
Two Stage

Leveraged Measurement System Assessment

Ryan Browne, Jock MacKay and Stefan Steiner

Dept. of Statistics and Actuarial Sciences

Business and Industrial Statistics Research Group

University of Waterloo

Waterloo, N2L 3G1, Canada

rpbrowne@uwaterloo.ca

December 19, 2007

To assess measurement system variation, we propose an alternative to the traditional plan of

using a random sample of parts to repeatedly measure. The new plan, called Leveraged Measure-

ment System Assessment is conducted in two stages. In the first stage, called the baseline study,

a number of parts are measured once. In the second stage, we select a few parts based on their

initial measurements from the baseline sample and remeasure them each a number of times. The

new and traditional approaches are compared using the standard deviation of the estimators of the

interclass correlation coefficient. We also present a method to determine sample size requirements

for using the two stage Leveraged Measurement System Assessment.
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1 INTRODUCTION

Good measurement systems are critical in a manufacturing environment to allow control, and

to support process improvement and decision making. More generally, measurement systems are
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needed in any scientific inquiry or quantitative decision making process. As a result, it is important

to have efficient methods to assess measurement systems.

In this article, we use manufacturing terminology but the proposed plan and analysis can be

applied in a wide variety of settings. For example, we can replace part-to-part variability by

person-to-person variability when assessing the measurement variation in a medical instrument.

To assess the variability of a measurement system, we repeatedly measure a number of parts.

We adopt the common random effects model

Yij = Pi + Eij i = 1, 2, . . . , k and j = 1, 2, . . . , n (1)

where Pi is a random variable representing the possible values for the true dimension of part i, Eij

is a random variable representing the error on the jth measurement, n is the number of repeated

measurements on each part and k is the number of parts. We assume that the part effects Pi are

independent and identically distributed normal random variables with mean µ and variance σ2
p, the

measurements errors Eij are independent and identically distributed normal random variables with

mean zero and variance σ2
m, and Pi and Eij are mutually independent. The variance of Yij , called

the total variation, is σ2
t = σ2

p+σ2
m. As in a traditional measurement assessment, by adopting model

(1), we assume that µ, σp and σm are stable over the time needed to conduct the measurement

assessment investigation and that σp and σm are constant across true part dimensions.

We also assume the studied measurement system is automated, that is there are no operator

effects. Automated measurement systems are common. For instances, in one example, piston

diameters were measured by an inline gauge with automated part handling. Using manufacturing

jargon, σm captures measurement repeatability and not reproducibility.

In this article, we present a measurement system assessment study where we assume there is no

prior information about the parameters in model (1). This plan is applicable when assessing a new

measurement system or an existing measurement system where we do not use prior information.

This matches common practice. In Browne et al. (2007) we looked at the case of the routine

assessment of a measurement system currently used for 100% inspection of a high volume process

where we could assume µ and σt were known.
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To quantify the contribution of the measurement system to the total variation, we use the

intraclass correlation coefficient, ρ, defined as the ratio of the process variation over the total

variation, i.e. ρ = σ2
p/σ2

t . The intraclass coefficient is equivalent to the gauge repeatability defined

in our notation as σm/σp.

The common cut-off values (Automotive Industry Action Group, 2002) for gauge repeatability

used to determine if a measurement system is acceptable are 0.10 and 0.30. These values correspond

to ρ equal to 0.91 and 0.99 respectively.

The standard measurement assessment plan (Automotive Industry Action Group, 2002) is to

sample k parts selected at random from the process and measure them n times each for a total

of N = nk measurements. This results in the data yij , where i = 1, . . . , k and j = 1, . . . , n.

Following Donner and Eliasziw (1987), for the standard plan, we estimate ρ by the sample intraclass

correlation coefficient
MSA−MSW

MSA− (n− 1)MSW
(2)

where MSA and MSW are

MSA =
k∑

i=1

n (yi. − y..)
2 /(k − 1) MSW =

k∑
i=1

n∑
j=1

(yij − yi.)
2 / [k(n− 1)]

and yi. =
n∑

j=1

yij/n y.. =
k∑

i=1

n∑
j=1

yij/nk.

In this article we compare this standard plan (SP) to a new Leveraged plan (LP) by comparing

the standard deviation and bias of a number of estimators. A LP has two stages. In the first

stage, called the baseline study, b parts are measured once. In the second stage, a sub-sample of

k parts is chosen from the baseline sample using the observed measured values. These k parts are

then repeatedly measured n times. The total number of measurements for the leveraged plan is

N = b + nk.

For the purpose of this paper, we assume the total variation σt and the process mean µ are

unknown but interest lies in estimating ρ. The parameters µ and σt are viewed as nuisance param-

eters.
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This paper is structured as follows. In the next section, we describe the analysis for a LP includ-

ing properties of the Maximum Likilihood Estimator (MLE) for ρ and other simpler estimators. In

Section 3, we compare the standard and leveraged plans using the bias and standard deviation of

the derived estimators for ρ. In Section 4, we compare different designs (i.e. different values of b,

k and n) for leveraged plans when the total sample size is fixed. Based on empirical evidence, we

recommend specific plans for any total sample size. Finally, we provide some discussion and draw

conclusions.

2 THE LEVERAGED MEASUREMENT ASSESSMENT PLAN

The leveraged measurement system assessment plan is conducted in two stages:

Stage 1: Sample b parts at random from the process to obtain a baseline. We denote the observed

values {y10, y20, . . . , yb0}.

Stage 2: From the baseline sample, select k parts using the observed measured values. In particu-

lar, to improve our estimate for ρ, we sample k parts that are extreme relative to the baseline

average. We denote the k selected parts using the set S. These k parts are then repeatedly

measured n times each to give the additional data {yij , i ∈ S and j = 1, . . . , n}. The total

number of measurements in the leveraged plan is N = b + nk.

For example, for a leveraged plan with k = 2, we may pick the parts with the minimum and

maximum initial measurement in the baseline sample.

We recommend repeatedly measuring the parts in Stage 2 over the range of conditions (time,

environment, etc.) expected to capture the major sources of measurement variation. This recom-

mendation matches the requirements for a standard measurement assessment study (Automotive

Industry Action Group, 2002).

We present four approaches for estimation of ρ . The first uses Maximum Likelihood. The

MLE has no closed form and must be found numerically. The other three methods estimate µ

and σ2
t from the baseline information only and then estimate ρ using the repeated measurements,

conditional on the baseline observations. The second estimate uses a regression approach since the
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conditional mean of the repeated measurements depends on ρ. The third uses the variation within

the repeated measurements to estimate ρ. Finally, the fourth estimator is a linear combination of

the second and third estimators.

2.1 Likelihood

For a single part selected at random, the joint distribution of the initial measurement and the n

repeated measurements is



Y0

Y1

...

Yn


v N


µ



1

1
...

1


, σ2

t



1 ρ . . . ρ

ρ 1
...

. . .
...

ρ . . . 1




. (3)

The distribution of the repeated measurements {Y1, . . . , Yn} on a single part given the initial mea-

surement Y0 = y0 is


Y1

...

Yn

∣∣∣∣∣∣∣∣∣∣
Y0 = y0

 v N

µ + ρ(y0 − µ)


1
...

1

 , Σ = σ2
t


1− ρ2 ρ(1− ρ)

. . .

ρ(1− ρ) 1− ρ2


 . (4)

where σ2
t = σ2

p +σ2
m is the total variation. The covariance matrix Σ has a special form which allows

us to obtain the following well known properties (Dillon and Goldstein, 1984):

Σ−1 =
1

σ2
t (1− ρ)(1 + nρ))


1 + ρ(n− 1) −ρ

. . .

−ρ 1 + ρ(n− 1)


|Σ| = σ2n

t (1− ρ)n(1 + nρ)

Using the properties of Σ, we can write down the conditional likelihood (conditional on y0)

for the repeated measurements on a single part. The measurements for one part are independent
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of the measurements from another part; thus the conditional likelihood for k parts, each with n

measurements, is the product of the individual likelihoods. The conditional log-likelihood for n

repeated measurements on k parts is thus

lr
(
µ, σ2

t , ρ
∣∣ y10, . . . , yb0

)
= −nk

2
log σ2

t −
nk

2
log(1− ρ)− k

2
log(1 + nρ)

−1
2

1
σ2

t (1− ρ)(1 + nρ)

{
(1 + nρ)SSW + n

∑
i∈S

[yi. − µ− ρ(yi0 − µ)]2
}

where yi0 is the baseline measurement for the ith part, yi. is the average of the repeated measure-

ments for the ith part and SSW =
∑

i∈S

∑n
j=1(yij − yi.)2. Assuming the b parts in the baseline

sample are selected at random from the process, the marginal log-likelihood of the baseline is

l0(µ, σ2
t ) = − b

2
log σ2

t −
1

2σ2
t

{
SSB + b (µ̂− µ)2

}
.

where µ̂ = 1
b

∑b
i=1 yi0 = y.0 is the average of the baseline measurements and SSB =

∑b
i=1 (yi0 − y.0)

2.

Thus, the (unconditional) log-likelihood for the LP is

l(µ, σ2
t , ρ) = l0(µ, σ2

t ) + lr
(
µ, σ2

t , ρ
∣∣ y10, . . . , yb0

)
. (5)

This likelihood is appropriate regardless of how we select the parts to be remeasured in Stage 2 of

the LP. See Appendix A. To get the MLEs of µ, σ2
t and ρ, we maximize (5). Solutions can be found

numerically.

We recommend choosing parts with extreme initial measurements because this decreases the

asymptotic variance of the MLE of ρ. The asymptotic variance-covariance matrix of the maximum

likelihood estimators is the inverse of the Fisher information matrix; given by

J
(
µ, σ2

t , ρ
)

=


(1−ρ)nk
σ2

t (nρ+1)
0 nE[SC]

σt(nρ+1)

0 1
2

b+nk
σ4

t
−1

2
nkρ(n+1)

σ2
t (nρ+1)(1−ρ)

nE[SC]
σt(nρ+1) −1

2
nkρ(n+1)

σ2
t (nρ+1)(1−ρ)

E
[
− ∂2

∂ρ2 l
(
µ, σ2

t , ρ
)]
 , (6)
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where

E

[
− ∂2

∂ρ2
l
(
µ, σ2

t , ρ
)]

=
1
2

kn2

(1 + nρ)2
+

knρ(n + 1)
(1 + nρ)(1− ρ)2

− 1
2

kn

(1− ρ)2
+

nE [SSC]
(1− ρ)(1 + nρ)

,

SSC =
∑

i∈S

[
Yi0−µ

σt

]2
and SC =

∑
i∈S

[
Yi0−µ

σt

]
.

We show in Appendix B that if a sampling plan is chosen such that E [SC] = 0, then the

asymptotic variance of the MLE for ρ is reduced. Also, we show that the variance of the MLE is

reduced by choosing a sampling plan where E [SSC] is large. A plan with both these properties is

to choose an equal number of parts with extreme initial measurements on either side of the baseline

average.

In practice, if a wild outlier is obtained in the baseline measurements, we suggest caution in

using this part in the second stage of the analysis because it may not represent the typical distri-

bution of the measurements. As with traditional measurement studies, we recommend repeated

measurements on this wild part to determine if the outlying measurement is due to the measurement

system or the process.

When using maximum likelihood, standard errors for the estimates can be obtained from the

inverted information matrix (see Appendix B) with the parameters replaced by their estimates.

2.2 Regression Estimator

An alternative to maximum likelihood that has a closed form can be derived using a regression

model. From (4), the distribution of the average of the repeated measurements on a single part,

given the initial measurement yi0, is

Y i. |(Yi0 = yi0) v N

(
µ + ρ(yi0 − µ), σ2

t (1− ρ)
(

ρ +
1
n

))
(7)

The averages of the repeated measurement on different parts are mutually independent. Since

in (7) the mean depends on ρ linearly and the variance is the same for each part, we can use

regression to estimate ρ. The conditional mean of Y i. also depends on µ but we use the baseline

average y.0 to estimate this unknown.
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The regression estimate of ρ (Montgomery, Peck, and Vinning, 2001) is

ρ̂r =
∑

i∈S (yi. − y.0) (yi0 − y.0)∑
i∈S (yi0 − y.0)

2 (8)

If we standardize each quantity in (8), the marginal distribution of ρ̃r, the corresponding estimator

of the regression estimate, depends only on ρ. The distribution of ρ̃r, conditional on the baseline

sample, is normal with mean

E [ ρ̃r| y10, . . . , yb0] = ρ +

[
(µ− y.0)

ŜC

ŜSC

]
(1 + ρ) (9)

and variance

V ar [ ρ̃r| y10, . . . , yb0] =
σ2

t (1− ρ) (1/n + ρ)∑
i∈S (yi0 − y.0)

2

where ŜC =
∑
i∈S

[
yi0 − µ̂

σ̂t

]
and ŜSC =

∑
i∈S

[
yi0 − µ̂

σ̂t

]2

(10)

are the baseline estimates of SC and SSC as defined in (6) and µ̂ = y.0 is the baseline average

and σ̂t is the baseline standard deviation σ̂t
2 =

∑b
i=1 (yi0 − y.0)

2 /(b − 1). The estimator ρ̃r has

a small bias (conditionally) because we choose parts so that ŜC ≈ 0 and ŜSC is large, thus

ŜC/ŜSC ≈ 0 and y.0 will be close to µ since the baseline sample is selected at random from the

process. Unconditionally, the estimate is unbiased up to O
(

1
b

)
because we can replace y.0 with

µ + O
(

1
b

)
. The unconditional variance of ρ̃r is

σ2
r = V ar (ρ̃r) ≈ (1− ρ)

(
ρ +

1
n

)
E

[
σ2

t∑
i∈S

(
Yi0 − Y .0

)2
]

(11)

because ρ̃r is approximately unbiased. We estimate E

[
σ2

tP
i∈S(Yi0−Y .0)2

]
from the baseline observa-

tions with the inverse of ŜSC as given by (10). Similar to the MLE, choosing parts to re-measure

with extreme baseline measurements relative to the baseline average reduces the conditional vari-

ance of this estimator. Since the estimator is nearly unbiased, selecting extreme parts will be also

reduce the unconditional variance.

Note that the regression based estimator uses the average of the repeated measurements to
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estimate ρ but not the variability in the repeated measurements unlike the next estimator.

2.3 ANOVA Estimator

We can use the variation within the repeated measurements to get an ANOVA-like estimate of

ρ. For each part i in S, the variation within the repeated measurements
∑n

j=1

(
Yij − Y i.

)2 is

independent of Yi0 and

MSW =

∑
i∈S

∑n
j=1 (yij − yi.)

2

k(n− 1)
(12)

is an estimate of σ2
m. Since the baseline variation is an estimate of σ2

t and ρ = σ2
p/(σ2

p + σ2
m), by

rearrangement, we obtain the estimate

ρ̂a = 1− MSW
σ̂2

t

. (13)

Transforming the ANOVA estimator, we see that (1 − ρ̃a)/(1 − ρ) has an F-distribution with

k(n − 1) and b − 1 degrees of freedom and so the distribution of the ANOVA estimator depends

only on ρ and not the other unknown parameters. We have

E(ρ̃a) = 1− (1− ρ)
b− 1
b− 3

= ρ

(
b− 1
b− 3

)
− 2

b− 3
(14)

σ2
a = V ar(ρ̃a) = (1− ρ)2

2 (b− 1)2(k(n− 1) + (b− 1)− 2)
k(n− 1)((b− 1)− 2)2((b− 1)− 4)

. (15)

Note that neither the regression nor the ANOVA estimates require that the parts selected to

be re-measured in stage two of the LP be representative of the process.

2.4 Combined Estimator

An estimator which has a closed form and turns out to have similar properties to the MLE is

a combination of the two estimators ρ̃r and ρ̃a as described in Sections 2.2 and 2.3 respectively.

We can show that, given the baseline data, these two estimators are conditionally independent.

Furthermore, as seen in (9), the estimator ρ̃r is nearly unbiased. Hence the marginal covariance of

ρ̃r and ρ̃a is close to 0. In what follows, we ignore this covariance. The combined estimator is a
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linear combination of ρ̃r and ρ̃a with weights selected to minimize the variance.

In general, if we have two unbiased independent estimators of ρ, ρ̃r and ρ̃a with known variances

σ2
a and σ2

r , the minimum variance linear combination is

w ρ̃r + (1− w) ρ̃a =
σ2

a

σ2
r + σ2

a

ρ̃r +
σ2

r

σ2
r + σ2

a

ρ̃a. (16)

This combined estimator is approximately unbiased because it is a weighted sum of two approx-

imately unbiased estimators, ρ̃a and ρ̃r. An estimating function can be created from (16) by

subtracting its expectation. Multiplying by σ2
r + σ2

a, we get

Ψc(ρ) = σ2
a ρ̃r + σ2

r ρ̃a − (σ2
a + σ2

r )ρ. (17)

Parameters are estimated by setting the estimating function to zero and solving. Substituting the

quantities in (15) for σ2
a and (11) for σ2

r , we obtain the combined estimate ρc, as a root of the

quadratic equation (18).

(
vF − E

[
1

SSC

])
ρ2

c+
(

E

[
1

SSC

] [
ρ̂a −

1
n

]
− vF [1 + ρ̂r]

)
ρc+

(
vF ρ̂r + E

[
1

SSC

]
ρ̂a

n

)
= 0 (18)

where vF = V ar
(
Fk(n−1),b−1

)
. As with the regression estimator, we estimate E

[
1

SSC

]
from the

baseline observations with the inverse of ŜSC as given by (10).

In this case, the appropriate estimator is the smaller root because the larger root gives estimates

of ρ which are greater than one and ρ is bounded between zero and one. Note that ρ̃c is not just

a simple weighted average of the two previous estimators because the variances σ2
r and σ2

a depend

on ρ.

From Jorgensen and Knudsen (2004), the asymptotic variance of the combined estimator is

approximately

Var(ρ̃c) ≈
V ar [Ψc(ρ)]

E
[

∂
∂ρΨc(ρ)

]2 =
σ2

aσ
2
r

(σ2
a + σ2

r )
(19)

The asymptotic variance covariance matrix (see Jorgensen and Knudsen, 2004) of µ̃, σ̃2
t , as
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estimated from the baseline, and ρ̃c, as given by solving (18), is

Var


µ̃

σ̃2
t

ρ̃c

 ≈


σ2

t
b 0 0

0 2σ4
t

b−1
2σ2

t (1−ρ)
b−3

σ2
r

σ2
r+σ2

a

0 2σ2
t (1−ρ)
b−3

σ2
r

σ2
r+σ2

a

σ2
aσ2

r
(σ2

a+σ2
r)

 . (20)

The variance of the combined estimator depends on ρ through σ2
a and σ2

r . Through simulation,

we noticed that the distribution of ρ̃c is skewed towards zero when ρ is close to one. Qualitatively,

this occurs because ρ̃a (which has a skewed distribution) has more weight in this situation.

To create confidence intervals using estimators with skewed distribution, it is common to work

on a transformed scale. A transformation that seems to perform well here is the Fisher z transform.

We let

θ =
1
2

log
1 + ρ

1− ρ
and

∂θ

∂ρ
=

1
1− ρ2

(21)

then its variance is approximately

Var(θ̃) ≈ V ar (ρ̃c)
[
∂θ

∂ρ

]2

. (22)

To create a confidence interval for ρ, we first create a confidence interval on the θ scale. Then

use the transformation on the confidence interval limits to create a confidence interval for ρ. We

provide an example of applying this procedure in the next section.

2.5 Numerical Example of Various Estimates for ρ based on Leveraged Plan

Steiner and Mackay (2005) present an example of a leveraged measurement assessment study.

Although they calculate only the ANOVA estimator, we can apply all four methods of estimation

for illustration. In the example, three parts, a large, small and medium sized part, were selected

from the baseline study to be remeasured. To more closely match the suggestions in this paper to

select an equal number of extreme parts on each side of the baseline average, we proceed assuming

only the large and small parts were selected.

In the example, a baseline of 100 parts were randomly selected from the process. The baseline
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data, given as a difference from nominal, are shown in Table 1.

Table 1: Baseline Data of 100 Camshaft Journal Diameters

5.3 0.0 -4.1 -6.4 -5.7 7.1 -0.5 -1.7 -2.7 2.1
0.9 -1.5 -5.4 3.3 6.0 2.4 -1.2 3.4 -2.9 -6.4

-12.8 -7.3 1.5 1.9 5.6 -5.2 2.4 0.9 -2.5 -0.8
4.6 4.1 -7.8 10.3 0.0 -0.9 -3.3 5.7 8.2 1.5

-5.3 4.2 4.6 10.5 -3.4 0.5 1.4 9.1 -1.1 12.8
-2.7 -3.2 4.4 1.0 1.2 -4.0 -1.6 -2.5 -6.9 1.2
-2.2 -0.6 -5.4 -6.0 -1.1 0.1 -3.5 2.5 1.4 -12.2
-1.5 -6.0 9.7 5.2 10.4 2.2 9.2 3.6 1.8 1.7
-2.0 -0.8 -4.1 -4.5 4.2 7.8 -3.2 1.9 -0.4 0.5
4.3 2.3 6.1 5.0 4.6 8.4 6.1 -7.1 4.7 -7.4

The baseline mean y.0 is 0.540 and variance is σ̂2
t is 25.865. The parts chosen to be repeatedly

measured were parts 70 and 50 (i.e. S={70, 50}), with baseline measurements -12.2 and 12.8

respectively. These two parts were measured 18 more times each. The repeated measurements are

given in Table 2 and plotted in Figure 1. We see that the measurement system is easily able to

distinguish the two parts and that the measurement variation for the two parts is roughly the same.

Table 2: Example of a Stage 2 Sample with 2 Extreme Parts Repeatedly Measured 18 Times Each

Part 70 Part 50
y70,0 = −12.2 y50,0 = 12.8

-10.3 -11.1 -10.0 -12.2 -11.0 -11.1 10.9 13.2 12.8 12.6 12.7 14.1
-10.9 -10.0 -10.6 -11.4 -11.5 -11.1 12.9 13.1 12.0 13.3 12.6 13.4
-11.4 -10.7 -10.3 -11.4 -9.8 -11.5 12.0 12.9 11.7 11.8 12.2 14.1

y70,. = −10.9 y50,. = −12.7
s2
70 = 0.40997 s2

50 = 0.68029

The estimates of SC and SSC using the two selected parts and the baseline summary statistics

are

ŜC = −2.51 + 2.41 = −0.10 and ŜSC = 6.275 + 5.811 = 12.086

The maximum likehilhood estimate for
(
µ, σ2

t , ρ
)

is (0.551, 25.392, 0.97809).
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Figure 1: Plot of Repeated Measurements vs. Initial Measurement

Using (8), the regression estimate is

ρ̂r =
∑

i∈S (yi. − y.0) (yi0 − y.0)∑
i∈S (yi0 − y.0)

2 =
145.8 + 148.9
162.3 + 150.3

=
294.7
312.6

= 0.94267

Using (12), the ANOVA estimate is

ρ̂a = 1− MSW

σ̂2
t

= 1− (s2
50 + s2

70)/2
σ̂2

t

= 1− (0.40997 + 0.68029)/2
25.865

= 0.97892

We need vF and the baseline estimate of SSC to determine the coefficients of the quadratic

equation (18) used for the combined estimator. Using vF = V ar (F34,99) = 0.0845 the combined

estimate of ρ is the smaller root of the quadratic equation

0.001755011ρ2
c − 0.0877455ρc + 0.08414984 = 0

The two roots of this equation are 0.97816 and 49.019. Therefore 0.97816 is the combined estimate

of ρ. Table 3 summarizes the four estimates and the corresponding standard errors. Note the very

close agreement between the MLE and combined estimate.

To calculate confidence intervals for ρ, we work on the transformed scale since ρ̂ is close to 1.

We illustrate the calculations using the combined estimate. The transformed estimate, using (21) is

1
2 log

(
1+0.97816
1−0.97816

)
= 2.2531. The standard error of this estimate is given in (22), using the standard
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Table 3: Estimates of ρ for the Camshaft Journal Diameters Example

Estimate Standard
Error

ρa 0.97892 0.00613
ρr 0.94267 0.06881
ρc 0.97816 0.00628

ρmle 0.97809 0.00597

error of the combined estimate (found in Table 3), works out to be 0.00628
(1−0.978162)

= 0.14535

A 95% confidence interval for θ is 2.25± 1.96(1.45) = (1.968, 2.538) and the approximate 95%

confidence interval in terms of ρ is (0.962, 0.988).

2.6 Comparison of the Various Estimators for ρ in the Leveraged Plan

We consider a sampling plan with b = 30, k = 6 and n = 5 because this is the plan that we will

recommend in Section 4 when the total number of measurements is 60. For stage 2 we suggest

choosing the six parts which have the three largest and smallest measurements from the baseline

study of 30 parts. Figure 2 shows the bias and standard deviation for the maximum likelihood

estimator (MLE), regression estimator (ρ̃r), ANOVA estimator (ρ̃a) and the combined estimator

(ρ̃c). The figure was created by simulating ten thousand samples for each value of ρ in the range

(0.01, 0.99).

The two individual components of the combined estimator, the regression and ANOVA estima-

tors are efficient for different values of ρ. The standard deviation of the ANOVA estimator is much

larger than the regression estimator when ρ = 0.2 but it performs well when ρ is larger than 0.9.

Notice that the combined and the MLE estimators perform similarly when ρ ≥ 0.3. Since

the typical situation for a measurement system has ρ larger than 0.5, we can use the combined

estimator without loss of efficiency. We see similar results for leveraged sampling plans with other

values of b, k and n.
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Figure 2: Comparison of the Bias and Standard Deviation for Estimators of ρ in a Leveraged Plan

3 THE VALUE OF LEVERAGING

To demonstrate the value of leveraging, we again resort to simulation. We will compare different

version of the LP with the standard plan in which we chose k = 10 parts at random from the

process and make n = 6 repeated measurements for each part, as recommended by the Automotive

Industry Action Group (2002). We used maximum likelihood estimation in all cases to make the

comparisons fair. We quantify the difference between the plans using bias and standard deviation

calculated from 10,000 simulations at each value of ρ.

We compare the following two plans each with a total of 60 measurements

• SP with k =10 and n=6

• LP with b = 30, k = 6 and n = 5.

We see from Figure 3 that the LP is better than the SP. The LP has smaller standard deviation

than the SP for all values of ρ and less bias when ρ ≥ 0.4.

We conclude that leveraging improves the precision of the estimator without requiring more

measurements. We can also compare the LP and SP by looking at the total number of measurements

required to give a desired precision. Figure 4 shows the total sample size required for a LP to have
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Figure 3: Comparison of Standard Deviation and Bias for a Leveraged and Standard Plan

the same precision (standard deviation) as the SP (k = 10, n = 6) for different values of ρ. In

Figure 4, the selected LP corresponds to the suggested plan from Section 4 which has number

of parts k = bN/10c, number of repeated measurements per part n = 5 and a baseline of size

b = N − 5bN/10c, where bc is the floor function that rounds down to nearest integer. For example,

at ρ = 0.91, the SP has a standard deviation of 0.060 (see Figure 3). The LP with the same

standard deviation for estimating ρ has a total sample size of 34, where k = b34/10c = 3, n = 5

and b = 34 − 5b34/10c = 19. We see similar results for other choices of n and k in the SP. We

conclude that the two stage leveraged plan provides a substantial benefit.
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Figure 4: Sample Size Requirements for a Leveraged Plan with the same Standard Deviation as
the Standard Plan
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4 CHOICE OF LEVERAGED PLAN

In this section, we show how to choose a leveraged plan (values for b, k and n) when the total

number of measurements is N and the precision desired for the estimate of ρ using the combined

estimator is specified. As with most sample size calculations, we must also specify a value of ρ

to select the plan. We consider two specific values of ρ, namely 0.80 and 0.91. These value of ρ

are chosen because in terms of measurement repeatability they are equivalent to 0.45 and 0.30,

respectively. Thus ρ = 0.91 corresponds to the minimum acceptable value in Automotive Industry

Action Group (2002). We also include ρ = 0.80 in Tables 4 and 5 to show how the standard

deviation of ρ̃c behaves with a poor measurement system.

When calculating the asymptotic variance (19) for the combined estimator, we need to replace

1

ŜSC
by its expected value because σ2

r , as shown in (11), depends on E
[

1
SSC

]
. This quantity

corresponds to the sum of the standardized squares of the k chosen observations from the baseline.

In a LP, we choose parts to be remeasured based on their extreme initial values which typically

correspond to (assuming k is even) the k/2 lowest and k/2 highest observed values in the baseline.

This implies these extreme initial values can be represented as order statistics from the standard

normal distribution. We can write

E

[
1

SSC

]
= E

(
1

Z2
[1:b] + · · ·+ Z2

[k/2:b] + Z2
[b−k/2+1:b] + · · ·+ Z2

[b:b]

)
(23)

where Z[i:b] is the ith order statistic from a sample of b standard normal random variables. We

estimate (23) by simulating ten thousand samples of b observations.

To start, we consider N = 60. In Table 4 we give the approximate standard deviation, as

given by (19), of the combined estimator for ρ for the five top, middle and bottom LP plans (out

of approximately 200 choices). The standard deviation for each design was calculated using (19).

These results are very close to those obtained through simulation. Plans with higher standard

deviations tend to have a low number of observations allocated to the baseline. The designs with

the lowest standard deviation have b w nk, i.e. b w N/2.

In Table 5, we show the plans corresponding to the lowest stdev(ρ̃c) for different values of
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Table 4: Estimation Precision for ρ for a variety of LPs for b + nk = 60

ρ = 0.80 ρ = 0.91
Baseline # of # Meas. Baseline # of # Meas.

Size parts per part stdev(ρ̃c) Size parts per part stdev(ρ̃c)
b k n b k n
32 7 4 0.0684 32 4 7 0.0350
30 6 5 0.0688 33 3 9 0.0351

top 5 33 9 3 0.0688 30 5 6 0.0351
30 10 3 0.0689 30 6 5 0.0352
35 5 5 0.0690 30 3 10 0.0352
18 14 3 0.0785 38 11 2 0.0394
42 1 18 0.0785 45 3 5 0.0396

middle 5 22 2 19 0.0788 45 1 15 0.0397
25 1 35 0.0789 21 1 39 0.0401
18 7 6 0.0792 20 2 20 0.0401
7 1 53 0.1766 6 3 18 0.1017
6 2 27 0.1831 6 2 27 0.1058

bottom 5 5 5 11 0.1870 6 1 54 0.1138
6 1 54 0.2053 5 5 11 0.1203
5 1 55 0.2475 5 1 55 0.1496

N = b + nk when ρ equals 0.80 and 0.91. The differences in performance among the plans with

the same N is small but notice that the baseline size b is close to N/2 for all the best plans. Using

this empirical evidence, we suggest using b w N/2, n w 5 and then k w N/10. This plan is in every

set of the top 5 in Table 5. Since the LP design parameters must be integers, given a total sample

size N, we recommend the plan with k = bN/10c, n = 5 and b = N − 5bN/10c.

In Table 6, assuming that we use the recommended plan, we give the value of N required to

achieve a specified standard error of the transformed variable (21) when given a value of ρ. We

used the transformed scale because the distribution of the estimator is skewed when ρ is close to 1.

For example suppose historical data suggests ρ ≈ 0.91 and we want to estimate ρ with a standard

deviation of at most 0.025. Then from (22), we have stdev(θ̃) ≈ stdev(ρ̃c) 1
1−ρ2 . Thus, we require

the standard deviation on the transformed scale to be 0.025
1−0.912 ≈ 0.145. Now in Table 6, we look

down the column with ρ = 0.91 and stdev(z̃) = 0.15 to get the total sample size of 101. Using

the suggested plan, we require 51 parts for the baseline study. Then, from the baseline sample, we

select 10 extreme parts to repeatedly measure 5 times each.
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Table 5: The Five Plans with the Lowest stdev(ρ̃c) for Different Values of N = b + nk

ρ = 0.80 ρ = 0.91
Baseline # of # Meas. Baseline # of # Meas.

Total Size parts per part stdev(ρ̃c) Total Size parts per part stdev(ρ̃c)
N b k n N b k n
30 18 3 4 0.1065 30 18 2 6 0.0552
30 18 4 3 0.1068 30 16 2 7 0.0555
30 15 5 3 0.1076 30 18 3 4 0.0556
30 18 2 6 0.1078 30 18 1 12 0.0557
30 15 3 5 0.1081 30 17 1 13 0.0558
50 26 6 4 0.0766 50 26 4 6 0.0393
50 26 8 3 0.0769 50 26 3 8 0.0393
50 25 5 5 0.0770 50 29 3 7 0.0393
50 30 5 4 0.0771 50 28 2 11 0.0394
50 29 7 3 0.0771 50 25 5 5 0.0395
75 39 9 4 0.0599 75 40 5 7 0.0306
75 40 7 5 0.0601 75 39 6 6 0.0306
75 43 8 4 0.0602 75 39 4 9 0.0307
75 39 12 3 0.0603 75 40 7 5 0.0307
75 35 10 4 0.0603 75 43 4 8 0.0308
100 52 12 4 0.0507 100 51 7 7 0.0259
100 48 13 4 0.0509 100 52 6 8 0.0259
100 50 10 5 0.0509 100 52 8 6 0.0259
100 56 11 4 0.0509 100 50 10 5 0.0260
100 55 9 5 0.0510 100 50 5 10 0.0260
125 65 15 4 0.0447 125 62 9 7 0.0228
125 61 16 4 0.0448 125 65 10 6 0.0229
125 65 12 5 0.0448 125 61 8 8 0.0229
125 69 14 4 0.0449 125 62 7 9 0.0229
125 60 13 5 0.0449 125 65 6 10 0.0229
200 100 25 4 0.0346 200 102 14 7 0.0177
200 104 24 4 0.0347 200 98 17 6 0.0177
200 100 20 5 0.0347 200 95 15 7 0.0177
200 96 26 4 0.0347 200 96 13 8 0.0177
200 105 19 5 0.0347 200 104 12 8 0.0177

5 DISCUSSION AND CONCLUSIONS

In this paper, we present a new two stage plan for assessing the intraclass correlation coefficient of

a measurement system using leveraging. We define leverage to be the purposeful selection of parts
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Table 6: Values of N for Estimating ρ with a Particular Standard Deviation when b = N−5bN/10c,
n = 5 and then k = bN/10c

Assumed value of ρ
stdev(z̃) 0.2 0.4 0.6 0.8 0.91 0.99

0.25 22 27 32 39 44 49
0.20 31 38 45 55 62 69
0.15 48 60 73 89 101 113
0.14 54 68 82 101 115 127
0.13 62 77 94 115 131 146
0.12 71 89 109 133 152 168
0.11 83 105 128 157 178 198
0.10 98 125 153 188 213 236
0.09 120 154 188 231 261 289
0.08 151 194 238 292 329 362
0.07 197 256 314 383 429 469
0.06 273 356 436 528 586 633
0.05 409 538 657 780 852 908

with extreme initial measured values to remeasured. We show that the leveraged measurement

system assessment plan with the same number of total measurements is more efficient than the

standard plan. Alternatively, to achieve the same precision in estimation for ρ as the SP, we can

use a two stage LP with substantially fewer total measurements. We provide a closed form estimator

for ρ that performs as well as the maximum likelihood estimator. We recommend a LP for a fixed

number of total measurements N that has a baseline sample of size b = N − 5bN/10c, we select a

sample of the k = bN/10c most extreme parts from the baseline and we repeatedly measure each

selected part n = 5 times.

As a possible extension to this work we can consider making a different number of measurements

on the selected parts. Using Lagarange multipliers, we can show that by varying ni on each part

(in fact, increasing ni for more extreme parts) we can increase efficiency but that the gain from

this effort is marginal compared to the increased complexity of the plan.
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Appendix A - Conditional Distribution

The conditional distribution given an initial measurement does not depend on the rank of the initial

measurement from a sample.

Theorem 1 If Yi,j = Pi + Ei,j where Pi ∼ N
(
0, σ2

p

)
and Ei,j ∼ N

(
0, σ2

m

)
(i = 1, 2, . . . , b and

j = 0, 1, 2, . . . , n) then if we sample {Y1,0, . . . , Yb,0} and order them such that

{Y1:b,0 ≤ . . . ≤ Yb:b,0} then the conditional distribution Yi:b,1, . . . , Yi:b,n |Yi:b,0 is given in (4)

Proof. 1 The distribution of {Yi,0, Yi,1, . . . , Yi,n} is multivariate normal as given in (3)

From the properties of the multivariate normal distribution (Dillon and Goldstein, 1984) we

have that Yi,1, . . . , Yi,n |Yi,0 = yi,0 is given by (4)

Rewriting the joint density of {Y1,0, Yi,1, . . . , Y1,n, Y2,0, . . . , Y2,n, . . . , Yb,0, . . . , Yb,n} we get

h (y1,0, . . . , yb,n)

=
b∏

i=1

f (yi,0, yi,1, . . . , yi,n) which the distribution defined in (3)

=
b∏

k=1

f (yk,1, . . . , yk,n| yk,0) f (yk,0) which the distribution defined in (4)

=
b∏

k=1

f (yk,1, . . . , yk,n| yk,0)
b∏

k=1

f (yk,0)

do a change of variables such that y1:b,0 ≤ y2:b,0 ≤ . . . ≤ yb:b,0

=

[
b∏

k=1

f (yk,1, . . . , yk,n| yk,0)

]
n!

b∏
j=1

f (yj:b,0)

integrate all yk,l where k 6= i

= f (yi,1, . . . , yi,n| yi,0)
n!

(i− 1)!(n− i)!
[F (yi:b,0)]

i−1 [1− F (yi:b,0)]
n−i f (yi:b,0)

= f (yi,1, . . . , yi,n| yi,0) f (yi:b,0)

We can see that this is the joint distribution of {Yi:b,0, Yi:b,1 . . . , Yi:b,n}. Thus, the conditional

distribution of Yi:b,1, . . . , Yi:b,n |Yi:b,0 is (4).
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Appendix B - Fisher Information

To show that SC=0 and SSC�0 reduce the asymptotic variance of the MLE, let

J
(
µ, σ2

t , ρ
)

=


x 0 t

0 y v

t v z


where x, y, z ≥ 0. Using the principal minors, the determinant and inverse of J are

det(J) = x

∣∣∣∣∣∣∣
y v

v z

∣∣∣∣∣∣∣− 0 + t

∣∣∣∣∣∣∣
0 t

y v

∣∣∣∣∣∣∣ = x
(
yz − v2

)
− t2y

J−1 =
1

det(J)


yz − v2 vt −yt

vt xz − t2 −xv

−yt −xv xy

 .

This means the asymptotic variance of maximum likelihood estimator of ρ is

Asvar (ρ̃) =
xy

x(yz − v2)− t2y
=

1
z − v2/y − t2/x

Ideally, Asvar (ρ̃) is close to zero. From (6) we see that selecting parts to repeatedly remeasured

affects t and z. The Asvar (ρ̃) is reduced when z is large and t = 0. Since, x, y, z ≥ 0, we can

reduce Asvar (ρ̃) by decreasing v2 or t2. We cannot change v, but we can set t = 0 by selecting

parts with initial measurements such that E [SC] = 0. If we choose parts with large and small

extreme measurements we can get E [SC] = 0, which means t = 0 and E [SSC] is large which

increases z.
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