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Abstract

Failures or other adverse events in systems or products may depend on the age and usage

history of the unit. This paper present models that may be used to assess the dependence

on age or usage in heterogeneous populations of products, and shows how to estimate model

parameters based on different types of observational field data. The setting where the events

in question are warranty claims is examined in some detail. Applications to the analysis of

automobile warranty data are considered and used to illustrate the methodology.
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1. INTRODUCTION

When considering the reliability of systems, it is often important to consider both the

age of the system (that is, the time since it was introduced into service) and its cumulative

usage, measured according to some specified variable. For example, a motor vehicle’s usage

may be measured by distance driven in miles or kilometers; laser printers’ usage may be

measured by cumulative pages printed. A key question which we address here is whether

certain events (e.g. warranty claims) are primarily dependent on the age of the system, on

cumulative usage, or both. Warranty plans for certain types of products also specify limits

of coverage in terms of both age and usage, and it may be of interest to assess the effect of

changes in the limits. Notable in this context are North American automobile warranties,

which have age and distance limits for specific systems on the vehicle, for example 3 years

and 36,000 miles.

The purpose of this paper is to study the estimation of product reliability through data

on warranty claims. To do this we require models that allow events of interest to depend on

both the age and usage of a product. We also have to deal with the fact that warranty data

typically have incomplete information about product usage, as we discuss below. Robinson

and McDonald (1991), Lawless and Kalbfleisch (1992) and Lawless (1998) give background

on warranty data and other information on the field reliability of products.

Various authors have considered the analysis of accumulating warranty claims as a func-

tion of the age (time in service) of a product; for example, see Kalbfleisch et al. (1991)

and, for a review of methodology, Lawless (1998). The estimation of failure rates or time to

failure distributions from such data is more problematic, however (e.g. Suzuki, 1985, 1993;

Lawless and Kalbfleisch, 1992; Lawless, 1998). Aside from data quality issues related to the

timing and diagnosis of failures, the main problem is that cumulative usage is often given

only at the times of claims, and so is generally unavailable for units that do not have at

least one warranty claim. Thus, in a followup study of units under warranty we also do not
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know the end-of-study usage for many units. (We assume here that usage is automatically

recorded, as with distance driven in vehicles or number of copies for copiers or printers,

but that data on usage are not automatically available to the analyst.) Sometimes dates of

purchase of a product are also largely unknown; for example, dates of purchase for electronic

goods or appliances tend to be reported only if a warranty claim arises. We do not deal with

this complication here, and assume that purchase dates of all units are known. Finally, for

cases where warranty limits are two-dimensional (involving both age and usage), we may not

know the age τi at which a unit’s coverage ceased. For example, with a 3 year/36,000 mile

warranty for automobiles, many vehicles reach the distance limit in less than 3 years and for

a vehicle with no claims we will not know when this occurred.

Several authors have estimated age-specific warranty claim rates or expected numbers of

claims by using estimates of the probability a product is still under warranty at age t > 0

(e.g. Hu and Lawless, 1996a; Chukova and Robinson, 2006). A similar approach leads

to estimates of usage-based rates or expected numbers of claims per unit. However, these

methods make the strong assumption that the duration of followup for a unit is independent

of its claims process. This is very often false, for example, when claim rates are related to

the usage rate for a unit. A primary objective of this paper is to deal with this problem.

Another issue of importance to manufacturers is whether claims and repair events are

driven primarily by age, by usage or by both (e.g. Chukova and Robinson, 2006; Krivtsov,

2006). Lawless et al. (1995), Murthy et al. (1995), Ahn et al. (1998) and Jung and Bai

(2007) have considered models involving age and usage as dual time scales, but estimation

based on field data or warranty data has not been considered. In particular, the case where

age or usage at the end of followup are missing for units with no claims has not been

investigated, except for the analysis of time to the first claim (Lawless et al., 1995). Other

authors have discussed bivariate age and usage models for failure times in reliability settings

(e.g. Singpurwalla and Wilson, 1998; Yang and Nachlas, 2001) but they do not consider

recurrent events or estimation as we do here.
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This paper thus makes a number of new contributions. In Section 2 we discuss recurrent

event processes where age and usage are both involved and formulate random effects models

that reflect heterogeneity across product units. In Section 3 we develop estimation proce-

dures based on warranty claims data for some models in which usage accumulates linearly

with age. Such models are important for automobiles and other products, and we show how

to deal with missing followup times. Estimates of Hu and Lawless (1996a) and Chukova

and Robinson (2006) for event rates in terms of age or usage are considered in Section 4,

and biases in such estimates are examined. Both real and simulated warranty claims data

are examined in Section 5, and we demonstrate the limitations of data where only a small

fraction of units have claims. In Section 6 we show how to investigate the effects of changes

to a warranty plan’s age or usage limits and in Section 7 we indicate extensions to the

methodology and areas that deserve further investigation.

2. MODELS FOR REPEATED EVENTS WITH AGE AND

USAGE SCALES

There can be multiple warranty claims on a unit and we adopt recurrent event terminology

and notation (Cook and Lawless, 2007). Let t ≥ 0 denote age (time since sale) of a product

unit and let Ui(t) denote the usage at age t ≥ 0 for the i’th unit in some population or

sample. Let Ni(t) be the number of events (claims) experienced by the unit up to age t, so

that {Ni(t), t ≥ 0} is the counting process for events on the age scale. In practice, events may

be split into different types and there will be a counting process for each type; we consider

Ni(t) as the number of events of some specified type. The joint analysis of different types is

mentioned in Section 7. There may also be explanatory variables xi associated with a unit

but for most of this paper we do not consider them explicitly; product units will instead be

subdivided into groups, if necessary. This is consistent with other papers on warranty data
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analysis, but we briefly discuss the inclusion of covariates in Section 7.

For general discussion we assume that Ni(0) = 0, although in some settings we might

wish to recognize repairs made under warranty before a unit is sold by allowing Ni(0) to be

positive. The usage process or “curve” Ui(t) is non-decreasing for t ≥ 0, and we assume that

the usage process is external in the sense of Kalbfleisch and Prentice (2002, Section 6.3).

That is, the usage curve is not influenced by the event process, and so we may condition on

the usage history for a given unit, effectively treating it as a covariate. The assumption that

Ui(t) is external is a reasonable approximation to reality while products are under warranty.

Strictly speaking, units cannot be used while they are being repaired, but in the contexts we

consider repair times are short. Non-external usage processes are more difficult to handle,

and previous papers have not addressed this at all; we comment briefly on this topic in

Section 7.

To specify models for repeated events, we introduce the additional notation N i(t) =

{Ni(s) : 0 ≤ s ≤ t} and U i(t) = {Ui(s) : 0 ≤ s ≤ t}. We assume that there are specified

warranty coverage limits T0 > 0 and U0 > 0 such that an event at age t is recorded only if

t ≤ T0 and Ui(t) ≤ U0. Either T0 or U0 may be infinite but typically at least T0 is finite. For

convenience we will denote N i(T0) as N i and U i(T0) as U i, since we only consider t in the

range (0, T0). For general discussion we treat events as being observed in continuous time

but we will later also discuss discrete time models, since claims are generally recorded in

terms of days.

An event process in continuous time can be modeled by specifying an intensity function

λ(t;U i, N i(t−)) that gives the instantaneous probability of an event at time t, conditional on

U i and the history N i(t−) of previous events (e.g. see Cook and Lawless, 2007, Chapter 2).

We make the reasonable assumption that λ(t;U i, N i(t−)) depends on U i only through U i(t).

In addition, we will require a probability model for the usage paths U i in the population

of units. An important feature of product usage is heterogeneity; usage paths tend to

vary widely across units. In addition, unmeasured usage, environmental, or product quality
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factors often create heterogeneity in the occurrence of failures or warranty claims across

units. To accommodate such heterogeneity we introduce a random effect Zi (perhaps a

vector), and allow U i and the claim intensity to depend on Zi. The Zi are assumed to be

independent and identically distributed across units, with distribution function G(.).

In this paper we assume that the event process is conditionally Poisson, with intensity

function λ(t|Ū , Z), and that the intensity at time t depends on Ūi only through Ūi(t). That

is,

lim
∆t↓0

Pr
{
event in [t, t+ ∆t) |U i, N i(t−), Zi

}

∆t
= λ

(
t|Ūi, Zi

)
= λ

(
t|U i(t), Zi

)
,

where Zi may also affect the distribution of U i. This model is very flexible, and allows for

both heterogeneity in usage paths and in the event intensities given Ūi. If the process for

unit i is observed from age 0 to some age τi that is independent of the event process, it then

follows that (e.g. Cook and Lawless, 2007, Ch. 2) the joint probability density for U i and

the event history

N i(τi) = {ni events over 0 ≤ t ≤ τi, at times tij(j = 1, . . . , ni)} (1)

is, conditional on Zi,

{
ni∏

j=1

λ
(
tij|U i, Zi

)
}

exp
{
−Λ

(
τi|U i, Zi

)}
p
{
U i(τi)|Zi

}
, (2)

where p(U i|Zi) denotes the density of U i given Zi and

Λ
(
τi|U i, Zi

)
=

∫ τi

0

λ
(
t|U i, Zi

)
dt (3)

is the conditional expected number of events, E{Ni(τi)|U i, Zi}. The density function for the

observable data {N i(τi), U i(τi)} is obtained by integrating (2) with respect to the distribution

of Zi.

There are some field reliability studies for which τi is prespecified and essential data on U i

are collected, and in such cases maximum likelihood estimation can be based on a likelihood

function which is a product of terms (2) for a random sample of independent units. Indeed,
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current technology allows usage curves U i to be recorded and stored for many products,

and data of this type are expected to become increasingly common. However, in this paper

we consider the more challenging setting exemplified by warranty data, and show how to

estimate model parameters when τi may depend on U i, or when data on τi or U i are missing.

In that case (2) is unavailable to us.

Even with the conditional Poisson assumption, there are many models for the conditional

event intensity λ(t|U,Z) and usage path processes U = {U(t), 0 ≤ t ≤ T0} that one might

consider. There has been very little work on repeated events in this context; Crowder

and Lawless (2007) provide a review, but we mention a few pertinent references. Lawless

et al. (1995) mention an accelerated time model for which Ui(t) = Zit and λ(t|U i, zi) =

zβ
i λ0(z

β
i t), where λ0(t) is a parametrically specified function. They investigate estimation

for a corresponding failure time model, but not for the repeated events model. Murthy et

al. (1995) consider a model with Ui(t) = Zit and λ(t|U i, zi) = α0 + α1zi + α2t + α3zit, but

do not address estimation. Other work has tended to be for the case of a single failure time

Ti rather than recurrent events. Lawless et al. (1995) and Jung and Bai (2007) consider

models with Ui(t) = Zit which assume Ti depends on Zi but is independent of U i, given

Zi. Singpurwalla and Wilson (1998) take U i as the path of some stochastic process, and the

hazard function for Ti given U i is of the form h(t|Ui(t)); a random effect Zi is not used.

Crowder and Lawless (2007) discuss pros and cons of different modeling strategies. In

general, most models that involve stochastic processes for Ūi are difficult to fit to data, and

for the types of incomplete data considered here, are very challenging. Consequently we

consider in the next section models for which Ui(t) is a deterministic function of Zi and t,

with Zi incorporating variability in usage paths across different units. They provide a good

approximation to many warranty or field reliability settings.
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3. A MODEL WITH RANDOM USAGE RATES

3.1 A Family of Models

Families of models that have several advantages in the present setting are those where Ui(t) =

U(t;Zi, ψ) is a deterministic function of t, given the random effect Zi; the parameter ψ

allows additional flexibility in the shapes of usage curves. In addition, it is assumed that

λ(t|U i, Zi) = λ(t|Zi); this is especially convenient when data on U i is limited and, in some

cases, entirely missing. In this paper we restrict attention to models where Zi > 0 is a

random usage rate, with

Ui(t) = Zit, t ≥ 0 (4)

and to start, we consider the Poisson model with conditional rate function

λ
(
t|U i, Zi

)
= λ (t|Zi) = Zβ

i λ0

(
tZβ

i ;α
)
, (5)

where λ0(t;α) is a baseline rate function specified in terms of a parameter vector α. The

Zi are assumed independent with some distribution function G(Z; γ). This model was men-

tioned by Lawless et al. (1995), but estimation was not pursued. The linear usage model

(4) provides a good approximation for equipment such as motor vehicles over the early part

of their time in service, and has often been used in dealing with warranty data (e.g. Lawless

et al., 1995; Murthy et al., 1995; Chukova and Robinson, 2006; Jung and Bai, 2007).

The form of (5) is analogous to an accelerated failure time model. It is flexible and has

an appealing property: the conditional expected number of events up to age t for unit i is

E {Ni(t)|Zi} =

∫ t

0

λ (s|Zi) ds

= Λ0

(
tZβ

i ;α
)
, (6)

where

Λ0 (t;α) =

∫ t

0

λ0 (s;α) ds
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is a baseline cumulative mean function. Thus, if β = 0 the expected number of events is

independent of the usage rate, whereas if β = 1 then (6) equals Λ0(Ui(t);α) and depends

only on the accumulated usage up to age t. For other values of β, event occurrence depends

on both age and usage; note that Λ0(tz
β) can be rewritten as Λ0(t

1−βu(t)β). This model thus

allows an examination of the important question as to whether failures are predominantly a

function of age, usage, or both variables. Other models should, of course, be considered if (5)

does not fit, and in the next subsection we extend (5) to allow for the frequently occurring

phenomenon of extra – Poisson variation. Some other alternatives are mentioned in Section 7.

3.2 Maximum Likelihood Estimation

First, we give the contribution to the likelihood function for individual unit i in the “ideal”

setting where it is observed up to a prespecified age τi, and where Zi is observed because the

cumulative usage is observed at one or more times. The usage paths are not actually precisely

linear in practice due to short term variations in the rates, so some pragmatic convention is

usually needed to define the “observed” Zi. We assume the additional variability introduced

is small, and ignore it here; it is possible, but more complicated, to consider variation in Zi

measurements as a form of covariate measurement error. We adopt the convention of basing

Zi on the usage at the largest observation time.

The data on the i’th unit is of the form (1), and by (2), (5) and (6) the likelihood function

for β and α based on M independent units is

L(θ) =

M∏

i=1

ni∏

j=1

zβ
i λ0

(
tijz

β
i ;α

)
e−Λ0(τiz

β
i ;α), (7)

where θ = (α, β) is the vector of unknown parameters. In practice, parametric forms such

as λ0(t;α) = α1α2(α1t)
α2−1 or exp(α1 + α2t) are useful. In this setting, Zi functions as a

covariate and its distribution can be estimated separately from the data z1, . . . , zM on the

random sample of M units.

We now consider the common situation arising with warranty data and certain other

9



observational field data, where Zi is observed only at the time of a repair or warranty claim;

for units with no observed events the value of Zi is consequently unknown. In addition, τi

may depend on Zi, and so may also be missing. We consider the following set up. The

elapsed time in service for the i’th unit when the data are analyzed is denoted by Ti and we

let τ ∗i = min(Ti, T0). If a usage limit U0 < ∞ is in effect, then U0/Zi is the time at which

usage reaches U0, so the total followup time for the unit under warranty claims reporting is

τi = min(τ ∗i , U0/Zi). If Ni(τi) > 0 then Zi is observed, because Ui(t) = Zit is recorded at the

time of any warranty claims; in this case τi also becomes known. If Ni(τi) = 0, however, the

value of Zi is unknown and if U0 <∞, then τi is also unknown.

For convenience, we label the units for which Ni(τi) > 0 as i = 1, . . . , m and those for

which Ni(τi) = 0 as i = m + 1, . . . ,M . The likelihood function is then (see (2) and also

Lawless et al., 1995, Section 3.2)

L(θ) =

m∏

i=1

{
ni∏

j=1

zβ
i λ0

(
tijz

β
i

)}
e−Λ0(τiz

β
i )g(zi)

M∏

i=m+1

∞∫

0

e−Λ0(τiz
β
i )g(zi)dzi (8)

where ni = Ni(τi), λ0(t) = λ0(t;α), g(z) = g(z; γ) is the density function for Zi and

θ = (α, β, γ). Note that in the terms for i = m + 1, . . . ,M in (8), τi = min(τ ∗i , U0/zi), so

that the integral can be written as

∫ U0/τ∗

i

0

e−Λ0(τ∗

i zβ
i )g(zi)dzi +

∫ ∞

U0/τ∗

i

e−Λ0(U0zβ−1

i )g(zi)dzi. (9)

In many contexts recurrent events exhibit extra-Poisson variation, even after conditioning

on covariates and usage rates. This is generally due to heterogeneity in the users of different

units and in the environment where they operate. To allow for this additional variability we

consider a mixed Poisson process (Lawless, 1987) by extending (5) to

λ
(
t|Ūi, zi, vi

)
= viz

β
i λ0

(
tzβ

i ;α
)
, (10)

where the vi are independent and identically distributed random variables with mean 1 and

variance φ, and are independent of the Zi. We assume for convenience, and with little loss
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of flexibility, that the vi have a gamma distribution. It is shown in Appendix 1 that in this

case the likelihood function analogous to (8) is

L(θ) =
m∏

i=1

{
ni∏

j=1

zβ
i λ0

(
tijz

β
i

)}
ωω Γ(ni + ω)

Γ(ω)

{
ω + Λ0

(
zβ

i τi

)}−ni−ω

g(zi)

×

M∏

i=m+1

∫ ∞

0

{
1 + ω−1Λ0

(
zβ

i τi

)}−ω

g(zi)dzi, (11)

where ω = φ−1 and θ = (α, β, ω).

The likelihoods (8) and (11) are most easily maximized by using general optimization

software to maximize logL(θ); good software does not require formulas for derivatives (which

can be messy) and will return a Hessian matrix H(θ̂) = (∂2 logL(θ)/∂θ∂θ′)θ̂, from which

variance estimates for θ̂ can be obtained. The possibility of estimating g(z) parametrically

from (9) is discussed later, but frequently there is a good estimate, obtained from other

sources (Lawless et al., 1995; Chukova and Robinson, 2006). As a result, it is often assumed

that g(z) is known, although it will have been estimated.

4. MARGINAL RATE AND MEAN FUNCTIONS

4.1 Marginal Rate Functions and Bias in Naive Estimators

It is often of interest to estimate the marginal mean functions in terms of age and usage,

which we denote respectively as

Λa(t) = E {Ni(t)} , Λu(u) = E {Nu
i (u)} ,

where Ni(t) is the number of events on unit i up to age t, and Nu
i (u) is the number of events

up to usage level u. These are related to the quantities in Section 2 by

Λa(t) = EZi,Ūi

{
E

[
Ni(t)|Zi, U i

]}
(12)

Λu(u) = EZi,Ūi

{
E

[
Ni

(
U−1

i (u)
)
|Zi, U i

]}
, (13)
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and can be estimated by working with models such as those in Section 3. The associated

rate functions λa(t) = Λ′
a(t) and λu(u) = Λ′

u(u) can also be estimated.

Several authors have estimated Λa(t) and Λu(u) nonparametrically from warranty data

by using estimates of the probability a product unit is still under warranty at age t or usage u

to adjust raw warranty claim counts. See in particular Hu and Lawless (1996a) and Chukova

and Robinson (2006). However, these authors assume that censoring or end-of-followup

times are independent of the event processes. This assumption is violated when there is a

warranty usage limit and events depend on both age and usage; this makes the proposed

estimates biased. In this section we examine this bias in the setting of Section 3. We assume

that data are of the form that leads to the likelihoods (8) and (11), that is, data on unit i are

from age 0 to age τi = min(Ti, T0, U0/Zi). In addition, the usage rate Zi is observed only if

there is at least one claim over (0, τi). Let Y a
i (t) = I(τi ≥ t) = I(Ti ≥ t)I(U0/Zi ≥ t), where

I(A) is the indicator function for an event A and we restrict attention to values t ≤ T0. Note

that Y a
i (t) indicates whether a unit is “at risk” of producing an observed event at age t.

Hu and Lawless (1996a) and Chukova and Robinson (2006) propose estimates of λa(t) in

the discrete time case,

λ̂a(t) =

M∑

i=1

Y a
i (t)ni(t)/

M∑

i=1

P̂ a
i (t), t = 1, 2, . . . , T0 (14)

where ni(t) is the number of claims at age t (typically measured in days) for unit i, and

P̂ a
i (t) is an estimate of E{Y a

i (t)}, that is,

P a
i (t) = Pr(τi ≥ t) = Pr(Ti ≥ t) Pr(Zi ≤ U0/t). (15)

It is assumed here that Ti is independent of Zi. Often the Ti are known for all units and

then

P̂ a
i (t) = I(Ti ≥ t)Ĝ(U0/t),

where Ĝ(z) is an estimate of G(z) = Pr(Zi ≤ z). If Y a
i (t) and ni(t) are independent then

E{Y a
i (t)ni(t)} = P a

i (t)λa(t) and if M−1
∑
P̂ a

i (t) is a consistent estimate of M−1
∑
P a

i (t)
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then λ̂a(t) is a consistent estimate of λa(t). However, Y a
i (t) and ni(t) are not in general

independent, if events depend on both age and usage. Theorem 1 below gives the asymptotic

bias of the estimates λ̂a(t) in that case.

Similarly, with usage expressed in discrete units, an analogous estimate of λu(u) is

λ̂u(u) =
M∑

i=1

Y u
i (u)nu

i (u)/
M∑

i=1

P̂ u
i (u), u = 1, 2, . . . , U0 (16)

where nu
i (u) is the number of claims at usage u for unit i, Y u

i (u) = I(Ziτ
∗
i ≥ u) with

τ ∗i = min(Ti, T0), and P̂ u
i (u) is an estimate of

P u
i (u) = Pr (Zi ≥ u/τ ∗i ) . (17)

If Y u
i (u) and nu

i (u) are independent andM−1
∑
P̂ u

i (u) is a consistent estimate ofM−1
∑
P u

i (u)

then λ̂u(u) is a consistent estimate of λu(u).

The following theorems, which are proved in Appendix 2, give the asymptotic biases

for λ̂a(t) and λ̂u(u) when censoring times are not independent of the event processes. For

convenience we revert to treating time and usage as continuous but the results also apply in

the case of discrete time and usage scales.

Theorem 1 Suppose that the event rate function λ(t|Zi, Ūi) is of the form λ(t|Zi) as

in Section 3, that Ui(t) is given by (4), and that Zi is independent of Ti with distribution

function G(z). Then the estimates λ̂a(t) and λ̂u(u) based on independent units i = 1, . . . ,M ,

and given by (14) and (16), converge in probability to Ba(t)λa(t) and Bu(u)λu(u), where

Ba(t) =
E

{
λ(t|Z)

∣∣∣Z ≤ U0/t
}

E {λ(t|Z)}
, (18)

Bu(u) =
E {Z−1λ (u/Z|Z)I(Z ≥ u/τ ∗)}

E {Z−1λ(u/Z)|Z}Pr (Z ≥ u/τ ∗)
. (19)
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This result hold for both of models (5) and (10). In (19), the expectation in the numerator

is with respect to both Z and Ti in τ ∗ = min(Ti, T0), and Pr(Z ≥ u/τ ∗) likewise treats

the Ti as random. If all units are observed long enough that Ti ≥ T0, then τ ∗i = T0 for all

i = 1, . . . ,M and (19) reduces to the simpler form (A5) in Appendix A. Note that if U0 = ∞,

(18) equals one and λ̂a(t) is consistent, as seems intuitively obvious when there is no usage

limit. Even when T0 = ∞ (which rarely is the case in practice), however, (19) does not equal

one because of finite limitations on the followup times Ti.

In many settings a model of the form (5), with λ0(t) of the “power law” form α1α2t
α2−1

has been found reasonable. The following theorem gives the asymptotic bias functions (18)

and (19) for this model, and we illustrate its use in the next section.

Theorem 2 Suppose that in addition to the conditions in Theorem 1, the conditional

rate function λ(t|Z) is of the form Zβλ0(tZ
β) given in (5), with λ0(t) = α1α2t

α2−1, where

α1 > 0, α2 > 0. Then (18) and (19) become

Ba(t) =
E

{
Zβα2 |Z ≤ U0/t

}

E {Zβα2}
, (20)

Bu(u) =
E

{
Z(β−1)α2I (Z ≥ u/τ ∗)

}

E {Z(β−1)α2}Pr {Z ≥ u/τ ∗}
. (21)

4.2 An Illustration of Naive Estimator Bias

The expressions (20) and (21) take simple forms when the usage rates follow a lognormal dis-

tribution or a gamma distribution. To illustrate the gamma case, suppose that Zi ∼ Gamma

(a, b), which denotes the distribution with mean ab, variance a2b, and density function

g (z; a, b) =
1

abΓ(b)
zb−1e−z/a z > 0.

Straightforward calculations then show that (20) and (21) become

Ba(t) =
G (U0/t; a, b+ α2β)

G (U0/t; a, b)
, (22)
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Bu(u) =
E

{
Ḡ (u/τ ∗; a, b+ α2(β − 1))

}

E
{
Ḡ (u/τ ∗; a, b)

} , (23)

where G(z; a, b) is the distribution function corresponding to g(z; a, b). In (23), Ḡ(z; a, b) =

1 −G(z; a, b) and the expectation is with respect to the distribution of τ ∗ = min(Ti, T0). If

Ti ≥ T0 for all i then τ ∗ = T0 and the expectation disappears.

For illustration we take a setting similar to one involving car data discussed in Section

5. We let t represent years and u thousands of miles driven, and consider warranty limits

T0 = 3, U0 = 36. The usage rates Zi (in thousands of miles accumulated per year) are

taken to be Gamma (2.5, 5.5), which gives E(Zi) = 13.75 and Var(Zi) = 28.875. Finally, we

assume that λ0(t) = α1α2t
α2−1; note that (22) and (23) do not depend on the value of α1.

Note that when β = 0, Ba(t) = 1, that is, the naive marginal estimate (14) for λa(t) is

unbiased asymptotically, or consistent. This is because when β = 0, the rate function (5)

does not depend on Zi, so that E{ni(t)|Zi} = E{ni(t)}. When β = 1, (23) gives Bu(u) = 1,

so that the naive estimate (16) for λu(u) is consistent. This is a consequence of the fact that

when β = 1 the rate function (5) gives λ(t|Z) = Zλ0(tZ) and thus (see Appendix 2)

λu(u|Z) = Z−1λ
(
(uZ−1)Z|Z

)
= λ0(u).

Hence E{nu
i (u)|Zi} = E{nu

i (u)}, that is, the expected number of events as a function of

usage is independent of the rate of usage Zi.

Table 1 gives values of Ba(t) and Bu(u) for β = 0, 0.5, 1 and α2 = 1, 1.1; these represent a

range of scenarios encountered with car warranty claims. We show results for the case where

Ti = T0 = 3 for all units, so that τ ∗ = 3 in (23) and the expectations disappear. The bias

functions Ba(t) with β > 0 and Bu(u) with β < 1 increase with t and u respectively; this

is because at higher ages and usage (miles) there is a greater chance that a vehicle will no

longer be covered by the warranty. This results in a selection effect against cars with high

usage rates in the estimation of λa(t) and a selection effect against cars with low usage rates

in the estimation of λu(u). Each of these effects produces underestimation of the event rates

in question. The key message is that if events are primarily a function of age (β close to 0)
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then λu(u) is underestimated, and that if events are primarily a function of usage (β close

to 1) then λa(t) is underestimated. In practice we should focus on λ̂a(t) in the former case

and λ̂u(u) in the latter, and they are not substantially biased. However, this highlights the

importance of knowing whether particular types of claims are mainly age- or usage-related.

If one merely computes λ̂a(t) and λ̂u(u), there is no indication as to the extent of bias in

either estimate.

Table 1. Bias Functions (22) and (23) of Estimators (14) and (16)

Ba(t) Bu(u)

β α2 t = 1 t = 2 t = 3 u = 12 u = 24 u = 36

0 1.0 1 1 1 0.968 0.827 0.677

1.1 1 1 1 0.962 0.806 0.645

0.5 1.0 0.998 0.918 0.805 0.988 0.923 0.840

1.1 0.998 0.910 0.787 0.987 0.915 0.824

1.0 1.0 0.995 0.829 0.632 1 1 1

1.1 0.995 0.811 0.600 1 1 1

5. APPLICATIONS TO CAR WARRANTY DATA

Automobile warranty data are a primary area of application for the methods here. In

Section 5.2 we consider a set of warranty claims data for 44,890 cars of one type and model

year, and manufactured in one plant during 2000-2001. The warranty limits were 3 years

and 36,000 miles.

The fraction of vehicles that generate at least one warranty claim is small for most car

systems. This can create difficulties in fitting models, even when the total number of vehicles

M is large. Some parameter estimates may be highly correlated, and confidence limits for

certain parameters may be wide. In addition, the information about the distribution of Zi is

limited and it may be important to have a good external estimate of g(z). To illustrate the
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effect of m/M on estimation, we consider simulated data sets, following which we examine

the real warranty data.

5.1 Simulated Data Sets

To assess the amount of information about various model features, we simulated data on

M = 1000 vehicles under scenarios that give different expected values for m, the number of

vehicles with one or more warranty claims within the age and mileage limits. To reflect real

settings, we generated data under the following assumptions, with age t expressed in years

and mileage ui(t) in thousands of miles. The parameter values are realistic in car warranty

settings where distance is the key factor (Lawless et al., 1995).

(i) Mileage accumulation (usage) is given by (4), with log Zi ∼ N(2.4, 0.582).

(ii) Each vehicle has a random effect vi as in (10), which follows a gamma distribution

with mean 1 and variance φ = 1.0.

(iii) Given vi and Zi, events (warranty claims) follow a nonhomogeneous Poisson process

with intensity function of the form (10), with β = 0.95 and

λ0(t) = (α2/α1) (t/α1)
α2−1 , t > 0

with α2 = 1.10 and α1 taking different values which control the value of E(m).

Estimation was based on maximization of the likelihood functions (11), and two cases

were considered:

(a) g(z) is assumed known, with log Z ∼ N(2.4, 0.582), and θ = (α1, α2, β, φ) is estimated.

(b) g(z) is assumed unknown, but it is assumed that log Zi ∼ N(µ, σ2). The parameter

vector θ = (α1, α2, β, φ, µ, σ) is estimated.

Estimation was carried out by maximizing ℓ(θ) = logL(θ) given by (11) using the general

purpose optimization function nlm in R. Other general optimization functions, such as NLP
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in SAS, work equally well. An advantage of these types of functions is that it is necessary

only to provide code for ℓ(θ), and not derivatives. The software can determine any needed

derivatives numerically, and will also return a Hessian matrix H(θ̂) = (∂2ℓ(θ)/∂θ∂θ′)θ=θ̂, so

that (−H(θ̂))−1 is an estimated asymptotic covariance matrix for θ̂. An adjustment that

decreases the correlation between parameter estimates for β and α1 is to re-parameterize α1

as α1c = (α1/12β) and scale Zi as Zci = Zi/12; we used (α1c, α2, β) in our procedures, and

also ω = φ−1 in place of φ.

The total number of vehicles (M = 1000) is smaller then for many warranty data bases

but large enough to indicate the relative amounts of information about different parameters.

We show results for two individual samples, generated using values α1 = 500 and α1 = 80.

The first sample gave m = 38 and the second m = 229 vehicles with at least one claim. The

ratios m/M of 0.038 and 0.229 for sample 1 and 2 are plausible, with the latter being at the

high end of what is typically observed in practice for a vehicle system. Table 2 gives estimates

and their standard errors, and a number of features stand out: with µ, σ estimated and m/M

small, the parameter β is imprecisely estimated, and sheds limited light on whether age or

distance driven is more important; even when µ and σ are known, β is rather imprecisely

estimated when m/M is small; µ is also imprecisely estimated when m/M is small; ω (and

φ) is imprecisely estimated, especially when m/M is small.

These patterns persist across other scenarios, including ones where β is close to zero and

across a range of sample sizes. More detailed results from the simulated samples indicate

that when m/M is small, β and µ are rather highly confounded, giving high asymptotic

correlation for β̂ and µ̂. The key problem is that when m/M is small (values of .10 or

less are common for most car systems with three year warranties), and Zi is unobserved

unless ni > 0, there is limited information about the effect (represented by β) of the mileage

rate on claims. A good external estimate of the mileage rate distribution g(z) improves the

situation, but as we will see when considering the warranty data of the next section, the

estimate of β depends heavily on g(z), and so is susceptible to its misspecification. On the
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other hand, if it is possible to observe Zi for all vehicles, then estimation of g(z) and of β

improves dramatically. This may not be feasible in general, but two other possibilities exist.

One is to use the Zi from all vehicles having any type of claims; this could be done by using

models like those here to represent claims without reference to type. A second possibility is

to obtain Zi values for some of the vehicles with ni = 0 through a supplementary sample,

and to extend methods of Hu and Lawless (1996b).

Table 2. Parameter estimates from two simulated samples generated with parameter values

β = 0.95, α2 = 1.1, ω = 1.0, µ = 2.4, σ = 0.58, and (1) α1 = 500 (2) α1 = 80. In each case

M = 1000 and the numbers of cars with one or more claims were (1) m = 38, (2) m = 229.

True (a) µ, σ known (b) µ, σ estimated

m M Parameter Value Est. S.E. Est. S.E.

38 1000 β 0.95 0.86 0.28 1.06 3.15

α1c 47.2 39.9 18.4 38.4 26.5

α2 1.10 1.15 0.18 1.16 0.19

ω 1.00 3.92 18.0 6.21 109.0

µ 2.40 - - 2.32 1.27

σ 0.58 - - 0.59 0.09

229 1000 β 0.95 0.93 0.13 1.08 0.28

α1c 7.55 8.04 0.76 7.65 0.81

α2 1.10 1.03 0.06 1.04 0.06

ω 1.00 1.66 0.63 2.09 1.13

µ 2.40 - - 2.32 0.11

σ 0.58 - - 0.63 0.04
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Figure 1. Estimated and true distribution functions G(z) for two simulated samples

Finally, it is possible to develop a nonparametric estimate of G(z), as an alternative to

the parametric estimates considered here; this is described in Appendix 3. It should be noted

that a “naive” estimate obtained by taking the empirical cumulative distribution functions

(ECDF) based on the Zi observed for the m vehicles with claims can be highly biased if the

mileage rate affects the occurrence of claims. Figure 1 shows (a) the true G(z), (b) the para-

metric estimate G(z; µ̂, σ̂) and (c) the naive ECDF based on z1, . . . , zm for cars with claims,

in each of samples 1 (m = 38) and 2 (m = 229). As we would expect since β = 0.95, the
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naive estimate (c) appears biased, especially in sample 1, and over-estimates the quantiles

of G(z).

5.2 Car Warranty Data

We consider the car warranty data mentioned at the start of this section. The analysis of

”Type P” claims will be discussed; they have been considered by Chukova and Robinson

(2006), who calculated the age-based and mileage-based rate functions in (14) and (16).

Claims occurring before the date of sale, and a few claims with inconsistent data (e.g.

mileage at time of claim larger than U0 = 36 thousand miles) were dropped, leaving us with

1540 claims across the 44,890 vehicles. The data base we consider was closed before all cars

had reached the age limit of 3 years from date of sale, but almost all cars had values of τi

(current age at data base closure) greater than 2 years. The 1540 claims were experienced

by m = 1270 cars; 1068 cars had 1 claim, 151 had 2 claims, and 40, 8, and 3 cars had 3, 4,

and 5 or more claims, respectively.

We fit models of the type given in Section 3. The ratio m/M is small here, and the

simulated scenarios in Section 5.1 suggest that the likelihood may not be highly informative

about certain parameters, especially when G(z) is estimated. External information about

G(z) is thus valuable, but even then estimation of β within the model

E {Ni(t)|vi, zi} = viΛ0

(
tzβ

i

)
(24)

is sensitive to the assumed distribution G(z).

We will consider models (10) with random effects, with two models for Λ0(t) in (24);

(i) Λ0(t) = (t/α1)
α2 and (ii) Λ0(t) =

eα2t − 1

α1α2

(25)

respectively, for t ≥ 0. Model (i) has been found satisfactory in many reliability and warranty

claim settings similar to the one here. Model checks described below show fairly small but

systematic departures from the observed data and so model (ii), which corresponds to the

exponential rate function λ0(t) = α−1
1 exp(α2t), is considered as an alternative.
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We describe below three model checks that can be applied in the present setting. The

first is based on the fact that if Ni(τi) = ni > 0, then under the models (10) the quantities

rij =
Λ (tij |zi)

Λ (τi|zi)
j = 1, . . . , ni (26)

are distributed as uniform (0, 1) order statistics in a sample of size ni (e.g. Cook and Lawless,

2007, Section 3.7.3). Therefore we treat the r̂ij obtained by inserting parameter estimates

in (26) as “uniform” residuals; a probability plot of the n. =
∑m

i=1 ni ordered values of the

r̂ij against the uniform (0, 1) expected order statistics ℓ/(n. + 1), ℓ = 1, . . . , n. should be

approximately linear with slope one if the model Λ0(t;α) is suitable.

A second type of model check is to compare observed and expected numbers of warranty

claims at different ages 0 ≤ t ≤ T0 (here T0 = 3 years). Under a model (10) with a warranty

mileage limit U0 (here U0 = 36 thousand miles), the expected number of claims for a vehicle

up to age t is given by

Λ∗(t) = E {Ni (t ∧ (U0/Z))} ,

=

∫ U0/t

0

Λ0

(
zβt

)
g(z)dz +

∫ ∞

U0/t

Λ0

(
zβ−1U0

)
g(z)dz. (27)

Inserting parameter estimates α̂ in (27) gives the estimated expected claims curve Λ̂∗(t).

This may be plotted and compared with the Nelson-Aalen estimate

Λ̂∗
NA(t) =

∑

(i,j):tij≤t

(
1

Y.(tij)

)
, (28)

where Y.(tij) =
∑M

ℓ=1 I(τ
∗
ℓ ≥ tij). Note that (28) estimates the expected number of claims

Λ∗(t) nonparametrically.

Figure 2 shows a plot of Λ̂∗(t) based on model (i) in (25), along with Λ̂∗
NA(t). There

is a fairly small but systematic difference between the two estimates of Λ∗(t). Pointwise

confidence limits for Λ∗(t) based on the Poisson variance estimate (e.g. Cook and Lawless,

2007, Section 3.4.1) for Λ̂∗
NA(t),

V̂arp

{
Λ̂∗

NA(t)
}

=
∑

(i,j):tij≤t

(
1

Y.(tij)2

)
,
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are also shown in Figure 2. This estimate is certainly too small, given evidence shown below

of extra-Poisson variation, and the confidence limits are pointwise and not simultaneous but

even so we note that the model-based curve Λ̂∗(t) falls only slightly outside the limits at

values 0 ≤ t ≤ 3. Nevertheless, in view of the systematic nature of the departure of the

model-based estimate from the empirical (Nelson-Aalen) estimate, we consider alternative

models for Λ0(t), and in particular, model (ii) in (25).

Figure 3 shows the analogous plot to Figure 2 for models (ii), and we see better agree-

ment with the nonparametric estimate. We have shown parametric estimates both with µ

and σ assumed known, and estimated; the estimates are more or less indistinguishable. Uni-

form probability plots of residuals (26) are close to linear for model (ii), as well. Parameter

estimates for the model are shown in Table 3, where the reparameterization α1c = α1/12β,

α2c = α2(12β) is used in conjunction with the rescaled usage rate Zci = Zi/12 in order to re-

duce correlation between α̂1 and β̂. In this case we did not have a reliable external estimate of

G(z) and so estimated it, assuming it to be log-normal. The maximum likelihood estimates

for α1c, α2c, β, φ, µ and σ were obtained by maximizing the log-likelihood corresponding to

(11). In order to illustrate the sensitivity of β̂ to assumptions about G(z), we also show in

Table 3 the estimates of α1c, α2c, β and φ that are obtained when we assume respectively

that µ = 2.5, σ = 0.7 and µ = 2.7, σ = 0.7. We observe that β̂ changes substantially when

µ is changed from 2.5 (corresponding to a median usage rate of 12,182 miles per year) to

2.7 (corresponding to a median usage rate of 14,880 miles per year). Thus if an external

estimate of G(z) is used, one should be confident that it applies to the population of vehicles

represented in the warranty claims data base. On the other hand, estimation of the expected

number of claims, as shown in Figure 3, is insensitive to the value of µ, as we noted above.
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Table 3. Parameter Estimates for Model (10) with Mean Function (25) (ii)

Parameter EST. S.E. EST. S.E. EST. S.E.

α1c 94.7 5.3 94.2 5.2 87.8 5.0

α2c 0.320 0.037 0.303 0.036 0.288 0.037

β 0.576 0.096 0.616 0.038 0.307 0.040

φ 10.1 0.8 10.3 0.8 10.4 0.8

µ 2.52 0.065 2.51 - 2.71 -

σ 0.738 0.019 0.71 - 0.71 -

1 µ and σ are fixed at the values shown

Model (ii) in (25) gives a substantially larger maximum log-likelihood ℓ(θ̂) than model

(i): -11885.26 versus -11917.27. It is possible to consider a three-parameter family λ0(t;α)

that includes both model (i) and model (ii) (e.g. Lee, 1980) and within such a family model

(ii) is thus better supported. We have not attempted to fit a three-parameter family in view

of the limited information in these highly truncated claims data. Model (ii) is acceptable

for estimation of the expected number of warranty claims, but we note one additional model

check. In particular, we can for an arbitrary vehicle estimate the probability of r claims

under model (10), without knowing the mileage rate Zi. As shown in Appendix 1, this is

p̂i(r) =
Γ(r + ω̂)ω̂ω̂

Γ(Λ0)r!

∫ ∞

0

Λ0

(
τiz

β̂
i

)r

{
ω̂ + Λ0

(
τiz

β̂
i

)}r+ω̂
ĝ(z)dz.

For each of r = 0, 1, 2, . . . we may then calculate expected frequencies er =
∑M

i=1 p̂i(r) and

compare them with the observed frequencies fr of cars with r claims. In fact both mod-

els considered here fit the data very well in this respect, which is not surprising because

they have six parameters. For example, the model represented in Table 3 gives f0 = 43620,

e0 = 43624.9; f1 = 1068, e1 = 1073.1; f2 = 151, e2 = 154.3; f3 = 40, e3 = 29.4; f4 = 8,

e4 = 6.4; f5 = 1, e5 = 1.5; f6 = 1, e6 = 0.4; f7 = 1, e7 = 0.1.
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6. CHOICE OF WARRANTY LIMITS

In considering different possible limits on warranty coverage we need to investigate the

distribution of

N(t, u) = Number of claims with age ≤ t and usage ≤ u

for a given unit. No confusion should arise from using N(t, u) this way and N(t) to represent

the number of claims occurring up to age t. As previously, we assume that Ui(t) = Zit and

that conditional on the random variable vi and usage rate Zi, the events for unit i follow

a Poisson process with mean function viΛ(t|Zi). To obtain the distribution of N(t, u) we

observe that

Ni(t, u) = Ni (min(t, u/Zi))

and thus, denoting pr(t|z) = Pr{Ni(t) = r|Zi = z}, we have

Pr {N(t, u) = r} =

∫ ∞

0

Pr {Ni(t, u) = r|Zi = z} g(z)dz

=

∫ u/t

0

pr(t|z)g(z)dz +

∫ ∞

u/t

pr(u/z|z)g(z)dz

For the case where Λ(t|z) = Λ0(z
βt), discussed earlier, and where vi has a gamma distri-

bution with mean 1 and variance φ = ω−1, we have

pr(t|z) =
ωωΓ(r + ω)

Γ(ω)

Λ0(tz
β)r

{ω + Λ0(tzβ)}r+ω r = 0, 1, 2, . . .

and in the special Poisson process case where φ = 0, we have

pr(t|z) = e−Λ0(tzβ)Λ0

(
tzβ

)r
/r! r = 0, 1, 2, . . .

For both models, we have

E {Ni(t, u)} =

∫ u/t

0

Λ0

(
zβt

)
g(z)dz +

∫ ∞

u/t

Λ0

(
zβ−1u

)
g(z)dz. (29)

As an example, we compute expected numbers of claims per vehicle using the parameter

estimates for the model (25) (ii), given in Table 3. We consider three pairs of values for
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(t, u): (3, 36), (4, 48) and (5,60). The first pair corresponds to the existing 3-year, 36000-

mile warranty, and the other two represent longer warranty coverage. The estimates of (29)

are respectively 0.0365, 0.0565 and 0.0824 so the indication is that extending the warranty

even to 4 years, 48000 miles would increase expected claims substantially.

7. EXTENSIONS AND ADDITIONAL REMARKS

The fact that failures or other recurrent events may depend on both the age and usage history

for a system leads to interesting modeling and inference problems. This paper has focussed

on the rather difficult setting where the observed event data arise from warranty claims on

a population of units. In this case the average number of claims per unit is typically very

small and the usage histories are unobserved for units with no claims, making estimation

much more difficult. We have adopted here a fairly simple model based on linear usage rates

combined with a mixed Poisson process for events, conditional on the rates. This model

appears satisfactory for the warranty data examined in the paper, but other models could

of course be considered. The linear usage rate assumption is plausible for a substantial

period following the purchase of many products, but investigation of the effects of mild

variation around the linear function would be useful. As for the form of the event intensity

λ(t|Zi), the accelerated time model (5) is convenient since it contains as special cases solely

age-dependent and solely usage-dependent events. However, models of the multiplicative

form λ(t|Zi) = λ0(t)r(Zi; β) could easily be considered, say with r(Zi; β) = exp(βZi) or

r(Zi; β) = Zβ
i . Additive models, as in Murthy et al. (1995) can also be considered, but are

more difficult to fit with warranty data.

We have seen in the case of warranty claims with low frequency that the amount of

information about the relative effects of age and usage rate is limited, unless there is a fairly

precise estimate of g(z). An option not considered here is to do either some supplementary

sampling to obtain zi values for units with no claims, or to carry out random surveys of

vehicles under warranty. Hu and Lawless (1996b) consider this in connection with failure
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time models.

When there are multiple event types, the first priority is usually to fit models separately

for each type. Poisson or mixed Poisson processes discussed here can be used for each event

type. The same random variable Zi applies across all event types, and this complicates

estimation somewhat; this will be discussed in a separate article. Note also that the random

variable Zi induces association among event types. For example, if Ni1(t) and Ni2(t) count

the number of type 1 and type 2 events, respectively, and if Ni1(t) and Ni2(t) are independent

given Zi, with E {Ni1(t)|Zi} = Λ1(t|Zi) and E {Ni2(t)|Zi} = Λ2(t|Zi), then

cov (Ni1(t), Ni2(t)) = cov (Λ1(t|Zi),Λ2(t|Zi)) (30)

where the covariance on the right side is with respect to the distribution of Zi. For most

models (30) will not have a simple form; an exception is for multiplicative models in which

Λj(t|Zi) = Z
βj

i Λ0j(t). Association between event types, conditional on Zi, can be modeled

by adopting additional random effects along the lines of (10); see Cook and Lawless (2007,

Chapter 6).

Comparison of different groups of units can be done by fitting separate models for each

group. Regression models can also be considered. For example, if xi is a p × 1 vector of

covariates for unit i then we can extend the model (10) by taking

λ
(
t|U i, Zi, vi, xi

)
= viZ

β
i e

x′

iγλ0

(
Zβ

i e
x′

iγt
)
, (31)

where γ is a p × 1 vector of parameters. Fitting (31) with warranty data is likely to be

somewhat challenging, but would be straightforward when Zi is known for all units.

Finally, in many applications units tend to experience events rather frequently and there

is also reasonably complete observation of the usage paths Ūi for most units. In this case

models are much easier to fit, and a range of event intensity functions and processes for Ūi

can be considered (Lawless and Crowder, 2007). Another problem of interest is when the

occurrence of failures in a unit may affect their future usage. In this case Ūi(t) acts like

an internal time-varying covariate with respect to event occurrence. Models that deal with
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this and with settings where repairs involve substantial down-time for the system can be

formulated, but are beyond the scope of this article.
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APPENDIX 1

Under the model (10) let gv(vi) denote the density function for vi, which is assumed

continuous. Since the vi are unobservable, the likelihood function is obtained by integrating

terms in (8) with respect to vi, which is added to the intensity as in (10). That is,

L(θ) =
m∏

i=1

∫ ∞

0

{
ni∏

j=1

viz
β
i λ0

(
tijz

β
i

)}
e−viΛ0(τiz

β
i )gv(vi)dvi

×

M∏

i=m+1

∫ ∞

0

∫ ∞

0

e−viΛ0(τiz
β
i )g(zi)gv(vi)dzidvi.

The second set of terms (for i = m+ 1, . . . ,M) can be rewritten as

M∏

i=m+1

∫ ∞

0

Lv

(
Λ0(τiz

β
i )

)
g(zi)dzi,

where Lv(s) = E{e−svi} is the Laplace transform of vi.

If vi has a gamma distribution with mean 1 and variance φ = ω−1, then its Laplace

transform is Lv(s) = (1 + ω−1s)−ω. This produces the second term in (11). The first term

in (11) is given by straightforward integration with

gv(v) =
ωω

Γ(ω)
vω−1e−vω v > 0.

We can also derive the unconditional probability of r claims for a given vehicle, and the

expected number of claims. Given τ ∗i = min(Ti, T0), but not Zi, the probability of r claims

is obtained by integrating the Poisson probability function with mean viZ
β
i Λ0(τiZ

β
i ) with

respect to vi and Zi. With vi distributed according to a gamma distribution with mean 1 and
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variance φ = ω−1, and noting that τi = min(τ ∗i , U0/zi), we obtain pi(r) = Pr{Ni(τ
∗
i ) = r}

for r = 0, 1, 2, . . . as

pi(r) =
Γ(r + ω)ωω

Γ(ω)r!

∫ ∞

0

Λ0

(
τiz

β
i

)r

{
ω + Λ0

(
τiz

β
i

)}r+ω g(zi)dzi

APPENDIX 2

Proof of Theorem 1. The estimate λ̂a(t)dt given by (14) converges in probability to

λ∗a(t)dt = E {Y a
i (t)ni(t)} /P

a
i (t)

=
E {I(Ti ≥ t)I(Zi ≤ U0/t)ni(t)}

Pr(Ti ≥ t) Pr (Zi ≤ U0/t)

=

∫ U0/t

0
E {ni(t)|Zi} g(Zi)dZi

Pr (Zi ≤ U0/t)
,

where we think in continuous time of ni(t) as the number of events in the short interval

(t, t + dt), consider (ni(t), Ti, Zi) as i.i.d and use the fact that Ti and Zi are independent.

Since E{ni(t)|Zi} = λ(t|Zi)dt, this gives

λ∗a(t) = E {λ(t|Z)|Z ≤ U0/t} . (A1)

In addition, λa(t)dt = E{ni(t)} so that

λa(t) = E {λ(t|Z)} =
∫ ∞

0
λ(t|z)g(z)dz. (A2)

This proves (18).

The conditional rate function in terms of usage satisfies

λu(u|Z)du = E {nu
i (u)|Z} = Z−1λ

(
uZ−1|Z

)
du,

where nu
i (u) is the number of events in the small interval (u, u + du) and we note that

nu
i (u) = ni(u/z) with dt = du/z. The unconditional rate function is thus

λu(u) = E {Z−1λ(uZ−1|Z)} . (A3)
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In addition, the estimate (16) converges in probability to

λ∗a(u)du = E {Y u
i (u)nu

i (u)} /P
u
i (u)

=
E {I(Zi ≥ u/τ ∗i )nu

i (u)}

Pr (Zi ≥ u/τ ∗i )

=
E

∫ ∞

u/τ∗

i
Z−1λ (uZ−1|Z) g(z)dzdu

Pr (Zi ≥ u/τ ∗i )
, (A4)

where the top and bottom of (A4) involve expectations with respect to the τi. Together,

(A3) and (A4) give (19).

If all units are observed for a time T0, then τ ∗i = T0 for i = 1, . . . ,M and (A4) becomes

E
{
Z−1λ

(
uZ−1|Z

)
|Z ≥ u/T0

}

and (19) becomes

Bu(u) =
E {Z−1λ (uZ−1|Z) |Z ≥ u/T0}

E {Z−1λ (uZ−1|Z)}
. (A5)

Proof of Theorem 2. This follows immediately from replacing λ(t|Z) in (18) and (19)

with Zβ[α1α2(tZ
β)α2−1].

APPENDIX 3

Let the distinct values of zi observed across units i = 1, . . . , m that have ni > 0 be denoted

by z∗1 , . . . , z
∗
R, and let mr =

∑m
i=1 I(zi = z∗r ) and gr = Pr(Zi = z∗r ), where we assume that the

Zi have support only on the set (z∗1 , . . . , z
∗
R). A nonparametric estimate of g = (g1, . . . , gR)

can be obtained by maximizing the log likelihoods ℓ(θ) = ℓ(α, β, g) obtained from (8) or

ℓ(θ) = ℓ(α, β, φ, g) obtained from (11), replacing the integrals in (8) and (11) with sums over

the z∗r (r = 1, . . . , R). A convenient approach is to alternatively update estimates of (α, β) or

α, β, φ and g, and to use an EM algorithm that treats the zi(i = m + 1, . . . ,M) as missing

data.
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Bearing in mind that
R∑

r=1

gr = 1, we obtain an algorithm for updating the estimates g by

treating the other parameters as fixed, and considering the estimating equations

mr

gr
+

M∑

i=m+1

1

gr
Pr (Zi = z∗r |ni = 0) − λ = 0, r = 1, . . . , R (A6)

where λ is a Lagrange multiplier. Since

Pr (Zi = z∗r |ni = 0) =
g

(0)
r Pr (ni = 0|z∗r )

R∑
ℓ=1

g
(0)
ℓ Pr (ni = 0|z∗ℓ )

,

where g(0) = (g
(0)
1 , . . . , g

(0)
R ) is the current estimate of g, and using the fact that λ = M

(multiply the terms of (A6) by gr and sum over r = 1, . . . , R), we find from (A6) that

gr = M−1



mr +

M∑
i=m+1





g(0)
r Pr (ni = 0|z∗r )

R∑

ℓ=1

g
(0)
ℓ Pr (ni = 0|z∗ℓ )








(A7)

where for the Poisson model giving (8) we have

Pr (ni = 0|z∗r ) = e−Λ(τi|z∗r ) (A8)

and for the negative binomial model giving (11) we have

Pr (ni = 0|z∗r ) = (1 + ω−1Λ (τi|z
∗
r))

−ω
. (A9)

In (A8) and (A9) we compute Pr(ni = 0|z∗r) using the most recent estimates of the other

parameters.

A convenient algorithm for maximizing the semiparametric likelihoods ℓ(α, β, g) from (8)

or ℓ(α, β, φ, g) from (11) is as follows:

(i) Take initial estimates g
(0)
r = mr/m (r = 1, . . . , R).

(ii) Holding g = g(0) fixed, maximize ℓ(α, β, g) or ℓ(α, β, φ, g) using general purpose opti-

mization software.

(iii) Update g by computing (A7), using the current estimates of α, β, φ, for r = 1, . . . , R

and then replace g(0) with g.

Repeat steps (ii) to (iii) until convergence.
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