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Abstract. Outlier detection statistics based on two models, the case-deletion

model and the mean-shift model, are developed in the context of a multivariate

linear regression model. These are generalizations of the univariate Cook’s dis-

tance and other diagnostic statistics. Approximate distributions of the proposed

statistics are also obtained to get suitable cutoff points for significance tests. In

addition, a simulation study has been conducted to examine the performance

of these two approximate distributions. The methods are applied to a set of

data to illustrate the multiple outlier detection procedure in multivariate linear

regression models.

key words: likelihood displacement; likelihood ratio; multivariate regres-

sion; outlier detection.
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1 Introduction

Most data analysts have come across data which seem to contain some de-

viant or “outlying” observations (or outliers). This may be the result of unusual

and non-repetitive events such as system changes, strikes, special problems, etc.

Such data can wreak havoc with the estimation of statistical models and can

have undue influence on the conclusions from a statistical analysis.

Consider a univariate linear model y = Xβ + ε, where y is a n × 1 vector

of observations, X is a n × (p + 1) full rank known matrix, β is a (p + 1) × 1

vector of unknown parameters and ε is a n × 1 vector of normally distributed

errors such that E(ε) = 0 and var(ε) = σ2I. Outliers can affect the parameter

estimates in this model and many papers have been written on the detection of a

single outlier in this context (see, for example, Srikantan (1961) and Barnett and

Lewis (1994)) using residuals from least squares fit. Another approach called

‘case deletion’ studies the effect of deleting an observation on the parameter

estimates. Cook (1977) defines a measure of distance between two maximum

likelihood estimates, where one is computed with all the observations and the

other without a specific observation. Hossain and Naik (1989) and Naik (2003)

extend the results of deleting a single observation in univariate regression models

to multivariate regression models. Srivastava and von Rosen (1998) develop a

formal test for detecting a single outlier in a multivariate linear regression model.

Many authors have considered the problem of detection of multiple outliers in

univariate linear regression models. Early work due to Prescott (1975) and Tiet-

jen et al. (1973) focus on repeated application of single case detection methods
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to detect multiple outliers. However, it is well known that such methods suffer

from the problems of masking and swamping, where the effect of one outlier

masks the effect of other outliers (see, for example, Barnett and Lewis, 1994).

Hadi and Simonoff (1993) proposed procedures and tests for detection of multi-

ple outliers in univariate linear models. Wei and Fung (1999) consider deleting

multiple observations in univariate general weighted regression models. Barrett

and Ling (1992) propose general classes of influence measures for multivariate

regression based on an analogous form of Cook’s influence measure for univari-

ate case. Dı́az-Garćıa and González-Faŕıas (2004) discuss a generalization of

the Cook’s distance in multivariate regression under elliptical distributions.

We present multivariate outlier detection methods based on the case-deletion

model and the mean shift model in Section 2. The performance of the approxi-

mate distributions of the proposed statistics are examined by a simulation study

in Section 3, and suggestions for implementation are given in Section 4. The

proposed procedure for detecting outliers is illustrated through an example in

Section 5. Finally, some concluding remarks are given in Section 6.

2 Multivariate outlier detection methods

Suppose we have m responses and p predictors. We consider the multivariate

linear regression model:

H0 : Yn×m = (J X1)B + E = XB + E, (1)
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where Y is a n × m response matrix, J is a n × 1 unit vector, X1 is a n ×

p design matrix, B is a (p + 1) × m coefficient matrix, and E is a n × m

random error matrix. We assume that rows of E are independent, normally

distributed, each with mean vector zero, and m×m covariance matrix Σ, that

is, V ec(E) ∼ MV N(0, In ⊗ Σ), where V ec(E) is a column vector where the

first m elements are the entries from the first row of E, the second m elements

are the entries from the second row of E, etc., MV N stands for multivariate

normal distribution and ⊗ stands for the Kronecker product. From now on we

simply denote E ∼ MV N(0, In ⊗ Σ).

The corresponding likelihood function is given by

L(B,Σ) =
1

(2π)mn/2

1
|Σ|n/2

e−
1
2 tr{Σ−1(Y−XB)′(Y−XB)}. (2)

As in the univariate linear regression model case, if rank (X) = p + 1, then

the maximum likelihood estimate (MLE) of B is given by

B̂ = (X ′X)−1X ′Y, (3)

and that of Σ is given by

Σ̂ =
1
n

(Y −XB̂)′(Y −XB̂). (4)

2.1 Likelihood displacement (LD) statistic

Let Ak = {i1, · · · , ik} index a subset of an arbitrary number of k observation,

where ij ∈ {1, · · · , n}, j = 1, · · · , k and k is very small compared with the number

of observations n. Let l(θ) be the log likelihood function, where θ are the model
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parameters. When considering the effect of k observations on the parameter

estimates of a multivariate regression model, we define likelihood displacement

LDAk
for measuring the difference between θ̂ and θ̂[Ak] as

LDAk
(θ) = 2{l(θ̂)− l(θ̂[Ak])},

where θ̂ denote the MLE of θ with all observations and θ̂[Ak] that without the k

observations in the set Ak. This definition is directly analogous to the likelihood

displacement definition used by Cook & Weisberg (1982) to consider the effect

of a single observation on parameter estimates in the univariate case.

When a subset θ1 of θ is of special interest, the likelihood displacement can

be modified as

LDAk
(θ1|θ2) = 2{l(θ̂)− l(θ̂1[Ak], θ̂2(θ̂1[Ak]))}, (5)

where l(θ̂1[Ak], θ̂2(θ̂1[Ak])) = maxθ2 l(θ̂1[Ak], θ2) denotes the log likelihood maxi-

mized over the parameter space for θ2 with θ1 = θ̂1[Ak], which is the MLE of θ1

when k observations are deleted.

Now we consider deleting k observations given in the set Ak. Let [Ak]

denote the index of the remaining observations and let Y[Ak], X[Ak] denote the

response matrix and design matrix when all the row numbers corresponding to

the elements of Ak are deleted. Then, based on the remaining data set, the

MLE of B is given by (see Section 7)

B̂[Ak] = B̂ − (X ′X)−1X ′
Ak

(I −QAk
)−1ÊAk

, (6)

where QAk
= XAk

(X ′X)−1X ′
Ak

, ÊAk
= YAk

−XAk
B̂ are residuals, and YAk

, XAk

are the response matrix and design matrix corresponding to the index Ak.
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Similarly, the MLE of Σ is given by

Σ̂[Ak] =
n

n− k
Σ̂− 1

n− k
Ê′
Ak

(I −QAk
)−1ÊAk

. (7)

Thus, B̂[Ak] and Σ̂[Ak] are the regression parameter estimates of B and Σ

without the contributions from the k observations in the set Ak, and ÊAk
are

the residuals corresponding to YAk
.

For the model H0 given in (1), let θ1 = B, θ2 = Σ in (5). Then the likelihood

displacement for B given Σ is

LDAk
(B|Σ) = 2{l(B̂, Σ̂)− l(B̂[Ak], Σ̂(B̂[Ak]))},

where Σ̂(B̂[Ak]) is the MLE of Σ when B is estimated by B̂[Ak] given in (6).

Substituting B̂[Ak] for B in equation (2), the MLE of Σ is given by

Σ̂(B̂[Ak]) =
1
n
{Ê′Ê + (B̂ − B̂[Ak])′X ′X(B̂ − B̂[Ak])}

= Σ̂ +
1
n

Ê′
Ak

(I −QAk
)−1QAk

(I −QAk
)−1ÊAk

.

The likelihood displacement for B given Σ is therefore given by

LDAk
≡ LDAk

(B|Σ) = 2{l(B̂, Σ̂)− l(B̂[Ak], Σ̂(B̂[Ak]))}

= n log{
|Σ̂(B̂[Ak])|

|Σ̂|
} = n log{

|nΣ̂ + Ê′
Ak

CAk
ÊAk

|
|nΣ̂|

}, (8)

where CAk
= (I −QAk

)−1QAk
(I −QAk

)−1.

When we consider a single response (m = 1) and delete any single observa-

tion (i.e. k = 1,Ak = {i}), then B = β,Σ = σ2 and the likelihood displacement

statistic in (8) can be written as

LDi(β|σ2) = n log (1 +
p + 1

n
Di),
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where Di = hiiê
2
i /{(p+1)(1−hii)2σ̂2} is the standard “Cook’s distance” (Cook,

1977). Here hii is the ith diagonal element of H = X(X ′X)−1X ′ and is usu-

ally referred to as the leverage, and êi is the residual corresponding to the ith

observation.

In univariate settings, it is usually better to omit the potential outlier(s) to

estimate the error variance. This is also true in the multivariate settings where

the error variance can be estimated with all the observations or without the

possible outlying observations (see (7)). Therefore LDAk
in (8) is a generalized

Cook’s statistic for assessing the influence on parameter estimates when deleting

an arbitrary set of k observations in the multivariate regression model. The sets

of k observations that are influential on B̂ are indicated by large values of LDAk

as given by (8).

When using the LDAk
statistic to identify outliers and influential obser-

vations, we need to find the corresponding critical values which requires the

distribution of the LDAk
statistic under the null model (1). However, it is very

difficult to find its exact distribution. It can be shown (Xu, J. (2003). Multi-

variate outlier detection and process monitoring. Unpublished Ph.D. thesis, the

Department of Statistics & Actuarial Science, University of Waterloo, Ontario,

Canada. We do not include the proof here to save space.) that LDAk
converges

in distribution to

LDA =
k∑

i=1

λiZ
2
i , (9)

where λi, i = 1, · · · , k, are the eigenvalues of CAk
, and Z2

i are independent

and identically distributed with chi-square distribution having m degrees of
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freedom for k ≥ 2. When k = 1, LDAk
converges in distribution to λχ2

m, where

λ = hii/(1− hii)2.

We consider two methods to obtain critical values of LDAk
. One method is

to extend Field’s (1993) method, which obtains tail areas of linear combinations

of chi-square random variables with 1 degree of freedom, using a saddlepoint

approximation. This method gives more accurate critical values (from our simu-

lation below), but requires solving a non-linear equation. Another useful method

in practice is to extend the method of Jensen and Solomon (1972) to approxi-

mate a modified version of the likelihood displacement statistic using a N(0, 1)

distribution for k ≥ 2. Using this approximate distribution, the corresponding

critical value is

LDAk,α = δ1{
cα

√
2δ2f2

0

δ1
+

δ2f0(f0 − 1)
δ2
1

+ 1}1/f0

where

δ1 = m
∑k

1 λi, δ2 = m
∑k

1 λ2
i ,

δ3 = m
∑k

1 λ3
i , f0 = 1− (2δ1δ3/3δ2

2),

cα =


z1−α , if f0 ≥ 0

zα , if f0 < 0

and λi s are the eigenvalues of CAk
and zα is the 100α% percentile of the stan-

dard normal distribution. We will compare these two approximations in a later

section.
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2.2 Multivariate leverage

When using Cook’s distance to measure the influence of an observation in

univariate linear regression models, the leverage hii measures how extreme the

values of the explanatory variables are. Analogously, in multivariate linear re-

gression models, we use the average diagonal element of QAk
(ADQ) to measure

how extreme the k measurements for the explanatory variables are, that is,

ADQAk
= tr(QAk

)/k.

Large values of ADQAk
indicate unusual observations in explanatory variables.

Belsley et al. (1980) recommend using h̄ = 2(p + 1)/n as a cutoff value for all

hii in the univariate regression. We use the same value as a cutoff point for

ADQAk
.

2.3 Likelihood ratio (LR) statistic for a mean shift

Now we consider mean shifts in any k observations in the set Ak. We

consider the following mean shift model:

HA : Y =
(

X ZAk

)  B

Ψ

 + E = X∗B∗ + E,

where X∗ = (X ZAk
), ZAk

= (zi1 · · · zik
) and zj , j = i1, · · · , ik denote the

n × 1 vector with 1 in row j and zero in all other rows, B∗ = (B Ψ)T , and Ψ

is a k ×m shift coefficient matrix corresponding to the observations in the set

Ak.
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Then the MLE of B∗ under model HA is given by

B̂∗
HA

=

 B̂ − (X ′X)−1X ′
Ak

(I −QAk
)−1ÊAk

(I −QAk
)−1ÊAk

 ,

where B̂ is given by (3).

The MLE of Σ under model HA is given by Σ̂∗
HA

= Σ̂−Ê′
Ak

(I−QAk
)−1ÊAk

/n,

where Σ̂ is given by (4).

The possibility that the k observations in the set Ak are outliers can be

assessed by testing the hypothesis that Ψ = 0 in the mean shift model HA.

When the hypothesis is true, the model reduces to H0, as given by (1).

Applying the likelihood ratio test, we get the likelihood ratio as

Λ =
maxH0 L(B,Σ)
maxHA

L(B,Σ)
=

L(B̂, Σ̂)
L(B̂∗

HA
, Σ̂∗

HA
)

= (
|Σ̂∗

HA
|

|Σ̂|
)n/2,

i.e.,

Λ2/n =
|Σ̂∗

HA
|

|Σ̂|
=

|nΣ̂∗
HA

|
|nΣ̂∗

HA
+ n(Σ̂− Σ̂∗

HA
)|

.

Under H0 : Ψ = 0, nΣ̂∗
HA

has a Wishart distribution Wm(n − p − k − 1,Σ)

and is independent of n(Σ̂ − Σ̂∗
HA

), which, in turn, has a Wishart distribution

Wm(k,Σ) (see, for example, Seber, 1984, p.409). The likelihood ratio test is

equivalent to rejecting H0 for large values of

−2 log Λ = −n log(
|Σ̂∗

HA
|

|Σ̂|
) = −n log{

|nΣ̂∗
HA

|
|nΣ̂∗

HA
+ n(Σ̂− Σ̂∗

HA
)|
}.

For n large, and both n − p and n − m large, Box (1949) shows that the

statistic -2log Λ approximates to a chi-square distribution with m degrees of

freedom. As a result, with adjusted multiplying factors, the likelihood ratio
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statistic (LR)

LRAk
= c log(

|Σ̂∗
HA

|
|Σ̂|

) = c log{
|nΣ̂− Ê′

Ak
(I −QAk

)−1ÊAk
|

|nΣ̂|
} (10)

is closely approximated by a chi-square distribution with mk degrees of freedom

(Johnson and Wichern, 1992), where c = −{n− p− k − 1− (m− k + 1)/2}.

Large values of LRAk
will indicate that the rejection of the hypothesis that

there are no outliers.

When the number of the observations is small, alternatively, we can simulate

a cutoff point for the LRAk
statistic. We will discuss this later.

3 Performance of approximation and a simula-

tion method

3.1 Approximations

In order to study the performance of the approximate distributions of the

likelihood displacement statistic LD and the likelihood ratio statistic LR, we

conduct a simulation study that uses p = 5 predictors, n = 300 observations

and, as an example, the first k observations. First, we generate a n × (p + 1)

design matrix X and a (p+1)×m coefficient matrix B. Let X = (J X1), where

J is a n× 1 unit vector, and X1 is a n× p matrix whose elements are generated

from a uniform (0, 10) distribution, and the elements of B are generated from

a uniform (-5, 5) distribution. For given m, k, desired significance level α and

design matrix, we calculate the corresponding critical values for the LR and LD
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statistics from their approximate distributions. Then we perform the following

steps:

1. Generate an error term E according to multivariate normal distribution

with mean 0 and covariance matrix Σ. In our simulation, we consider

the number of responses m = 1, 2 and 5. When m = 1, we set Σ = 1;

when m = 2, we take Σ =

 1 0.5

0.5 1

; and when m = 5, we use

Σ =



1 0.2 0.3 0.4 0.5

0.2 1 0.4 0.2 0.7

0.3 0.4 1 0.5 0.8

0.4 0.2 0.5 1 0.7

0.5 0.7 0.8 0.7 1


;

2. Calculate the corresponding responses based on the model Y = XB + E;

3. Calculate LD from (8) and LR from (10) for the first k observations;

4. Compare LD to the cutoff point from the saddlepoint and the normal

approximations, and LR to the cutoff points determined by the χ2
mk ap-

proximate distribution.

5. Repeat the above steps 5,000 times.

We consider the following cases:

Case 1 : m=1, k=1 Case 2 : m=1, k=5 Case 3 : m=2, k=2

Case 4 : m=2, k=5 Case 5 : m=5, k=2 Case 6 : m=5, k=5
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Table 1 gives the proportions of times the LD values and LR values exceed

their corresponding critical values for significance levels α = 0.1, 0.05, and 0.01.

From Table 1, we see that the empirical significance levels are very close to the

desired α values in each case. For instance, when m = 5, k = 2, and α = 0.01,

the empirical significance levels for LD are 0.0094 (saddlepoint approximation)

and 0.0092 (normal approximation) and the one for LR is 0.0102. The saddle-

point approximation is slightly better than the normal approximation for LD

statistic in terms of determining the critical values. However, the difference

is small, and it is more convenient to use the normal approximation because

the critical value from the saddlepoint approximation requires the solution of

a non-linear equation. Hence from now on the critical value of LD statistic is

obtained using the normal approximation.

3.2 Critical values using simulation

When the sample size is large, we can use an asymptotic distribution (9)

for the LD statistic and the χ2
mk approximate distribution for the LR statistic.

Alternatively, when the sample size is small, we can obtain critical values using

simulation for each data set. The following procedure illustrates the simulation

approach.

Because the statistics LD and LR do not depend on the parameters B and

Σ, without loss of generality, we assume B = 0 and Σ = Im. For given X:

1. Generate Y from Y = E ∼ MV N(0, In ⊗ Im);

2. Estimate the parameters B and Σ by fitting the model Y=XB+E to the
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data obtained in step 1;

3. Calculate the statistics LDAk
and LRAk

.

We repeat the above steps M times and order LD
(1)
Ak

, · · ·, LD
(M)
Ak

and LR
(1)
Ak

, · · · , LR
(M)
Ak

separately. Then, we take the upper α percentile values as the critical values

for any set of k observations. In Section 5 we illustrate the implementation of

this procedure in the context of an example.

4 Implementation

In order to detect multiple outliers in multivariate linear regression models,

we can combine the use of the LD, LR and ADQ. We propose to calculate LD,

LR statistics and ADQ for

1. each single observation A = i;

2. each pair of observations A = {i1, i2}, where i1 < i2, and i1, i2 = 1, · · · , n;

3. each group of three observations A = {i1, i2, i3}, where i1 < i2 < i3, and

ij = 1, · · · , n, j = 1, 2, and 3;

4. Continue with 4, 5, · · · observations at a time. Stop either when the

computational burden becomes too large (see comments later), or when

no new observations are identified as outliers and the LD and LR values

do not change much.

Then we compare the LDA and LRA to their critical values LDA,α and

LRA,α respectively, where for example looking at one observation at a time α

15



can take 0.05 or 0.01. To accommodate multiple testing we suggest lowering the

significance level for the tests for pairs, triples, etc. We use h̄ = 2(p + 1)/n as

the ADQ cutoff value throughout.

In some situations, when n or k or both are large we need to adapt the

implementation plan to make it computationally feasible. If, at any stage of the

implementation procedure, the number of groups of observations is too large we

propose the following general diagnostic plan where we choose a subset of all

the observations (the so called basic subset) to look at more closely.

1. Select a basic subset S of potentially influential observations that we wish

to consider by utilizing a relaxed (larger) significance level (Belsley et al.,

1980, p.31). For instance, for single observations, we may use a significance

level of 10% or more instead of holding to the more conventional 5%. If n

choose k (the number of possible groups of observations) is too large we

do the following:

• Calculate h̄∗ = 1.5(p + 1)/n for ADQ; and the critical values corre-

sponding to a relaxed significance level α∗ for LD and LR;

• Consider 1, 2, · · ·, k − 1, observations at a time;

• Choose all observations for which the values LD and LR exceed their

relaxed critical values and ADQ exceed its cutoff value;

2. Calculate LD, LR statistics and ADQ for a subset Ak = {i1, · · · , ik},

where ij ∈ S, j = 1, · · · , k, and k = 1, · · · , N(S) (number of elements in

S). Compare the LDAk
and LRAk

to their critical values LDAk,α and
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LRα respectively, where α can take 0.05 or 0.01, and ADQ cutoff value

h̄ = 2(p + 1)/n.

Note that in a multivariate process monitoring context where the observa-

tions are ordered in time, we are more interested in considering k consecutive

observations. Then there are only n − k + 1 possible choices for k consecutive

observations and it is computationally feasible to look at all the combinations

to identify outliers.

5 Application

To illustrate the use of the proposed multiple outlier detection methods,

we consider an educational research data example in this section.

The data were collected by Dr. W.D. Rohwer of University of California at

Berkeley and reproduced in Timm (1975, p. 281, 345) and have been previ-

ously studied by Hossain and Naik (1989), Barrett and Ling (1992). The data

correspond to 32 randomly selected school children in an upper-class, white

residential school. For each of the 32 students, the independent variables are

the sum of the number of items correct out of 20 (on two exposures) to five

types of paired-associated (PA) tasks. The basic tasks were named (x1), still

(x2), named still (x3), named action (x4), and sentence still (x5). The goal was

to determine if the student’s score on these 5 tests could be used to predict

the children’s performance on three standardized tests, namely, Peabody Pic-

ture Vocabulary Test (y1), Raven Progressive Matrices Test (y2), and Student
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Achievement Test (y3).

To model this data, we consider the following multivariate linear model:

Y32×3 = X32×6B6×3 + E32×3,

where E ∼ MV N(0, I32 ⊗ Σ), and Σ is a 3× 3 covariance matrix.

Let Γ be the matrix B with the first row (intercepts) omitted. Hossain

and Naik (1989) gives different statistics for testing Γ = 0 and all the criteria

consistently reject the hypothesis indicating that at least some of the x-variables

are important.

We begin our analysis by looking at each single observation at a time. Fig-

ure 1 shows the results of using our proposed outlier detection methods on one

observation at a time. The solid curve for LD and the solid line for LR are

the critical values for α = 0.05 based on the approximate distribution. The

dashed curve or line are based on simulation (using M=2000) as described in

Section 3.2. The solid line in ADQ plot is the cutoff line h̄ = 2(p+1)/n = 0.38.

From Figure 1 we see that the LD value for the 25th observation (LD = 1.87)

exceeds its corresponding LD0.05 critical values (1.62 from the simulation and

1.72 from the approximate distribution), and the LR value for the same observa-

tion (LR=9.13) exceeds its corresponding LR0.05 critical values (7.69 from the

simulation and 7.81 from the approximate distribution), but the corresponding

ADQ value is less than its cutoff value h̄. In addition, the ADQ values for the

5th and 10th observations are greater than the cutoff value h̄. All these indicate

that the 25th observation is a Y outlier, but the 5th and 10th observations are

X outliers but not influential observations.
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Figure 1: Plots of LD, LR, and ADQ for looking at one single observation at a time. The

ith (i = 1, 2, · · · , 32) dotted points is the corresponding statistic value considering the ith

observation in each plot. The solid line for LR and the solid curve for LD are the critical

values for α = 0.05 based on the approximate distribution; the dashed curve or line are based

on the simulation; and the solid line in ADQ plot is the cutoff line h̄ = 2(p + 1)/n = 0.38

Next we consider the effects of all pairs of observations and take α = 0.01

to somewhat accommodate multiple testing. The statistic values for the com-

bination of 14th and 25th observation are LD = 3.76, LD0.01 = 3.21 from the

simulation, and 3.73 from the approximate distribution; LR = 17.94, LR0.01 =

16.65 from the simulation, and 16.81 from the approximate distribution; and

ADQ=0.14. All other pairs which have ADQ values greater than h̄ involve

either the 5th observation or the 10th observation. Thus the combination of

14th and 25th observations are Y outliers. It should be noted that if we had

only looked at observations one at a time we would not have detected the 14th

observation for further investigation.

We can now consider 3 observations at a time. This will lead to too many

combinations (32 choose 3) and hence we will try to obtain a basic subset as

described in section 4. For this we go through observations one at a time with a

relaxed α =0.10 and h̄ =0.28, and two at a time with α =0.05 and the same h̄.

Consideration of observations one at a time with LD and LR leads to picking

observations 14 and 25 for the basic subset, while ADQ leads to observations

5, 10, 15, 16, 19, 27 and 29. With observations two at a time with a lower

α=0.10 and h̄=0.28 we find that observations 3, 7, 8, 9, 12, 13, 17, 20, 21,
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23, 31, and 32 need to be added to the basic subset in addition to what was

found previously. Thus the basic subset contains 21 observations. Within this

basic subset we consider observations three at a time with a smaller α=0.001 to

alleviate the multiple testing problem. The LD statistic using the simulation

cutoff point picked (13, 14, 25), (14, 23, 25) and (14, 25, 32) (see Table 2) as

potential outlier triples. Neither the cutoff value from the approximation nor

that from the LR picked any triples. ADQ also did not pick any triples. For

reference actual LD and LR values, corresponding cutoff values and ADQ values

are given in Table 2.

From the analysis of observations two at a time we found that the pair (14,

25) is a Y outlier and (5, 10) is an X outlier. When we consider observations

three at a time it is clear that 14 and 25 are involved in the triples picked by

the LD statistic. The differences in the statistic values in going from pairs to

triples are small except possibly for 13. Thus we will stop the procedure here.

Thus observations 5, 10, 14, and 25 should be investigated to see why they

are different from others. Observation 13 also needs some investigation. Exam-

ination of the data set indicate that the 5th observation has the largest x1 value

(20). This is almost twice as large as the x1 values for the other observations

except for the 10th observation. The 5th observation also has the largest value

for variable x3.

It is difficult to formulate an exact procedure for the multiple outlier case

in multivariate regression because of the multiple testing and computational

problems involved. Very little attention is given to the multiple outlier case
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in most papers dealing with outliers. In certain cases some approximate and

workable procedures are given as we have done here. The main objective in

outlier analysis is to focus attention on potential outliers and investigate why

these are different from others. This involves interaction with experimenters,

data collectors etc.

6 Concluding remarks

The likelihood displacement statistic and the likelihood ratio statistic are

developed to detect multiple outliers in the context of a multivariate linear

regression model. The statistics are generalizations of the univariate Cook’s

distance and other diagnostic statistics. In order to obtain critical values for

the two statistics, approximate distributions are obtained to get suitable cutoff

points and the performance of the approximate distributions are examined by

a simulation study when the sample size is large. When the sample size is

small, a procedure is proposed to generate critical values for the two statistics

by simulation. An implementation procedure to detect outliers is also proposed

and an example demonstrates the procedure for detecting multiple outliers.

7 Proof of equation (6)

For all data without observations in Ak, we have the following multivariate

linear model:

Y[Ak] = X[Ak]B + E[Ak],
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where E[Ak] ∼ MV N(0, In−k ⊗ Σ).

With this model, the maximum likelihood estimator of B is given by

B̂[Ak] = (X ′
[Ak]X[Ak])−1X ′

[Ak]Y[Ak]. (11)

Now, we want to determine the relationship between B̂[Ak] and B̂, the MLE

with all data. Note that

X ′
[Ak]X[Ak] = X ′X −X ′

Ak
XAk

, and X ′
[Ak]Y[Ak] = X ′Y −X ′

Ak
YAk

. (12)

From the identity (see, for example, Muirhead, 1982, p580)

(A + CBD)−1 = A−1 −A−1CB(B + BDA−1CB)−1BDA−1,

where A and B are nonsingular r × r and q × q matrices respectively, and C

is r × q and D is q × r matrices, we let A = X ′X, B = I, C = −X ′
Ak

, and

D = XAk
, and get

(X ′
[Ak]X[Ak])−1 = (X ′X −X ′

Ak
XAk

)−1

= (X ′X)−1 + (X ′X)−1X ′
Ak

(I −XAk
(X ′X)−1X ′

Ak
)−1XAk

(X ′X)−1.

(13)

Now from (11), (12) and (13) we obtain

B̂[Ak] = B̂ − (X ′X)−1X ′
Ak

(I −QAk
)−1ÊAk

.
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Table 1: Comparison between the empirical significance levels of LD and LR

from the approximations.

LD LR
m k α

Saddlepoint Normal Chi-square

0.10 0.1046 0.1046 0.1050

0.05 0.0572 0.0572 0.0574
1 1

0.01 0.0098 0.0098 0.0104

0.10 0.0964 0.0956 0.1068

0.05 0.0460 0.0446 0.0548
1 5

0.01 0.0102 0.0090 0.0122

0.10 0.0984 0.0976 0.1016

0.05 0.0464 0.0452 0.0518
2 2

0.01 0.0100 0.0092 0.0114

0.10 0.1044 0.1044 0.0974

0.05 0.0512 0.0494 0.0470
2 5

0.01 0.0102 0.0088 0.0104

0.10 0.0964 0.0960 0.0956

0.05 0.0500 0.0496 0.0466
5 2

0.01 0.0094 0.0092 0.0102

0.10 0.0940 0.0926 0.1074

0.05 0.0450 0.0436 0.0478
5 5

0.01 0.0098 0.0090 0.0102

26



Table 2: Identified Y outliers by the proposed methods: Rohwer’s data, where

LDsim and LRsim are corresponding cutoff values obtained from the simulation

Observation LD LDsim LR LRsim ADQ(h̄=0.38)

25 1.87 1.62 9.13 7.69 0.16

(14, 25) 3.76 3.21 17.94 16.65 0.14

(13, 14, 25) 5.35 4.72 22.51 25.17 0.13

(14, 23, 25) 4.08 4.03 21.32 26.52 0.11

(14, 25, 32) 4.60 4.20 23.37 29.39 0.12
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