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Abstract 

To monitor processes with multiple parallel gauges, we consider the issue of separating 

changes in the gauge bias from changes in the upstream process. We propose two new 

chart statistics based on the F test and a likelihood ratio test. We compare these proposals 

to available methods such as those discussed by Mortell and Runger (1995). The paper is 

motivated by a truck assembly process in which wheel alignment characteristics are 

measured on every truck produced by one of four alignment machines, arranged in 

parallel within the overall process.  
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In industry, it is common to measure critical characteristics of the products from one process using 

multiple parallel gauges. For instance, in the assembly of light trucks, front wheel alignment is a key 

characteristic that affects the handling of a vehicle and the life of its tires. The characteristics measured 

include, among others, caster and camber angles on both the left and right side of the vehicle. In the 

assembly process, there is one production line. However, due to the high volume of trucks, there are 

four gauges to measure alignment characteristics. Each truck is measured by one gauge (100% 

inspection) and adjustments are made as necessary. A process map is given in Figure 1. 
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Figure 1: Truck Alignment Process with Four Parallel Gauges  

Each truck is assigned to a gauge haphazardly, depending on gauge availability. Due to this assignment 

procedure, we assume that the distributions of the true values of the alignment characteristics are the 

same for each gauge. 

 

It is important to detect a change in the distribution of alignment characteristics as early as possible. 

Statistical Process Control (SPC) charts are the usual approach to monitor a process for changes in 

mean and variability. In this article, we develop control charts to simultaneously monitor the assembly 

process and the consistency of the measurement system and illustrate their application using the truck 

alignment example. 

 

The need for formal process monitoring in the example became apparent during a project to reduce 

caster angle variation. At one point, the project team noticed that there were material differences in the 

average right caster angles among the four gauges. These differences existed despite a daily check of 

the four gauges with a “gold standard”, a mock-up of a truck suspension that could be pulled into the 

gauges.  
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Suppose we establish &X s  control charts for an alignment characteristic on the combined output of 

the process shown in Figure 1. If we detect a signal on the X  chart, we cannot tell whether the cause 

of the signal is a shift in the mean of the assembly process or a shift in the bias (mean) of one (or more) 

gauge(s). We have the same problem with the s chart. To address these problems, we specify two goals: 

1) Detect shifts in the mean and variation of the true characteristic values; 

2)  Detect shifts in the bias of one or more of the individual gauges.  

We do not consider the detection of changes in measurement variation because we assume that the 

variation of assembly process is large relative to the measurement variation and thus changes in the 

measurement variation of a single gauge would be difficult to detect and have little impact on the 

overall variation. By achieving these two goals simultaneously, we will have more confidence that we 

can find the assignable cause or adjust the process if there is a signal from the charts. For example, a 

signal from a chart monitoring the measurement system may suggest recalibrating one of the gauges 

and making no adjustment to the rest of the process. 

 

The problem is the same for any multiple stream process. The truck alignment example is a special 

case of a multiple stream process, where the multiple streams correspond to the four gauges. In general, 

we can use the charts to look for the changes in the overall process and stream-to-stream changes. Any 

monitoring methods developed for multiple stream processes can be applied to multiple gauge 

processes and vice versa.  

 

In most cases, to establish a control chart there are two phases. In phase I, data are collected from the 

process according to a specified procedure that defines the frequency of sampling and the nature of the 

subgroup. After a fixed time, one or more statistics for each subgroup is plotted and the data are 

analyzed to determine the control limits. Subgroups with statistics outside of the control limits may (or 
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may not) be deleted and the control limits recalculated. At the end of phase I, control limits are 

established for real time monitoring in phase II. 

 

To monitor a multiple stream process, Nelson (1986) (see also Montgomery (1991, Sec. 8.3)) proposes 

a group control chart. In this approach, a subgroup consists of n  observations from each of the m  

streams and the chart statistics for each subgroup are the maximum and minimum stream averages. 

The control limits are based on the standard deviation of the subgroup averages, estimated in phase I 

from the average within-stream ranges across all subgroups. The control chart signals a shift in the 

overall process mean whenever the maximum or minimum stream average falls outside the control 

limits. To detect a shift in the mean of an individual stream, the stream numbers associated with the 

maximum and minimum average are used as plotting symbols on the chart. A signal occurs whenever 

the average of a particular stream is an extreme in r  consecutive samples. We can apply a group 

control chart in our problem by substituting ‘gauge’ for ‘stream’. 

 

Mortell and Runger (1995) discuss the group control chart and compare it to a different approach that 

uses the same sampling scheme. They found that the group control chart is not effective when the 

overall process variation is large relative to the measurement variation. This would be the case in most 

multiple gauge applications where the measurement variability and relative bias of the measurement 

systems tend to be small compared to the variation in the “true” values of the characteristic. To detect a 

change in the overall mean, they recommend the overall subgroup average as the chart statistic. To 

detect a shift in an individual stream, they recommend plotting the range of the within-stream averages. 

That is, defining tijy  as the output at time t for the jth observation from the ith stream, the chart statistic 

is . .max mint ti tiii
r y y= −  where .tiy  is the average at time t for stream i. Note that this is the difference 

of the two statistics plotted on the group control chart. To construct the control limits for a Shewhart 
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chart based on tr  in phase I, we use standard methods for range charts applied to the ranges of the 

stream averages. We refer to the method proposed by Mortell and Runger as the R chart or the range 

method.  

 

Standard Shewhart control charts can achieve the first monitoring goal with the chart statistic being the 

average of all of the measurements across all of the gauges, as suggested by Mortell and Runger. 

Assuming the measurement system variation is relatively small, we can monitor for changes in the 

assembly process variation using an s chart based on pooling the within gauge standard deviations for 

each subgroup.  

 

In our work, we focus on the second goal of detecting shifts in the bias of one or more of the gauges. 

We compare the range method to four proposed new test statistics, one based on the F ratio, two based 

on the Likelihood Ratio to test if the means of all the gauges are the same or not and one based on 

extending the range method to an s chart.. 

 

A detailed description of the proposals is given in the next section, and this is followed by a section 

that discusses the derivation of appropriate control limits for each statistic. In a subsequent section, we 

compare the performance of the proposed control charts to the range method using a simulation study. 

Based on the performance evaluation, we provide conclusions and recommendations in the last section. 

We also provide an example of the charts for the truck alignment process.  

 

Proposed Methodology 

For the subgroup at time t, we have the data: , 1,.., ; 1,...,tijy i m j n= = , i.e. we have n observations from 

each of the m  gauges (streams). To establish the control chart, we collect data for a number of 
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subgroups according to a prescribed frequency and construct control limits as discussed in the next 

section. 

  

At time t , we assume the following model for tijY the thj measured value from the ith gauge: 

• the true values of the characteristic are independent and  2~ ( , )tij t tT N μ σ .  Note these 

characteristics are properties of the process upstream of the gauges. 

• the measurement errors tijR are independent of the true values and each other and 

2~ ( , )tij ti tiR N β σ . In this model, tiβ  denotes the bias of the i th gauge at time t.  

•  the model is additive and the measured values 2 2~ ( , )tij tij tij t ti t tiY T R N μ β σ σ= + + + . 

 

When the measurement system is in-control, tiβ β=  and ti mσ σ= , for all i, i.e. for all gauges, where 

β  and mσ  are the stable (in-control) values of the measurement bias and standard deviation. Similarly, 

the assembly process is in control if ,t t pμ μ σ σ= = , the in-control values for the assembly process 

mean and standard deviation. The two objectives of the process monitoring can be explained clearly 

using the model. The first goal is to detect changes in tμ  and tσ  from their stable values and the 

second is to detect differences among the tiβ . In terms of a hypothesis test, monitoring the consistency 

of the gauge bias is equivalent to testing  

0 1 2: ...t t tmH β β β β= = = =   versus  :a tiH β  not all equal, 1,...,i m= .  

 

Next, we describe the proposed chart statistics. 
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F statistic 

This chart statistic arises from the well-known F test for comparing means. For each subgroup, we 

calculate the F ratio  

22
.. ..

,1

( )( )

1

m

tij titi t
i ji

t

y yn y y
f

m nm m
=

−−
=

− −

∑∑
  

 where ~ ( 1, )tf F m nm m− −  when the measurement system is stable and the model assumptions hold. 

 

If we observe a large tf  value at time t , we reject the hypothesis  and conclude that the measurement 

system is out of control. That is, one or more of the gauge biases has shifted.  

 

Likelihood Ratio Test Statistic 

In a production process, it is reasonable to assume that the bias of only one gauge at a time changes. As 

a result, we develop a chart statistic that specifically targets that situation, so the chart will signal more 

quickly when there is a shift in the bias of only one gauge. Note that using the proposed sampling 

scheme, simultaneous consistent changes in the bias of all measurement gauges is indistinguishable 

from changes in the assembly process mean. 

 

The chart statistic tl  arises from the likelihood ratio test of the null hypothesis against the specific 

alternative hypothesis corresponding to a bias shift in gauge k, i.e. 

* :a tiH β β=  for 1,2,...,i m= , i k≠  and tkβ β≠ . 

For convenience, we derive the expression for the log-likelihood ratio in two steps. First, recall that the 

log-likelihood ratio statistic tl  is of the form 0 0
ˆ ˆˆ ˆ2 log ( , ) ( , )a aL Lβ σ β σ⎡ ⎤− ⎣ ⎦ , where L is the likelihood 
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function, 0 0
ˆ ˆ,β σ are the maximum likelihood estimates under the null hypothesis and ˆ ˆ,a aβ σ are the 

maximum likelihood estimates under the specified alternative. The log-likelihood ratio is then  

        
, ,

2 2 * 2
.. . .

, 1 , 1

(log( ( ) ) log( ( ) ( ) ))
m n m nn

tk tij t tkj tk tij tk
i j j i k j

l nm y y y y y y
= ≠ =

= − − − + −∑ ∑ ∑   

where *
.tky  denotes the average of observations from all gauges except the kth gauge. 

The critical region is tk kl c> . Hence the test statistic for the hypothesis that the bias of exactly one 

gauge has shifted is  

                                                        maxt tkk
l l=   

We propose tl as the chart statistic for monitoring the gauges. Large values of the statistic correspond 

to the process being out of control. Since we use a specific alternative hypothesis, we expect this chart 

statistic to perform better than other methods for detecting a shift in the bias of a single gauge. 

 

It is interesting to note that the statistics tf  and tl  are computed using only the data within each 

subgroup. When the measurement system is stable, their distributions do not depend on the parameters 

or distribution that describe the behaviour of the true values, assuming that these values do not change 

within a subgroup. Also by assumption, their distributions do not depend on mσ . As a result, we can 

construct control limits for charts based on tf  and tl  without phase Ι that is normally needed to 

estimate the unknown parameters under stable conditions. This is a major advantage of these two 

methods. 

 

Next, we describe two other chart statistics based on known (or estimated in Phase I) pσ  and mσ . 
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Likelihood Ratio Statistic with Known Variation 

The idea of this chart statistic is similar to the idea behind likelihood ratio statistic tl . The difference is 

that when computing the test statistic, we substitute the known values of pσ  and mσ  determined in 

phase I. Note, in fact, these are estimates but we treat them for now as known values. The result for 

testing against : , ,k i kH i kβ β≠ ≠  for a specified k is ( )2 2 2
. ..( )

1ti ti t p m
nmq y y

m
σ σ= − +

−
. Then, ignoring 

the constants, the chart statistic tq  is defined by  

2
. ..max( )t ti ti

q y y= − . 

When the process is in-control, each of the tiq s are distributed 2
1χ , but not independent for different 

gauges i. Note that the distribution of tq  will depend on m, n and ( )2 2
p mσ σ+ , but not on pσ  and mσ  

individually. 

 

S Chart 

Since an S chart is an alternative to an R chart (as suggested by Mortell and Runger, 1995) for 

monitoring process variation, we also consider a chart based on ts . The chart statistic is defined by 

standard deviation of output averages of gauges in each subgroup, i.e.  

2
. ..

1

1 ( )
1

m

t ti t
i

s y y
m =

= −
− ∑   

 

With the range chart based on tr , the likelihood method based on tq  and the S chart based on ts ,we 

require estimates of the in-control values of pσ  and mσ  to construct control limits. That is, we require 

phase I to estimate these parameters. With these estimates, we might expect these three chart statistics 

to perform better than those based on tf  and tl  which re-estimate the variability within each subgroup. 
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However, we hope we can get better performance from charting tf  and tl  if the process and 

measurement variation change over time or are poorly estimated in phase I. Note that for any of the 

charts, if there is evidence of a difference between the gauges we can compare the gauge means, i.e. 

.tiy , to determine which guage is the main cause of concern. With the likelihood based methods we can 

also examine the til  and tiq  values for each gauge to see which is the largest. 

 

Next we discuss the derivation of the control limits for each chart, followed by a comparison of the 

five chart statistics under a variety of situations. 

 
Construction of the Control Limits 

To aid the comparison, we set the false alarm rate for each chart at 0.001. There are formal approaches 

to construct control limits for R and S charts. For the R chart, we set the upper control limit (UCL) at 

.999 2( / )UCL D R d= , where R  represent the average of the ranges across all subgroups in phase I. For 

the S chart, we use 
2
.999

4/
1

UCL s c
n
χ

=
−

, where s  represents the average of the standard deviations 

across all subgroups. The constant .999D  is obtained from the table given by Harter (1960), 2
.999χ  from 

the Chi-square distribution table, and 2d  and 4c  from control chart constant tables in Montgomery 

(1998). 

 

For the F chart, since the chart statistic tf  is distributed as ( 1, )F m mn m− −  under 0H  and our 

assumptions, we can assign an upper probability control limit .999 ( 1, )UCL F m mn m= − − .  

 

Since it is difficult to determine the distributions of tl  and tq , we use simulation to determine 

appropriate control limits for the two likelihood-based charts. At each sample time, n  observations are 
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generated for each gauge. In the simulation, we assume that in-control, the observations are 

independent and normally distributed with mean zero and standard deviation unity. Then we calculate 

tl  and tq . We have to choose the number of simulated subgroups, to achieve sufficient precision of 

control limits. As is well known, 2

(1 )ˆ( )
( )p

p

p pVar X
nf x

−
≈ , where ˆ

pX  is the thp  sample quantile, n  is the 

sample size and ( )f x  is the density function of distribution. We select 710 subgroups which gives a 

standard error of the estimated quantile less than 0.03. 

 

We give the critical values for the Likelihood Ratio Statistics with unknown variance and known 

variance derived by simulation for a false alarm rate of 0.001 in Tables 1 and 2. The critical values 

from Table 1 can be used directly for setting the control limit for the likelihood ratio statistics tl  since 

the distribution does not depend on the (unknown) process and measurement variation. The critical 

values in Table 2 need to be multiplied by (known) total variation 2 2
p mσ σ+   for use with the likelihood 

ratio statistic tq .  

Table 1 : Upper Control Limit for Likelihood Ratio Statistic ( tl ) with Unknown Variance 
 

Number of Observations per Gauge (n) Number of Gauges (m) 6 12 20 
2 13.55 12.08 11.55 
4 14.95 14.10 13.83 
12 16.05 15.75 15.63 
24 17.09 16.91 16.87 

 
 

Table 2 : Critical Values for Likelihood Ratio Statistic ( tq ) with Known Variance 
 

Number of Observations per Gauge (n) Number of Gauges (m) 6 12 20 
2 0.90 0.45 0.27 
4 1.67 0.84 0.50 
12 2.36 1.18 0.71 
24 2.68 1.34 0.80 
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Comparisons 

 To compare the charting procedures, we determine the power of the different chart statistics in 

detecting various changes in the biases in the multiple gauge process. As in the previous section, we 

choose control limits for each chart statistic to give a false alarm rate of 0.001. The power of a chart 

statistic is given by the probability that a point on that control chart falls outside the control limit when 

the biases of the measurement system have changed. In this comparison, we determine the power of 

each chart using a simulation with 100,000 trials. Figures 2 through 4 provide graphical comparisons 

of the power for the different chart statistics for 2, 4 and 24 (m) gauges and 6 and 20 (n) observations 

for each gauge, respectively. For each chart statistic, one gauge is shifted from a relative bias of zero to 

a bias of 0.2, 0.4, 0.6, …, 3.0. We compare the unknown variance chart statistics (Likelihood ratio 

statistic tl , F statistic tf ) and the known variance chart statistics (Likelihood ratio statistic tq , R 

statistic and S statistic) separately. 
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Figure 2: Comparison of the Power with Two Gauges 

 
Figure 3: Comparison of the Power with Four Gauges 
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Figure 4: Comparison of the Power with 24 Gauges 

 

Among the cases considered, for the unknown variance group, the Likelihood ratio statistic performs 

consistently better than F statistic. In the known variance group, the Likelihood ratio statistic with 

known variance performs consistently better than R and S statistics. These results are expected.  

 

When the measurement system consists of only two gauges in parallel, there is virtually no difference 

between the power of the chart statistics within each group. The known variance group performs 

noticeably better than the unknown variance group with 6 observations from each gauge. However, as 

the number of observations from each gauge increases, the difference between two groups becomes 

smaller. With 20 observations from each of the two gauges, the known variance methods are still 

marginally better than the unknown variance group.  
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The number of observations from each gauge plays a similar role when there are 4 and 24 gauges in 

the measurement system. As the number of observations increases, the difference between the known 

and unknown variance methods becomes smaller. In other words, the power of the Likelihood ratio 

statistics with known and unknown variance becomes more similar. This suggests that if we could 

obtain a large number of observations from the process in each subgroup, regardless of the number of 

gauges in the measurement system, the likelihood ratio statistic with unknown variance performs as 

well as all the methods in the known variance group.  

 

The number of gauges in the measurement system has two effects. First, as the number of gauges 

increases, the difference among chart statistics within each group increases. From Figures 2 through 4, 

we see that the difference between the likelihood ratio statistic with unknown variance and the F 

statistic becomes larger as the number of gauges increases. The pattern in the known variance group is 

similar. Second, increasing the number of gauges reduces the difference between the best chart 

statistics within each group. Regardless of the sample size, with a large number of gauges in the 

measurement system, the likelihood ratio statistic with unknown variance performs (almost) as well as 

the likelihood ratio statistic with known variance.  

 

The results in Figure 2-4 are also summarized in Table 3, which shows the in-control false alarm rates 

and the out-of-control power of the different methods under various conditions. We only give the 

power when the mean of one gauge is shifted from a relative bias of zero to a bias of 1, 2, and 3. Table 

3 allows a direct comparison of the various methods in the two groups. 
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Table 3: Comparison of the Simulated Power 
Power for a Mean Shift in One Gauge of  b 

σ  units Chart Type Number of 
Gauges (m)

Number of 
Observations 

(n) b=0 b=1 b=2 b=3 
Likelihood 2 6 0.00105 0.02395 0.24118 0.69882 

F 2 6 0.00112 0.00474 0.07346 0.36212 
R 2 6 0.00116 0.06207 0.58027 0.97247 
       

Likelihood 2 20 0.00118 0.39539 0.90144 0.99796 
F 2 20 0.00101 0.38759 0.89754 0.99779 
R 2 20 0.00113 0.48681 0.95495 0.99974 

 
Likelihood 4 6 0.00095 0.03505 0.48365 0.95812 

F 4 6 0.00118 0.02821 0.37479 0.90603 
R 4 6 0.00121 0.05492 0.63030 0.98970 
S 4 6 0.00130 0.05857 0.67198 0.99402 

Likelihood (Known) 4 6 0.00133 0.06676 0.72058 0.99672 
       

Likelihood 4 20 0.00091 0.2537 0.99901 1 
F 4 20 0.00095 0.21021 0.99707 1 
R 4 20 0.00150 0.21354 0.99860 1 
S 4 20 0.00205 0.25819 1 1 

Likelihood (Known) 4 20 0.00092 0.28929 1 1 
 

Likelihood 24 6 0.00102 0.01355 0.53619 0.99179 
F 24 6 0.0011 0.00546 0.13863 0.76137 
R 24 6 0.00101 0.01168 0.43236 0.97858 
S 24 6 0.00108 0.00691 0.22197 0.89739 

Likelihood (Known) 24 6 0.00109 0.01569 0.58995 0.99543 
       

Likelihood 24 20 0.00124 0.27294 0.99997 1 
F 24 20 0.00114 0.07021 0.98325 1 
R 24 20 0.00112 0.18581 0.99913 1 
S 24 20 0.00108 0.07982 0.98964 1 

Likelihood (Known) 24 20 0.00121 0.28238 0.99994 1 
 
 

So far, in the comparison, we have assumed the process variation is constant, and we assumed the 

constant process variation was known when we constructed control charts for three chart statistics in 

the known variance group. We want to investigate the consequences of this assumption being violated. 

To check the performance of the various types of control charts, we conducted a simulation with 4 

gauges and 20 observations from each gauge and considered the case when the process variance 
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changes from 1 to 2. The control limits were set to give false alarm rates of 0.001. Figure 6 shows that 

assuming a known variance results in much higher false alarm rates than expected when the 

measurement system is in-control. 

 
Figure 6: False Alarm Rates of the Known Variation Methods  

When the Process Variance is Poorly Estimated or has Changed 

 
The methods based on the unknown variance do not suffer from increased false alarm rates when the 

process variance is underestimated or increases. The unknown variance group gives the same 

performance as the constant process variance condition, when the mean shifts are scaled to be 

proportional to the actual process standard deviation.  

 

Another concern is the possible shifting of more than one gauge bias simultaneously. When two 

gauges biases shift simultaneously in the same direction, Figure 7 shows the comparisons of the power 

for 4 and 24 gauges and 6 observations from each gauge.  

 

For a small number of gauges. the likelihood chart with unknown variance shows extremely low power 

compared with other methods. Since the likelihood chart statistics is designed to be sensitive to a 
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single gauge shift, this is not overly surprising. However, this difference disappears as the number of 

gauges increases from 4 to 24.  

 

 
Figure 7: Comparison of the Power with Two Gauge Bias Shifts 

 

Example 

Consider the truck assembly process discussed in the Introduction. As shown in Figure 1 there are four 

parallel alignment gauges. The goal of monitoring was to quickly detect any changes in the four 

gauges that result in measurement bias.  

 

In this context, applying a control chart based on the likelihood ratio statistic tl  is attractive since no 

phase I where process parameters are estimated is needed. Subgroups are defined as 50 consecutive 

trucks. Since there are four gauges, on average we will have 12.5 trucks per gauge. In practice the 
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number of gauge varies due to measurement times and production timing. We have data from 59 

subgroups (total of 2950 trucks from 10 days production). The number of observations per gauge 

ranges from 5 to 22 across the subgroups. This variability is not taken into account, i.e. we don’t 

change the control limit based on the nature of the subgroup. 

From Table 1, with 4 gauges and 12 observations per gauge we get a control limit of 14.1.  

Figure 8 gives the resulting control chart. We see an out-of-control signal at subgroup 57. However, 

the signal is not sustained.  
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Figure 8: Likelihood Ratio Statistic tl  Chart for Truck Alignment Example 

 
 
Further investigation of the data in subgroup 57 gives Figure 9. We see that Gauge 4 has a 

substantially lower average than the other three gauges. Looking further at subgroups 58 and 59 Gauge 

4 consistently gives the smallest right caster average. This suggests Gauge 4 may be experiencing 

problems.  
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Figure 9: Right Caster by Gauge for Subgroup 57 

 
 
Conclusions and Discussion 

There are many different control chart methods to monitoring processes with multiple parallel gauges. 

The most suitable method depends on the number of gauges or streams and the sample size for each 

gauge or stream. The Likelihood chart statistic with unknown variance and F chart statistic described 

here have an advantage over other methods since they do not require any historical data. Not requiring 

Phase I will save time and money. Therefore, we recommend these two methods when there are either 

a large number of gauges or streams or a large number of observations in each subgroup.  

 

In the range method, Mortell and Runger assumed that the process variance is large relative to the 

within gauge/stream variance. As a result, the group control chart is not sensitive to changes in the 

within gauge/stream variation. The discussion in this article is also based on this assumption. However, 

in practice, this condition may not hold. Then, we believe that the likelihood chart statistic is also 

applicable if we change some assumptions in our model. We can use the likelihood chart statistic for 

monitoring measurement system bias and variance consistency at the same time. 
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Extensions of this work could include using adapting any of the proposed test statistics to a sequential 

control chart such as a CUSUM or EWMA. For example, to check for small changes in a single gauge 

we could calculate a CUSUM for each tkl  separately. Then plot the max of the m CUSUM statistics. 

Sequential charts should provide quicker detection of small sustained shifts in the gauge biases. 
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