observe which state
actually occurs. This philosophy motivates (2): a good design is one which will yield data
that will cause different models to predict differently.

Interest lies in comparing all possible models and thus the Hellinger distance for all
pairwise comparisons should be computed. We propose theHD criterion, which is a weighted
average of the Hellinger distances, under all possible pairs of models, using the product of
probabilities of the two models P (Mi)P (Mj) as weights.

HD =
∑

i<j

P (Mi)P (Mj)H(fi, fj). (3)
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All models are not equally likely. The weighting of the Hellinger distances serves to put
priority on distinguishing the most probable models. MSB use a related approach with
different model priors to average a Kullback-Leibler information measure between predictive
densities over all pairs of models.

2.2 Priors

The HD criterion (3) uses predictive densities, which implies a Bayesian formulation of the
problem. In this section, priors are specified in two stages: a prior on models (e.g. the Mi),
and a prior on (βi, σ) conditional on Mi.

We first introduce the priors on (βi, σ) given model Mi. Details of the derivation of the
Hellinger distance are given in the Appendix. A proper prior for σ2 such as an inverted
gamma is selected in most applications, and we recommend doing so here to guarantee that
the Hellinger distance is bounded. The coefficient vector βi and the associated matrix of
regressors Xi are indexed by i. Let ri be the number of columns in Xi (i.e., the number of
effects in model Mi plus one one additional column for the intercept). We use conventional
independent normal priors for the parameters of the regression model i. Thus π(βi|σ

2) ∼
MVN(0, σ2Γi), where

Γi = γ2
(

c 0
0 Iri−1

)

. (4)

We choose c = 1, 000, 000 so that the prior on the intercept is has mean 0 and large variance.
In all calculations presented we take γ = 2. MSB suggest this is a reasonably uninformative
value in the context of starting designs. More careful choice of γ is required for follow-up
designs, which are not considered in this article.

This prior formulation means the Hellinger distance (2) can be written as

H(fj, fj) = 2−
2

∣

∣

∣

1
2

(

Σ
−1/2
i Σ

1/2
j + Σ

1/2
i Σ

−1/2
j

)∣

∣

∣

1/2
(5)

where
Σi = (In +X ′

iΓiXi). (6)

Some intuition about the distance measure can be gained by considering the situation when
there are only two competing models and only one trial to be conducted. In this instance,
the Hellinger distance will be greatest for a design where there is little uncertainty about one
model and large uncertainty about the other. The criterion amounts choosing trials where
the average relative uncertainty between models is largest.

The prior distribution on the model space is constructed via simplifying assumptions,
such as independence of the activity of main effects (Box and Meyer 1986, 1993), and inde-
pendence of the activity of higher order terms conditional on lower order terms (Chipman
1996, and Chipman, Hamada, and Wu 1997). These simplifications correspond to the three
model building assumptions (A1-A3) used for screening experiments. We work within these
assumptions to construct the prior on each model.
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First, the prior probability that an effect is active should be relatively small to obey
the effect sparsity assumption. Second, to follow the effect hierarchy assumption, the prior
probability that a main effect is active (denoted pA for factor A) should be at least as large
as the prior probability that an interaction term is in the model. To represent the effect
inheritance assumption, the probability that an interaction is included in the model will
depend on the presence of the parent main effects. That is, let pAB,0 ≤ pAB,1 ≤ pAB,2 denote
the conditional probabilities that an AB interaction is active, given 0, 1 or 2 of main effects
A and B are active. This hierarchy can be extended to higher order interactions, but we
confine our presentation to main effects and 2fi’s (Chipman (1996) discusses the choice of
priors for higher order interactions).

The choice of prior probability that an effect is active should coincide with the experi-
menter’s interpretation of the effect sparsity principle. If a 12-run design with 6 factors is
to be performed, clearly one would not anticipate 11 active effects (main effects and 2fi’s).
Indeed, this is implicit in the willingness to perform a 12-run design. Consequently, the
probability that an effect is active should be relatively small.

Our choice of prior distribution is flexible and can be calibrated to reflect the experi-
menter’s view of A1-A3. Let p denote the prior probability that a main effect is active. For
2fi’s, we use the following prior specification,

pAB,i =











0.01p if i = 0
0.5p if i = 1
p if i = 2.

(7)

A more general case is considered in the appendix, along with calculations that show that
the expected number of main effects under (7) is

E(# effects) = pq + pq(q − 1)
{

.005 + .49p+ .005p2
}

. (8)

Here q is the number of factors considered in the experiment. The first term in (8) is the
expected number of main effects, and second gives the expected number of 2fi’s.

The choice of p is now made so that expected number of active effects under the prior
matches that of the experimenter’s prior belief. For a specified number of effects expected
to be active, (8) can easily be solved for p. This is a particularly attractive feature of the
methodology since it explicitly builds in the experimenter’s prior belief about the size of the
model. In most situations, it is easier for an experimenter to express belief about the number
of anticipated effects rather than a probability associated with an effect.

MSB consider a more extreme prior than (7): An interaction can only be active if
both parents are active, in which case it must be active. That is, pAB,0 = pAB,1 = 0
and pAB,2 = 1. In effect, interactions are forced into the model, meaning that the models
{A,B}, {A,AB}, {B,AB} would receive zero prior mass, and only {A,B,AB} would re-
ceive nonzero mass. Under the more flexible formulation with pAB,2 < 1, the mass that MSB
allocate to {A,B,AB} is split between that model and the other three listed.

While somewhat restrictive, the prior suggested by MSB significantly simplifies computa-
tion. The number of potential models is dramatically reduced. If main effects and all possible
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two way interactions are considered, p main effects would lead to
(

p
2

)

= (p2 − p)/2 interac-

tions, and a total of K = 2(p
2+p)/2 models. This is important when evaluating HD, where

the constituent elements of the summation are for every possible pair of models. With 8
factors, 128 models would have positive mass under MSB, while the total model space would
contain 69 billion models in our formulation. In the next section we propose a solution to
this problem.

3 Searching for optimal designs

The search for promising designs involves two challenges:

• Evaluation of the HD criterion.

• An effective search algorithm for HD-optimal designs.

In many cases, to evaluate HD, we cannot calculate (3) for all pairs of models because
the model space is too large. Instead, we attempt to evaluate the largest terms in (3), by
discarding models that have small prior probability P (Mi). By replacing an average over
all pairs of models with an average over the most probable models, the evaluation of HD
becomes tractable. Raftery, Madigan, and Hoeting (1997) take a similar approach to model
averaging, sampling from a probability distribution on models and discarding all but the
most probable.

The strategy outlined above is implemented as follows: To identify models with high
probability, simulate a large number of models from the prior distribution. For those models,
evaluate their exact prior probability, and keep the most probable models. Factorization of
the prior facilitates such simulation, with main effects first being drawn from independent
Bernoulli distributions, followed by higher order terms which depend on the main effects.

Since many design optimization algorithms will involve multiple runs from different start
points, there will be many evaluations of HD. We have found it effective to use a small set
of models for preliminary searches and then re-evaluate HD for all promising designs using
a larger set of models.

The design optimization algorithm used here is an exchange algorithm similar to that of
Wynn (1972). Since we only consider 2-level factors, all designs considered have candidate
values of ±1 for all effects. Our exchange algorithm begins with a random n-run design, with
design points chosen with replacement from the 2q full factorial design, and considers adding
a single run. After evaluating HD for all n+ 1 run designs that contain the current n runs,
the design with the best improvement in HD is selected. A similar process is then repeated,
identifying the one run whose removal causes the smallest reduction in HD. Iterations
alternate between addition and deletion of runs until no further changes are produced. There
is no guarantee that this approach will converge to the HD-optimal design, therefore multiple
random designs are used as start points to generate a variety of promising designs.
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4 Example: 6 Factors in 16-Runs

An example where a resolution IV FF design exists is first considered. This is done to see how
an HD-optimal design compares to the most obvious choice for an experimenter. Suppose
an experiment with 6 factors in 16 trials is to be performed. The MA 26−2 FF design with
6 factors (labeled A− F ) has defining contrast sub-group:

I = ABCE = ABDF = CDEF. (9)

To find the HD-optimal design, the prior probability that a main effect is active must
first be chosen. The prior specification on the model space is obtained by setting (7) equal
to the expected number of effects. If the expected number of active effects is 5, then (7)
implies that p = 0.410.

A maximum of 40 models were used to evaluate HD in the exchange algorithm. Fifty
random restarts of the exchange algorithm were used, and the resultant 50 designs were then
re-evaluated using 400 models.

The HD-optimal design is shown in Appendix 1. The HD-optimal design is not the
same as the MA FF design. Indeed, it is not a regular FF design. So why are the designs
different? Quite simply, the design criteria are measuring different things. MA FF designs
emphasize first the estimability of all main effects free of aliasing with other main effects
and interactions, followed by the estimability 2fi’s. Here the MA design results in some 2fi’s
being completely aliased (e.g., AC = BE). HD-optimality, on the other hand, emphasizes
the estimability of models and several effects are partially aliased, but none are fully aliased.

The HD-optimal design is, in fact, an orthogonal array, and therefore there is no aliasing
between main effects. There is partial aliasing between main effects and some 2fi’s. Hall
(1961) found that there are exactly 5 non-isomorphic 16-run orthogonal arrays. The first
design is the regular FF design. The remaining four designs can be found in Wu and Hamada
(2000, page 333) and are labeled I-IV. The HD-optimal design is the same as selecting
columns 1, 4, 7, 9, 12 and 14 of Halls design II.

As noted by Hamada and Wu (1992), the partial aliasing of NFF’s can have advantages
over regular FF designs. For instance, in this example the MA resolution IV design is the
traditional choice. However, the model Y = A+B+AC is indistinguishable from the model
Y = A + B + BE because the effects AC and BE are fully aliased. However, the model
Y = A + B + C + D + E + F is estimable using the MA FF design since the design is
resolution IV. Thus, implicitly the latter model is viewed as more likely than the former two
models under the MA criterion.

Under the HD criterion, Y = A+B+AC and Y = A+B+BE will typically have more
prior mass (both have prior mass of 4.82 × 10−4) and thus be viewed as more likely than
Y = A+B+C+D+E+F (prior mass of 7.11×10−7) because the criterion penalizes large
models and instead puts more mass on small, more parsimonious sub-sets of effects. The
HD-optimal design is able to estimate each of the three models and is best at distinguishing
between the models in terms of Hellinger distance under the prior in (7).
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5 A bound and a graphical representation of the HD

criterion

Evaluation of the suitability of an experiment design is an important step in design selection.
For example, trade-offs between run size and estimability are often necessary. The choice of
run size is facilitated by a bounded design criterion. In this section we explore a bound for
HD and its value in determining an appropriate run size.

The Hellinger distance is bounded above by 2, and ideally each model is perfectly distin-
guishable in practice. So, ideally Hellinger distance between all predictive densities will be
2. In practice, this will not happen for finite sample sizes in this setting, but helps establish
a useful upper bound on the HD criterion.

HD ≤ 2
∑

i<j

P (Mi)P (Mj). (10)

This bound still depends on the model probabilities, and also the number of models in-
cluded in the summation. An upper bound is given in the following theorem.

Theorem: For all possible probability distributions on the model space,

HD < 1.

Proof: Suppose that there are K models. The probability distribution that will maximize
(10) will put equal mass 1/K on each of the K models. Then

HD ≤ 2
∑

i<j

P (Mi)P (Mj) ≤ 2
∑

i<j

1

K

1

K
= 2×

(

K

2

)

K−2 = 2K(K − 1)K−2/2 < 1 (11)

Jones and DuMouchel (1996) stress the importance of interpretability of a design opti-
mality criterion, and express an opinion that the MD criterion of MSB is difficult to interpret.
The upper bound established in the Theorem helps shed some light on the overall quality
of the design. In practice, we can use the upper either use 1 as an upper bound or compute
2
∑

i<j P (Mi)P (Mj) directly from the approximated model space to help put an HD-value
into perspective. We discuss this issue further after introducing a useful plot.

The bound (10) does not depend on sample size n, and one would expect that as run size
increases, HD approaches the bound. To explore this, we suggest identifying HD-optimal
designs for a variety of run sizes n, and examining a plot of HD against n. The rate at
which HD approaches the upper bound will help trade off run size economy against model
discrimination ability.

To illustrate this approach, we return to the example in Section 4, with 6 main effects
and

(

6
2

)

= 15 2fi’s arising from 6 factors. HD-optimal designs for n = 1 to 32 trials were

found. For the 32 run case, there exists a resolution VI FF design (I = ABCDEF ) which
can estimate all main effects and 2fi’s. The HD values for the HD-optimal designs are plotted
versus the run size in Figure 1. This example has a HD upper bound 2

∑

i<j P (Mi)P (Mj) =
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Figure 1: Optimal HD Values Versus Run-Size, for 6 factors with p = 0.410. The upper
bound of 0.969 for HD is also plotted.

0.969, which was computed using 400 of the most probable models generated from the prior.
The HD optimal 16-run design is close to this bound with HD=0.832.

This plot is an extremely useful tool in evaluating the design and we recommend its
routine creation. The are two distinguishing features. First, as the run size increases from
1, the HD criterion increases quickly. With each new trial, there are more models with high
prior probability that that can be estimated and distinguished. Second, after about n = 12
the rate of increase of the curve decreases. At this point, almost all models are estimable
and the gains are due largely to increases in power to distinguish between models. Thus,
in addition to providing a means to evaluate a design relative to larger designs, the plot
also aids in run-size selection. Indeed, this plot suggests that we might instead consider
performing a 12-run design instead.

Considering that there are 6 + 15 = 21 effects, it may seem surprising that such small
designs seem adequate. This feature emphasizes the fact that the criterion seeks to discrim-
inate between relevant models, rather than estimate all possible effects. Indeed, the greatest
gains in HD occur before the expected number of effects (set to be 5 here).

For comparison, we construct a similar plot for the MD criterion of MSB. Figure 2
indicates that this criterion increases almost linearly with n, regardless of the sample size.
Unlike the Hellinger distance, the Kullback-Leibler information is not bounded and thus we
would not expect to observe the general pattern observed in Figure 1. There appears to be
less information in the MD criterion to aid in selecting a run size than in the HD criterion.
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Figure 2: Optimal MD Values Versus Run-Size (p = 0.410)

6 More Examples

In this section we demonstrate the methodology using additional examples. We find HD-
optimal designs in some common situations and finish with two specialized cases that illus-
trate the flexibility of the proposed approach. The models considered contain main effects
and 2fi’s only.

6.1 5 Factors in 12 Runs

In this example, a 12-run experiment with 5 factors is considered. As before, the prior
probability that a main effect is active must first be chosen. If the expected number of
active effects is 4.0, then (7) implies that p = 0.429. Again, a maximum of 40 models were
used to evaluate HD in the exchange algorithm, 50 random restarts of the exchange algorithm
were used, and the resultant candidate designs were re-evaluated using 400 models.

The HD-optimal design is shown in Appendix 2. It turns out that the HD-optimal design
is the same as the 12-run Plackett-Burman design. The HD-optimal design has HD=0.830,
and 2

∑

i<j P (Mi)P (Mj) = 0.977 for the larger approximated model space. Thus we are
fairly close to the upper bound.

To evaluate the goodness of this design relative to other HD-optimal under the prior,
HD-optimal designs for n=1 to 16 trials have been found. The HD values for the HD-
optimal designs are plotted versus the run size in Figure 3, indicating that 12 trials should
be adequate for screening.

In practice this procedure does not guarantee that an orthogonal array will provide
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Figure 3: Optimal HD Values Versus Run-Size for a 5-factor design with p = 0.429. The
upper bound of 0.977 for HD is also plotted.

optimal discrimination between the models of interest. However, that the HD-optimal design
and the Plackett-Burman are the same suggests that the Plackett-Burman design, which has
previously been suggested for screening, is well suited to that task. Perhaps a more important
implication for this article is that the HD criterion can be used to select designs of any desired

run size, with some assurance that the designs are sensible. Moreover, examining HD as a
function of run size, it is easier to select an appropriate number of runs.

6.2 Designs with prior knowledge

Experiments are frequently performed with prior knowledge about the significance of some
of the effects. That is, expert knowledge may indicate that some effects are likely to be
unimportant. In this context, the regression effects can be classified into two broad classes:
a negligible set of effects thought to be unimportant; and a requirements set of effects that
should be estimated. Franklin and Bailey (1977) present a search algorithm for finding
fractional factorial designs that estimate the requirements set assuming the effects in the
negligible set are inert. To address the same problem, Wu and Chen (1992) introduce a
graph aided method to identify fractional factorial designs that estimate the requirements
set. Their approach begins with a MA fractional factorial and creates a set of linear graphs
under the assumption that some effects are negligible.

Our approach is easily adapted to find designs that address this problem by giving rel-
atively high prior probability to effects in the requirements set and relatively low prior
probability to the effects in the negligible set. It is tempting to place a prior probability 0 on
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the effects in the negligible set and of 1 on the effects in the requirements set. If this is done,
there is really no need to run the algorithm since there is only 1 model in the model space,
and one could elect to perform optimal design (e.g., D-optimal design) as an alternative.
In addition, the design will not provide any robustness to the assumption that an effect
is actually negligible. Instead the goal is to identify models which, with high probability
contain effects from the requirements set, and with low probability contains effects from the
negligible set.

As an illustration, consider the following example outlined in Wu and Chen (1992). An
experiment is to be run with 11 factors (A−K), each at 2 levels. Prior knowledge indicates
that the requirements set should contain all main effects and 2fi’s among A − F . The
negligible set contains all other 2fi’s. A reasonable prior specification for the effects in the
requirements set is to choose the probability of a significant main effect to p1 = 0.5 and for
the interactions,

pAB,i =











0.01p1 if i = 0
0.5p1 if i = 1
p1 if i = 2.

(12)

For effects in the negligible set, we suggest setting the probability of a significant main effect
to p2 = 0.2 and for the interactions,

pAB,i =











0.01p2 if i = 0
0.5p2 if i = 1
p2 if i = 2.

(13)

In this case, all main effects would have prior probability p1 = 0.5, 2fi’s among A−F would
use (12), and other interactions would use (13).

An advantage of our approach is that it identifies an optimal design and gives the best
assignment of factors to columns of the design matrix. The aforementioned approaches will
identify a design, but no obvious optimality criteria exist, and are restricted to only regular
fractional factorial.

6.3 Robust Parameter Experiments

An important application in industrial statistics is robust parameter design where experi-
menters are interested in determining the levels of control factors that minimizes the impact
of variation due to hard-to-control noise factors (e.g., see Wu and Hamada, 2000). Variance
reduction is achieved through control factors that interact with noise factors. Consequently,
interest lies in models that contain control-by-noise interactions.

Our flexible approach can be modified to find designs that emphasize estimation of models
containing effects of primary interest. For instance, consider an experiment with 8 runs where
there are 4 factors: 3 control factors (A− C) and 1 noise factor (N). To emphasize models
that contain control-by-noise interactions, the prior probability that N and interactions
involving N are made relatively large. As a consequence, models containing N are given
higher prior probability and contribute more to the HD-value in (3).
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Interactions involving only control factors are given the weak heredity prior (e.g., (pAB,0 =
0.01, pAB,1 = .25, pAB,2 = .5), and interactions involving N are given higher prior probability
(e.g., pAN,0 = 0.5, pAN,1 = .5, pAN,2 = .5)). 50 random starts were used to identify the
optimal designs.

The optimal design gives a fractional factorial design with I = ABC. Notice that design
is able to estimate all control-by-noise interactions. Indeed, this is the optimal design for
this configuration given in Wu and Hamada (2000) and Bingham and Sitter (2001).

7 Discussion

In many instances experimenters prefer orthogonal designs when there is one available. The
methodology introduced in Section 3 does not guarantee that the HD-optimal design is an
orthogonal array. Instead, the methodology formally incorporates A1-A3 into the design
construction criterion. If an orthogonal array is preferred we can depart somewhat from our
choice of model prior and adapt the methodology so that orthogonal arrays can be identified
when they exist.

Orthogonal arrays have main effect columns that are orthogonal, and when used as
experiment designs they emphasize the estimability of main effects. In our framework, this
amounts to putting priority on models containing active main effects. This is achieved by
placing relatively high prior probability (pA = 0.5) on main effects and relatively small
prior probability on interaction effects. We have found that for 2fi’s, the following prior
distribution, conditional on main effects, is suitable in most cases

pAB,i =











0.01 if i = 0
0.10 if i = 1
0.25 if i = 2.

Selecting relatively small prior probability for 2fi’s implies that models with mostly main
effects and a few 2fi’s will impact the optimality criterion and thus the choice of optimal
design.

This work points to several other possible areas of further research. The computational
burden of evaluating HD for starting designs is due to diffuse nature of the model prior. Our
calculations do not however take advantage of prior structure. It might be possible to group
like models together, allowing for faster computation of HD.

We chose to only consider designs with factor levels of ±1. Designs with real valued
factors are important although harder to optimize.

Although we only consider linear regression with Gaussian errors, (3) is sufficiently gen-
eral that it could be applied to other classes of models. A natural extension would be to
consider generalized linear models. While in practice straightforward, some issues will arise,
such as the need for approximations to posterior and predictive distributions. These and
other predictive models are currently under investigation.
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Appendix

A Derivation of Hellinger Distance

We now sketch the derivation of the Hellinger distance between predictive densities. We
refer to the model and priors defined in Section 2 to save space.

Let Y be the n× 1 vector of independent observations from the linear model in (1). The
model matrix, Xi is an n×ri matrix with the first column corresponding to the intercept and
the remaining ri − 1 columns corresponding to the factorial effects in model Mi. The prior
specification for the coefficients vector for model Mi is π(βi|σ

2) ∼ MVN(0, σ2Γi), where Γ
is defined in (4). Therefore, the predictive distribution of Y is normal with mean 0 and
variance σ2Σi, where Σi is defined in (6).

Following the outline in Meyer, Steinberg and Box (1996), we proceed conditionally on
σ2 and integrate out σ2 in the last step. Let fi and fj be the predictive densities of models
Mi and Mj respectively. The Hellinger distance between the predictive densities is

H(fi, fj) = 2− 2
∫

(fi fj)
1/2dY.

We now need to integrate (fi fj)
1/2 over the data to compute the Hellinger distance.

∫

(fi fj)
1/2dY =

∫ exp{−1
2
(Y ′

Σ−1

i

2σ2 Y + Y ′
Σ−1

j

2σ2 Y )}

(2 π)n/2|σ2Σi|1/4|σ2Σj|1/4
dY
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=
∫ exp{−1

2
Y ′(

(Σ−1

i

2σ2 +
Σ−1

j

2σ2 )Y }

(2 π)n/2|σ2Σi|1/4|σ2Σj|1/4
dY

=

∣

∣

∣

∣

∣

(

Σ−1

i

2σ2 +
Σ−1

j

2σ2

)−1
∣

∣

∣

∣

∣

1/2

|σ2Σi|1/4|σ2Σj|1/4

∫ exp{−1
2
Y ′(

(Σ−1

i

2σ2 +
Σ−1

j

2σ2 )Y }

(2 π)n/2
∣

∣

∣

∣

∣

(

Σ−1

i

2σ2 +
Σ−1

j

2σ2

)−1
∣

∣

∣

∣

∣

1/2
dY

=

∣

∣

∣

∣

∣

(

Σ−1

i

2σ2 +
Σ−1

j

2σ2

)−1
∣

∣

∣

∣

∣

1/2

|σ2Σi|1/4|σ2Σj|1/4

=
1

|σ2Σi|1/4|σ2Σj|1/4
∣

∣

∣

∣

Σ−1

i

2σ2 +
Σ−1

j

2σ2

∣

∣

∣

∣

1/2

=
1

|σ2Σi|1/4
∣

∣

∣

∣

1
2

(

Σ−1

i

σ2 +
Σ−1

j

σ2

)
∣

∣

∣

∣

1/2

|σ2Σj|1/4

=
1

∣

∣

∣

1
2

(

Σ
−1/2
i Σ

1/2
j + Σ

1/2
i Σ

−1/2
j

)∣

∣

∣

1/2

Lastly, we need to integrate over σ2. Notice that σ2 cancels out from the derivation of
the Hellinger distance. Therefore, selecting any proper prior distribution (say an inverted
gamma distribution) will simply result in the Hellinger distance in (2). If an improper prior
is selected, then the Hellinger distance may not be bounded above by 2. Substituting the
expression in the last step for

∫

(fi fj)
1/2dY in the Hellinger distance, we get the expression

in (5).

B Expected Number of Active Effects

Here, the expected number of active effects in a model is derived for a general form of prior
(7). There are q factors and

(

q
2

)

two-way interactions being considered in the model. Let p
be the probability that a specific main effect is active. The probability pAB,i that a specific
interaction (say AB) is active, given i main effect parents are active is

pAB,i =











c1p if i = 0
c2p if i = 1
c3p if i = 2.

(14)

Conditional on f active main effects, the expected number of active effects (main effects plus
two-way interactions) is

f +

(

f

2

)

c3p+ f(q − f)c2p+

(

q − f

2

)

c1p (15)
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This is because
(

f
2

)

interactions will have two active parents, f(q− f) interactions will have

one active parent, and
(

q−f
2

)

interactions will have no active parents. Expanding (15) yields

an expected total number of terms (including main effects) as

E(#effects | f active main effects)

= c1pq(q − 1)/2 + f
[

1 +
p

2
(c1 − c3) + pq(c2 − c1)

]

(16)

+ f 2
p

2
[c1 − 2c2 + c3] .

Since f is Binomial with q trials and probability of success p, we have E(f) = pq and
E(f 2) = pq(1− p+ pq). Taking the expectation of (16) with respect to f yields

E(#effects) = c1pq(q − 1)/2 + pq
[

1 +
p

2
(c1 − c3) + pq(c2 − c1)

]

+pq(1− p+ pq)
p

2
[c1 − 2c2 + c3] .

Further simplification yields

E(#effects) = pq + p

(

q

2

)

{

c1 + 2p(c2 − c1) + p2(c1 − 2c2 + c3)
}

(17)

For specified values of q, c1, c2, c3 and an expected number of effects, this cubic in p can easily
be solved for p. Note that the expected number of main effects is pq, the first term of (17).
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C HD Optimal Designs

16-Run HD-Optimal Design

-1 -1 -1 -1 -1 1
-1 -1 -1 1 1 -1
-1 -1 1 -1 1 1
-1 -1 1 1 -1 -1
-1 1 -1 1 -1 -1
-1 1 -1 1 1 1
-1 1 1 -1 -1 1
-1 1 1 -1 1 -1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 1 1
1 -1 1 1 -1 1
1 -1 1 1 1 -1
1 1 -1 -1 1 -1
1 1 -1 1 -1 1
1 1 1 -1 -1 -1
1 1 1 1 1 1
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12-Run HD-Optimal Design

+1 +1 -1 +1 +1
-1 +1 +1 -1 +1
+1 -1 +1 +1 -1
-1 +1 -1 +1 +1
-1 -1 +1 -1 +1
-1 -1 -1 +1 -1
+1 -1 -1 -1 +1
+1 +1 -1 -1 -1
+1 +1 +1 -1 -1
-1 +1 +1 +1 -1
+1 -1 +1 +1 +1
-1 -1 -1 -1 -1
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