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Robust designs with performance measures as responses are common in industrial applica-
tions. The existing analysis methods often regard performance measures as sole response
variables without replicates. Consequently, no degrees of freedom are left for error variance
estimation in these methods. In reality, performance measures are obtained from replicated
primary response variables. Precious information is hence lost. In this paper, we suggest
a jackknife based approach on the replicated primary responses to provide an estimate
of error variance of performance measures. The resulting tests for factor effects become
easy to construct and more reliable. We compare the proposed method with some existing
methods using two real examples and investigate the consistency of the jackknife variance

estimate based on simulation studies.

Introduction

Experimental designs are widely used in industries to control and improve the quality of
products. The basic purpose of these experiments is to arrive at combination of factor
levels which optimize the response or to identify the important factors which control the
characteristic of interest. Designed experiments are also used to reduce the variation of the
response by identifying critical factors (Taguchi (1986)).

There are many situations where analysis is performed on summary statistics of the
primary response variables. Here after we will refer to these summary statistics as perfor-
mance measures. For example, in an experiment discussed in Wu and Hamada (2000, page

124), the primary response variable is the thickness of epitaxial layer on a silicon wafer.



The aim of the experiment is to find the level combinations of the 4 factors such that its
variation is minimized. In this case, the performance measure is chosen as the log(sample
variance) of the replicated observations at each level combination. If the performance mea-
sure is regarded as our primary response, for the purpose of data analysis, then no degrees
of freedom are left for error variance estimation. In this situation, the general practice is
to use the analysis methods for unreplicated factorial experiments. See Wu and Hamada
(2000).

A detailed review of analysis of unreplicated factorial experiments is available in Hamada
and Balakrishnan (1998). Some widely used methods are, (i) Normal/Half Normal prob-
ability plots (Daniel (1959)) to identify the active effects and then pool the non-active
effects to arrive at an estimate of error variance. (ii) Pseudo Standard Error(PSE) estima-
tion method by Lenth (1989). These simple methods will be discussed in more detail later
with examples and/or in simulations.

The problem we are interested in is different from the analysis of unreplicated factorial
experiments. We have replications for each treatment combination, but we are interested
in a performance measure of these replications. When we use analysis methods for un-
replicated factorial experiments for these performance measures, precious information in
the replicated observations (for the primary response) is lost and hence the opportunity to
obtain a proper estimate of the error variance is also lost. We suggest a method based on
jackknife to recoup the information to estimate the error variance.

This paper is organized as follows. First, we discuss the most frequently used perfor-
mance measures and introduce the jackknife method for analyzing the performance mea-
sures, which will be explained by two real examples. In the subsequent section, we compare
the performance of jackknife method with Lenth’s method and explore the consistency of

jackknife method. Some concluding remarks are given in the last section.



Jackknife Method for Performance Measures

Consider a robust design experiment with n runs each replicated m times. Let y;; be
the j' replicate of the i'" experimental run, where i = 1,2,...,n and j = 1,2,...,m.
Most commonly used performance measures include n; = y; and 1, = log,(s?) where y; =

— S yij and s7 = — >0 (yi;—yi)?. Taguchi (1986) proposed a number of performance

measures in the context of quality engineering based on the response of interest. These
performance measures, referred to as Signal to Noise (SN) Ratios are also discussed in

Phadke (1989). Some frequently used performance measures are given in Table 1.

Table 1: Performance measures

Response Type Notation | Formulae

Average m Yi

Log Variance 2 log, (s7)

Smaller the better N3 —10 logm(% E;‘nﬂ yizj)
Nominal the better N4 101log,o(y?/s?)

Larger the better 5 —10 loglo(% E;nﬂ yi—jz)

Resampling methods are commonly used for constructing simple and efficient variance
estimators. Our idea here is to obtain an appropriate estimator of the variance of a per-
formance measure by resampling methods. Jackknife and Bootstrap are two widely used
resampling methods. When the sample size is small, the bootstrap method is likely to
produce unbalanced replicates while the jackknife is always balanced. Thus, we will only
persue jackknife in this paper.

Assume that we have n experimental runs and each run is replicated m times. Let
Yi = (Yi1, Yiz, - Yim) be the vector of replications from the i** experimental run, with c(y;)

be the corresponding performance measure. By deleting y;; from y; for j = 1,...,m, we



obtain m delete-one jackknife replicates of size (m — 1), y;(;). Hence, we obtain m jackknife
replications of the performance measure ¢(y;;)),7 = 1,2,...,m. The jackknife variance

estimate of the estimator ¢(y;) is given by

R 1 m
Via(e(yi)) = —— Z — c(yi.)* (1)
where ¢(y;.) = 1/m 372, ¢(yi¢;)). A pooled estlmate of the error variance is,

n
A

1 N
‘/;7 g Z Vja yl (2)

=1

Let us consider the “F-Statistics”

Mean Square for the Factor Effect

Vosale(y))
We suggest to use this F to test the significance of factor effects in the ANOVA where

F=

the variance estimate has (m-1)n degrees of freedom. Some theoretical aspects of jackknife
together with justifications for the F test is discussed in the Appendix.

Next we illustrate this method with two real examples from the literature together with
existing analysis methods.
Example 1:
We refer to this example from Wu and Hamada (2000, page 124). The nominal value of
the thickness of epitaxial layer on a silicon wafer is 14 pym with a specification of +0.5um.
The current process setting leads to excessive variation and a 2* factorial experiment is
conducted with four process factors (A,B,C and D) and the experiment is replicated m = 6
times. In this experiment we like to identify the important factors that could be used to
minimize epitaxial layer non-uniformity while maintaining average thickness close to the
nominal value. Let us consider the performance measure 1, = log,(s?). The design matrix
together with values of the performance measure is given in Table 2.

Traditional half-normal plots are used to judge the significance of the factor effects.

Factor A is judged as “significant” based on these plots. A formal test of effect significance
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Table 2: Design matrix, performance measures and the jackknife variance estimates for

Example 1
Factors
Run| A B C D| n ‘A/]‘a(n2>
1 - - - 4 [-5.77 | 0.6904
2 - - - - ]-531] 0.1665
3 - - 4+ 4+ 1]-5.70] 0.6371
4 - - + - |-6.98| 0.8964
5 -+ - 4+ ]-5.92 | 0.4638
6 -+ - - ]-5.49] 0.9030
7 -+ 4+ +|-411] 0.1596
8 -+ - |-6.24 | 0.5398
9 |+ - - +|-1.54 0.2893
10 |+ - - - ]-2.12] 0.1446
11 |+ - + 4+ |-1.58 ] 0.1155
12 |+ - 4+ - |-1.49] 0.2961
13 |+ + - +1[-1.92) 02711
4 |+ + - - ]-243] 0.2231
15 |+ + + | -1.12 | 0.1129
16 |+ + - | -2.65 | 0.1816




using Lenth’s method (1989) was also provided in Wu and Hamada (2000). The method
uses a robust estimator of the standard deviation of the factor effect 8;. It is called pseudo

standard error (PSE) and is defined as
PSE = 1.5Medianjg;|<2.5s9)|0s]

where median is computed among the |6;| with |6;| < 2.5s9 and sg = 1.5Median|é;].

0;

Por exceeds the critical values which can be found

An effect 6, is declared significant if |
in Wu and Hamada (2000), reproduced from Ye and Hamada (2000). In this example, factor
A is found to be significant.

Using jackknife replicates for each experimental run, we obtain a variance estimate
Vja(nz) of the performance measure as per (1). For the first run, the primary responses are
(14.812, 14.774, 14.772, 14.794,14.860, 14.914) (see Wu and Hamada(2000)). By deleting
one observation at a time, we create 6 jackknife samples of size 5. The performance measure,
log,(s?), for these jackknife samples are (-5.5537, -5.7338, -5.7518,-5.6052, -5.6719, -6.6432).
Then jackknife variance estimate of log,(s?) for run 1 is computed as 0.6904. Similarly, we
compute the jackknife variance estimate for each run and they are given in the last column
of Table 2. The pooled jackknife variance estimate ija = 0.3808 by (2), which is then used
to test the factor effects. The ANOVA table for n; is given in Table 3.

We find that factors A and D are significant. The analysis based on Lenth’s method
finds only A being significant. Note that A is extremely large compared to other effects.
Almost any method will declare it to be significant. Smaller effect, D, was not judged
significant by Lenth’s method.

Example 2:
This example is from Taguchi (1986, page 127). An experiment was planned and conducted
to identify the factors that have strong effects on the wear on a slider pump. Five factors

(A,B,C,D and E) and two interaction effects (AB and AC) were suspected to influence the



Table 3: Analysis of Variance table for 7,

Source | d.f MS F

A 1 | 58.8135 | 154.4
B 1 | 0.0245 0
AB 1 ] 0.7321 1.7
C 1 | 0.0236 0
AC 1 1.829 0.5
BC 1 | 0.4394 1.2
ABC 1 | 0.4479 1.2

D 1 | 1.5961 4.2
AD 1 0 0
BD 1 ] 0.3721 1.0

ABD | 1 | 0.0295 0.1

CD 1 | 1.3535 3.6
ACD | 1 | 0.9758 2.6
BCD 1 | 0.3947 1.0
ABCD | 1 | 0.0472 0.1

Via 0.3808




wear and an Orthogonal Array Experiment Lg(27) with m = 8 replicates was performed.
The data consist of wear (in microns) at eight points on the slider of a pump and the goal
is to reduce both the mean and variation of the wear. According to Taguchi, the SN Ratio
of ‘smaller the better’ type, ns (see Table 1) is an appropriate choice for a performance
measure. The design matrix and the values of 73 for this experiment are given in Table 4.

The corresponding Analysis of Variance (ANOVA) table is given in Table 5.

Table 4: Design matrix, performance measures and the jackknife variance estimates for

Example 2
Factors
Rm|A B C D E N3 Vja(ﬁs)
1 - - - - - |-21.8717 | 1.8395
2 - - 4+ 4+ 4 ]-20.6023 | 5.6720
3 - 4+ - 4+ 4+ |-14.7712 | 4.9053
4 -+ 4+ - - ]-16.1278 | 1.3237
5 |+ - - -+ |-24.1539 | 7.0389
6 |+ - + + - |-21.7136 | 9.9465
7T |+ -+ - |-22.9584 | 2.6745
8 | + + - 4 [-23.2710 | 7.1220

In Taguchi’s (1986) analysis, the sum of squares due to the small effects C, AC and E
are pooled to obtain the sum of squares of error. The contribution percentages (p%) of the
remaining effects are then calculated. The effects of A, B and AB are found “significant”
by examining the magnitude of their contribution percentages.

Another approach is to use the traditional analysis where the error sum of squares is

constructed by pooling the small effects after a visual inspection of the normal probability



Table 5: Analysis of Variance table

Source | d.f | SS MS | Fpooted | P % | Flack

A 1 |43.82]43.82 | 115.3 | 52.9 | 8.65
B 1 | 15.72 | 15.72 | 414 18.7 | 3.10
AB 1 | 17.81 | 17.81 | 46.9 | 21.2 | 3.51
C 1 1 0.32 | 0.52 1.37 0 0.10
AC 1 | 0.61 | 0.61 1.60 0 0.12
D 1 | 3.61 | 3.61 9.5 3.9 | 0.711

1| 0 0 0 0 0
(&) |(3)] 1.13 [ 038 | - 3.3
Total | 7 |82.09 100.0

plots. Here it has 3 degrees of freedom and the F tests confirm that A, B and AB are
significant. Analysis based on Lenth’s method indicate that only factor A is significant.
Using the jackknife replicates for each experiment, we obatin jackknife variance ‘A/'ja(m)
(see Table 4). Pooled jackknife variance estimate ‘A/;Dja = 5.06. This i1s used to test the
significance of the factor effects in the ANOVA table (see Table 5). We find that only the
main effect A is significant at the 5% level. It is seen that our jackknife error variance

estimate for n3 is larger than the estimate obtained by pooling the 3 smaller effects.
Performance of Jackknife

Adapting methods from unreplicated factorial experiments to analyze robust designs re-
quires the pooling of sum of squares for smaller effects as indicated in Examples 1 and
2. Tests based on jackknife error variance estimate make use of the information from the

primary response variables. Thus, it is likely a better approach. We will use simulations



to compare the jackknife method to Lenth’s method under two performance measures and
explore the consistency of the jackknife variance estimator.

Comparison under performance measure 7,

We compare the jackknife method to Lenth’s method for the simple performance measure
average (1), where the true variance is known. Let us consider a 2* factorial experiment
with factors A, B and C where all factors and interactions have some effects. Let y;; be the
response for the j** replicate of the i** run where i=1,...,n and j=1,...,m, which is modelled

as,

vi; = 10+ 0.24 + 0.05B + 0.1C + 0.1AB + 0.075AC + 0.03BC + 0.001ABC +¢;; (3)

where A, B and C takes values of +1 depending on the levels, e;; are normally distributed
with mean 0 and ¢=0.5 and AB, AC, BC and ABC represent the values of the variables
associated with the interactions. Var(y;) for the :** run is 0?/m and the variance of an
estimated effect = 0%/2m. The jackknife error variance estimate for each run Vja(g,-) is
unbiased for Var(y;) = o2/m. Thus, V,;,/2 is an unbiased estimate of 62/2m. Since the
expected value of PSE is complicated, we carry out 1000 simulations as per model (3)
to approximate its expected value. For each simulation, we estimate PSE and Vja, and
perform the significance tests based on both jackknife and Lenth’s methods. Based on the
1000 simulations, we compute the percentage of times each effect is declared significant and
the results are summarized in Table 6.

It is very clear that Lenth’s method over estimate the standard error of the factor effects
for this performance measure. Jackknife variance estimate from the simulations is almost
the same as the true variance. Lenth’s method does not pick up the smaller effects as often

as the jackknife method. For larger sample sizes, jackknife performs far superior to Lenth’s

method. i.e. power of the test increases when sample size increases.
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Table 6: Comparison of Jackknife method to Lenth’s method for n; based on % times

factors significant

Factor Effects m=>6 m=10 m=20 m=>50

Jack | Lenth | Jack | Lenth | Jack Lenth | Jack | Lenth

A 80.9 26.9 94.6 24.3 100 25.7 100 22.8
11.7 2.6 15.3 1 24.7 0.2 0l.4 0.1
AB 27.1 5.1 44.3 4.8 73 3.7 97.2 0.9
C 28.3 5.2 41.8 4.6 72.9 3.8 97.9 1.1
AC 17 3.2 29 2 48.3 1.2 84.4 0
BC 7.9 1.3 8.2 0.6 11.4 0 20.3 0
ABC 6.9 0.6 6.1 0.2 5.3 0.1 4.8 0

Standard Error

of Factor Effect | 0.1445 | 0.2417 | 0.1119 | 0.2311 | 0.0791 | 0.2193 | 0.05 | 0.2136

True
Standard Error | 0.1443 | 0.1443 | 0.1118 | 0.1118 | 0.0791 | 0.0791 | 0.05 0.05

of Factor Effect
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Comparison under performance measure 1),

Our next simulation, compares jackknife method to Lenth’s method under performance
measure 1,. We construct a linear model for a 23 factorial experiment with performance
measure 7, as response so that factors A and C have significant effects on n; and other

factor effects including interactions are negligible. That is, we use a linear model
Yij = pi + €ij (4)

for the primary response of the 7** run and the j** replicate. Suppose that we are interested
in the effect of factors on the performance measure log(s?) which estimates log(a?). Let u
represents the overall mean, « is the effect of factor A, 3 is the effect of factor C. A suitable

model for the performance measure is to let o7 = var(e;;) such that
log(cf) = p+aAd+fC + & (5)

where A and C take values of £1 depending on their levels in the 7' run and ¢; is some
white noise such that ¢; ~ N(0,0?).

In our simulation, we set o2 = 0.05%, o = 1.05,3 = 0.95 and p = 1. We first generate
¢; and determine a value of o7 according to (5). We then obtain m = 6 primary responses
according to (4) by generating e;; from N(0,0?) for the :*" run. The performance measures
log,(s?) and its jackknife variance estimate are computed thereafter. We then test the
significance of factor effects at 5% level based on jackknife variance estimate and Lenth’s
method. The whole process is repeated 1,000 times. The percentage of times each factor
is significant at 5% level is shown in Table 7.

According to Table 7, Lenth’s method has lower power to capture the significance of
the factors A and C than the jackknife method. For instance, factor A is found significant
95.1% of times by using jackknife method while it is only 70.3% by using Lenth’s method.

In addition, the main effect of B is found significant only 3% of the times which is in line
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Table 7: Percentage of time factors significant

Factor | Lenth’s Method | Jackknife Method
A 70.3 95.1
B 2.4 3.0
AB 2.4 4.7
C 61.5 87.4
AC 3.3 3.0
BC 2.9 2.7
ABC 2.6 2.6

with the 5% significant level. We note that Type I errors of the jackknife method are

comparable to those of Lenth’s method, and are near the 5% nominal value.

Consistency

We now explore the consistency of the jackknife variance estimate of the performance

measures. Jackknife variance estimator for the performance measure 7 is strongly consistent

if A
Vi

BECYZRN _>a.5. 1
oa(n)

2

2(n) is the variance of the performance measure and a.s denotes almost

as n — oo where o
sure convergence (Shao and Tu (1995 page 25)).
We postulate a simple linear model for a 23 full factorial design with all three factors

having significant effects:

vij =+ ad + BB +7C + € (6)

with p = 10,0 = 8 = v = 1,¢;; ~ N(0,0.3?), and A, B,C equal +1 depending on the
levels of the three factors.

For each experimental run, we generate 6 samples based on the above model and all
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Table 8: Comparison of R(n) for different performance measures

Run m 72 N3 N4 s

1 1.03 | 1.48 | 1.01 | 1.42 | 1.02
2 0.89 | 1.53 | 0.97 | 1.70 | 1.07
3 0.96 | 1.51 | 0.97 | 1.65 | 0.98
4 0.99 | 1.73 1 0.96 | 1.30 | 1.04
) 1.03 1 1.53 | 0.90 | 1.51 | 1.01
6 0.97 | 1.48 | 1.06 | 1.49 | 1.04
7 1.02 | 1.60 | 0.99 | 1.46 | 1.02
8 0.99 | 1.53 | 0.92 | 1.58 | 0.93

Pooled | 0.98 | 1.55 [ 0.97 | 1.51 | 1.01

the five performance measures are considered. We construct 6 jackknife samples from each
run and compute jackknife variance estimate for each of the performance measures. This
procedure is repeated 1000 times. The average of the jackknife variance estimates over 1000
simulations is computed and denoted as Vja (7). The variances of performance measures

based on 1000 repeatitions are denoted as V'(n).

Let

() = Y1) @

If the jackknife variance estimator provides a sensible error variance estimate, we should
have R(n) close to 1. The jackknife variance estimator overestimates when R(n) > 1 while
it underestimates when R(n) <1. The simulation results on ]:?(77) run-wise and design-wise
are given in Table 8.

Table 8 reveals that the value of R(n) varies for different performance measures. It is

close to 1 for n3 and 75, and around 1.5 for 1, and n4 indicating overestimation.
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Table 9: Comparison of R(n) for different replication (m) for ny and n4

2 T4

Run | m=6 | m=10 | m=20 | m=50 | m=6 | m=10 | m=20 | m=>50
1 1.48 | 1.32 1.08 1.03 | 142 | 1.25 1.19 1.04
2 1.53 | 1.28 1.12 1.04 | 1.70 | 1.30 1.05 0.98
3 1.51 | 1.44 1.17 0.96 | 1.65 | 1.15 1.07 1.09
4 1.73 | 1.26 1.12 1.02 | 1.30 | 1.18 1.17 0.98
5 1.53 | 1.29 1.21 1.07 | 1.51 | 1.42 1.13 1.08
6 1.48 | 1.30 1.16 1.00 | 1.49 | 1.37 1.14 0.95
7 1.60 | 1.26 1.10 0.99 | 1.46 | 1.24 1.07 1.16
8 1.53 | 1.34 1.12 0.95 | 1.58 | 1.35 1.05 0.98
Pooled | 1.55 | 1.31 1.13 1.01 | 1.51 | 1.28 1.11 1.03

It 1s well known that the jackknife variance estimator is consistent under very general
conditions (Shao and Tu (1995)). The overestimation problem is likely a small sample
problem. To make the point, we repeat the simulations with m = 10, 20 and 50 for

performance measures 7z and 1y. We expect R(n) to get close to 1 as sample size increases.

These results are given in Table 9.

Table 9 confirms that the jackknife variance estimate is very close to the true variance
when m=>50. Thus, when m is small, tailor made adjustments need to be considered. In
general, this adjustment factor can simply be determined with simulation. For example,

for performance measure n4 with m = 6, a factor of 1.51 be appropriate according to Table

10.

To verify that the adjustment factor is not sensitive to o2 chosen in the model (6), we

repeat the simulation study with ¢ = 0.3, 0.6, 1, 1.5 and 2 for m=6, 10, 20 and 50. We
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Table 10: Sensitivity of R(n) for different white noise (o) for e and 74

12 N4
o 0.3 | 0.6 1 1.5 2 0.3 | 0.6 1 1.5 2

m=6 | 1.55 | 1.58 | 1.54 | 1.59 | 1.60 | 1.51 | 1.60 | 1.56 | 1.54 | 1.53
m=10 [ 1.25 | 1.28 | 1.22 | 1.25 | 1.26 | 1.23 | 1.23 | 1.30 | 1.24 | 1.26
m=20|1.16 | 1.12 | 1.13 | 1.11 | 1.10 | 1.13 | 1.10 | 1.07 | 1.10 | 1.12
m=50 | 1.06 | 1.04 | 1.03 | 1.03 | 1.08 | 1.04 | 1.08 | 1.07 | 1.05 | 1.03

found that the ratio ]:?(r]) does not depend on the value of o and takes very similar values
among the experimental runs. For brevity, we only present the ratio for pooled variance in
Table 10 for these two performance measures.

Incorporating the correction factor for 7, in Example 2, the jackknife variance estimate
is reduced to 0.2539. This results in the significance of interaction effects CD and ACD
at 5% level. In the study of comparison under performance measure 1,, the percentage of
times when factor A is significant is improved to 97.4; the corresponding percentage for
factor C is improved to 95%. At the same time the percentages of times when other factors

are found not significant are still as high as 93.5%.
Discussions and Conclusions

When replications are available for experimental runs in robust design experiments, it is
better to use this information to estimate the variance of the performance measures of
interest. The proposed jackknife method is simple to use and efficient in estimating the
error variance. It gives an opportunity to obtain an estimate of the within run variance
which leads to a more reliable test for the factorial effects. Other usual methods (including

Lenth’s) use variance estimators based on between effects variation. In fact, Lenth’s method
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is devised for the analysis of unreplicated factorials when there is effect sparsity. If the
ratio of number of active factors to the number of runs is large, then the commonly used
methods for analyzing unreplicated factorials are not very effective. Increasing the number
of replications in each run improves the power of detecting significant effects in the proposed
method while it has little impact in the methods commonly used. We feel that the proposed
method can be a great tool whenever one is analyzing a robust design with a performance

measure such as the average or log(s?).

Apppendix

Let y = (y1,Y2, ..., Ym) be a sample of size m. Suppose that the parameter £ is estimated
by f = ¢(y) with ¢ being a continuous function of y. We wish to estimate the bias and
variance of é The jackknife focuses on the construction of pseudo samples by leaving out
one observation at a time. The :** jackknife sample consists of data with the i** observation

removed:
Yiu) = (ylv Y2,y Yi-1, Yit1,- - -, ym)vz = 17 27 RIS (8)
Let é(i) = ¢(y(iy) be the i*" jackknife replication of the estimate é The estimates of the bias

and variance of this estimator are,

bias;s = (m — 1)(5(.) —§),
Vie = —— > (&o — &)’ )

where é(.) =", é(i)/m (Efron and Tibshirani (1993)).

As it is clear from (8) that two jackknife samples differ only by two data points hence
are very similar. Thus simple standard deviation of the jackknife replications does not
represent the standard error of the original estimator. Because of this, the total variation
in jackknife replicates provides an approximate estimate of the variance ofé as given in (9).

For a class of estimators, it can be shown that ‘A/ja is asymptotically unbiased as m — oo
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(Theorem 2.1, Shao and Tu (1995, page 25)). One may refer to Efron and Tibshirani(1993)
and Shao and Tu (1995) for more detailed discussion.

In many applications, the unknown parameter, say, £, is a smooth function of other
easily estimable parameters such as the mean and the 2nd moment. The corresponding
estimator is a function of the sample moments. This includes all performance measures

discussed. Let y;1,Ys2, ..., Yim be a set of independent and identically distributed observa-

tions. For simplicity, let & = g(s1), & = g(y1) with py = E(y1;) and g, = LSy Let

5T == "1 (y1; — y1)?. Approximately, we have,

& —& =g (w)o — ]+ op(Gi — 1) (10)

where o,(.) is a negligible quantity when m is large and the jackknife variance estimate of
8, is approximately

Vo = o) S0y — 30 = ol ()]s (1)

=1
Under normality, y; — 1 and s? are independent. Without the normality assumption,

they are approximately independent when m becomes large. Hence,

(él - &) om(y —m)?

~D

Vi st
which has an F-distribution with degrees of freedom 1 and m — 1. Applied to our perfor-
mance measure, the F-Statistic is approximately the ratio of two independent quadratic
forms. Thus the F-distribution with 1 and n(m-1) degrees of freedom is a reasonable choice.
When the distribution of individual observations are nearly symmetric, the normal
approximation is very good even when the sample size is not large. However, the Taylor
expansion in (10) may not be very precise for the typical size of m in experimental designs.

This may result in some bias in Vja and some adjustment may be required as seen in Table

9.
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