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Reducing variation in key product features is a very important goal in process improvement. Finding and 
trying to control the cause(s) of variation is one way to reduce variability, but is not cost effective or 
even possible in some situations. In such cases, Robust Parameter Design (RPD) is an alternative. The 
goal in RPD is to reduce variation by reducing the sensitivity of the process to the sources of variation, 
rather than controlling these sources directly. That is, the goal is to find levels of the control inputs that 
minimize the output variation imposed on the process via the noise variables (causes). In the literature, a 
variety of experimental plans have been proposed for RPD, including Robustness, Desensitization and 
Taguchi’s method. In this paper, the efficiency of the alternative plans is compared in the situation 
where the most important source of variation, called the “Dominant Cause”, is known. It is shown that 
desensitization is the most appropriate approach for applying the RPD method to an existing process. 
 

1   INTRODUCTION 

Reducing variation in critical outputs is a very important goal in process improvement. Reviewing many 
variation reduction algorithms including the Shainin System (Shainin, 1992, 1993), DMAIC or Six 
Sigma (Harry and Schroeder, 2000), Scholtes algorithm (1988) and Statistical Engineering (Steiner and 
MacKay, 2005), indicates diagnostic and remedial journeys (see Figure 2.1), described by Juran and 
Gryna (1980) and Juran (1988), as the common element of these algorithms. During the diagnostic 
phase, the problem of process is investigated by examining its symptoms in order to find the causes of 
the problem. In the second phase, the remedial journey, we search for a solution. The idea is that if we 
know the cause of the problem, we are more likely to find efficient and effective solutions. 
 

Diagnostic journey Remedial journey Find and implement 
solution

Define the 
problem

Find the 
cause

 
Figure 1.1: Common elements of well-known variation reduction algorithms 

 
The inputs that operate on a system can be divided into two broad types (Wu and Hamada, 2000; Steiner 
and MacKay, 2005): varying inputs and fixed inputs. Varying inputs are process characteristics whose 
values change (unit to unit or time to time) in a process without deliberate intervention. Examples 
include: operators, pouring temperature, raw material characteristics and so forth. Fixed inputs, on the 
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other hand, are a process inputs/characteristics whose values can be adjusted, but remain fixed once they 
are chosen. These are parameters/factors that can be easily controlled and manipulate in a system’s 
normal production. A cause of variation in process output is a varying input with the property that if all 
other inputs were held constant, then the output changes when the input changes. Note that although 
changing the level of a fixed input can be a solution for excessive variation in the output, a fixed input 
can not be a cause of variation in a process output (Steiner and MacKay, 2005). In the process 
improvement literature, varying and fixed inputs are also known as noise and control factors 
respectively (Wu and Hamada, 2000). 
For any process there are a large number of causes, each with an effect. Applying the Pareto principle to 
the cause of variation, large effects can be attributable to only a few causes and these are called 
dominant causes (Steiner et al., 2007). A dominant cause(s) is varying input that has a large effect on the 
output with a relatively small change in its value. Juran and Gryna (1980, p. 105) define a dominant 
cause as “a major contributor to the existence of defects, and one which must be remedied before there 
can be an adequate solution”. Consider the following simple model which describes relationship 
between a dominant cause (X) and an output (Y) (note that X and other varying inputs are assumed to be 
independent in this model). We can say the variable X is a dominant cause of output variation if 
standard deviation in the output due to X is large relative to the standard deviation due to rest of the 
causes (Steiner and MacKay, 2005).  
 

Y f (X) noise= +  
2 2sd(Y) sd(due to X) sd(due to all other varying inputs)= +  (1.1) 

 
Throughout this paper we assume that a dominant cause(s) of variation in a process output exists and to 
simplify the language, we refer to a (single) dominant cause of variation, while recognizing that there 
may be more than one important cause. 
Finding a dominant cause of variation in an output characteristic and trying to control and reduce its 
variation is one way to reduce variation. In some instances, however, the dominant cause may be 
difficult, expensive or even impossible to control in a system’s normal production or usage condition. In 
these cases, finding some fixed input and identifying new settings for them which will make the process 
output less sensitive to changes in the dominant cause is a possible solution (Steiner and MacKay, 
2005). This idea is known as Robust Parameter Design (RPD) or simply Parameter Design which was 
popularized and introduced in the United States in the 1980s by the Japanese engineer, Genichi Taguchi, 
(Taguchi, 1987; Ross, 1988; Taguchi and Wu, 1980; Kackar, 1985). The term parameter design comes 
from an engineering tradition of referring to product characteristics as product parameters (Taguchi and 
Wu, 1980). Parameter design works by identifying appropriate settings of some fixed inputs to exploit 
interactions between the fixed inputs and the dominant cause to reduce the variation in the output 
without the necessity of reducing the variation in dominant cause. Robust parameter design problems 
may arise in all three stages of the product development cycle: product design, process design and 
manufacturing. Despite Taguchi’s suggestion that countermeasures against variation caused by 
environmental variables and product deterioration are best built into the product at the product design 
stage (Taguchi, 1987 and Kackar and Phadke, 1981), reviewing case studies given in ASI (1985 and 
1986) reveals that Taguchi’s method to RPD problems or a specific version of it, called “Robustness” in 
this paper, are mostly used in the manufacturing stage. In this paper, “Desensitization” is presented as an 
alternative to the robustness/Taguchi method and as the most appropriate approach to deal with RPD 
problems at the manufacturing stage in which, unlike product or process design stages, the main 
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source(s) of variation can in many cases be identified by observing the existing process. The efficiency 
of desensitization is examined and compared with the robustness and Taguchi’s approaches to the RPD 
in the situation where a dominant cause of output variation exists and can be found. 

2   EXPERIMENTAL PLANS FOR FINDING A ROBUST SOLUTION 

The goal in robust parameter design is to find new levels for fixed inputs that reduce the output 
variation. Since the value of a fixed input doesn’t normally change in the process, an experiment needs 
to be conducted in which we assign different levels to the selected fixed inputs and we examine the 
effect of those new settings on the output mean and variation. The goal of such an experiment is to find 
and exploit a favorable interaction between the selected fixed inputs (or candidates) and the dominant 
cause that makes process output less sensitive to uncontrollable changes in the dominant cause. In 
practice, process analysts have used at least three different types of experiments to find robust process 
settings. The first approach, called a desensitization experiment is useful within the Statistical 
Engineering algorithm as by Steiner and MacKay (2005). In the Statistical Engineering algorithm we 
first look for a dominant cause using observational studies and then run a desensitization experiment in 
which we also deliberately control the levels of the identified dominant cause. The second approach is to 
conduct a so called robustness experiment involving selected fixed inputs only. For the third option, an 
experiment is run with selected fixed inputs and a range of varying inputs that the experimenter believes 
are likely to be important causes. We call the third option a Taguchi experiment, although option #2 is 
also sometimes called a Taguchi experiment. Desensitization, robustness and Taguchi style experiments 
are described in the next sections as the three major experimental plans for finding a robust solution. 

2.1 Robustness Experiment 

In a robustness experiment a group of fixed inputs (called candidates) are selected based on engineering 
judgment and their effects on the output variation are examined. The experiment can be a full factorial 
or fractional factorial design. Once the candidates are identified, they will be systematically changed in 
the robustness experiment and a performance measure (usually the standard deviation of the output) will 
be recorded for each run. Then, the main effect and interaction plots are used to draw conclusions. A 
regression model can also be used to model log(s) as a function of the important effects and then the 
levels of candidates (fixed inputs) that minimize this function are suggested as the robust solution. Since 
knowledge of the dominant cause is not available, the length of experiment, the number of runs, the 
number of repeats in each run, and candidates are determined only based on engineering knowledge and 
the past experience of experimenters/analysts. A famous positive example of an application of a 
robustness experiment is a case study reported by Quinlan (1985) on speedometer cables. Shrinkage in 
the plastic casing material can sometimes make speedometer cables noisy. So a project was initiated to 
reduce variation in postextrusion shrinkage of the casing for the speedometer cable. When the team’s 
efforts to find the cause of the shrinkage variation failed, they chose 15 fixed inputs and selected one 
new level for each. They then ran a two-level (one level of each candidate was the existing level) 
experiment with 16 runs (i.e. a  fractional design). For each run 3000 feet of plastic casing were 
produced. Four samples were haphazardly cut out from each run and the percentage shrinkage measured 
on each specimen. Then, a performance measure (standard deviation of percentage shrinkage) was 
calculated (for each run) using the four sample values. Finally, the best combination of levels to reduce 
the variation was found. The new levels were confirmed and the process was improved.  

15 11
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As illustrated by the Speedometer Cable example, the robustness approach can be successful; however, 
there are some substantial drawbacks. To limit interference with regular production the robustness 
experiment is usually run over a short time (ASI, 1985; ASI, 1986). As a consequence there is a risk of 
running a high-cost experiment with no return, since if the dominant cause dose not acts with each run 
of the experiment and/or if the candidates (selected fixed inputs) do not include the one(s) that have 
interaction with dominant cause the robustness experiment will fail.  We conclude that to have any hope 
of success in a robustness experiment the unknown dominant cause should act in the short-term family 
of variation (part-to-part for example). Otherwise the run lengths need to be very long to allow the 
dominant cause time to act during the experiment. If the dominant cause does not act within each run, it 
will not be possible to find a favorable cause/candidate interaction even if one exists.  

2.2 Taguchi Method Experiment 

We now consider the second experimental approach, a Taguchi experiment. Taguchi recommends a 
crossed array design for planning the experiment (Wu and Hamada, 2000). The Inner-outer array is a 
key concept in a crossed design or Taguchi’s approach to robust parameter design. In this approach a 
two-part experimental design is recommended. The Outer array (noise array) sets the levels of varying 
inputs while the inner array (control array) defines the treatments in terms of the levels of fixed inputs 
(Nair, 1992). Usually a 2k or 2k-p experiment is used for the inner array and a full factorial experiment is 
used for the outer array (Ross, 1988; Montgomery, 2001).  
Each treatment combination in the control (inner) array is crossed with all level combinations in the 
noise (outer) array (Figure 2.1). Shoemaker et al. (1991) call this setup a product array since the outer 
array is run for every row in the control array. 
 

Inner Array (Control Array)   Outer Array (Noise Array) 
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Figure 2.1: Product array in the Taguchi method for Robust Design 
 
To define some notation, let yij be the observed response when the inner array is at its ith treatment 
combination and the outer array is at its jth treatment combination. Then, assuming there are “a” 
treatments in the inner array and “b” treatments in the outer array the typical data for Taguchi 
experiment with a product array design will appear as in Table 2.1. 

 Response 
y1 1 
y1 2 
y1 3 
y1 4 

ROW  A B C  
 
  1   1  1   1  
  2   1  1 -1  
  3   1 -1  1 
  4   1 -1 -1 
  5  -1  1  1 
  6  -1  1 -1 
  7  -1 -1  1 
  8  -1 -1 -1 

Row  D  E 
  1  1  1 
  2  1 -1 
  3 -1  1 
  4 -1 -1

Row  D E 
  1  1  1 
  2  1 -1 
  3 -1  1 
  4 -1 -1

 Response 
y8 1 
y8 2 
y8 3 
y8 4 



 

Table 2.1: General arrangement for a Taguchi experiment – product array 

1 2 … b

1 y11 y12 y1b

treatment combinations of 2 y21 y22 y2b
inner array …

a ya1 ya2 yab

treatment combinations of outer array
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So, unlike robustness we now deliberately manipulate or control some noise factors. In this type of 
experiment once the noise factors (varying inputs) are selected, they should be systematically varied to 
reflect their variation in normal condition. So, the levels of noise factors are fixed during the experiment. 
Identifying optimal parameter settings in a Taguchi experiment requires specifying a criterion that is to 
be optimized. Taguchi suggests combining the mean and the variance, for each inner array treatment, 
into a single performance measure known as the signal-to-noise ratio (Kackar, 1985). 
To derive conclusions, Taguchi recommends analyzing the mean response for each run in the inner array 
and also analyzing variation using an appropriate signal-to-noise ratio. Signal-to-noise ratios are derived 
from the quadratic loss function and the goal of quality improvement can be stated as attempting to 
maximize the signal-to-noise (S/N) ratio. Considering Table 2.1 the three of S/N ratios which are 
"standard" and widely applicable (Montgomery, 2001; Wu et al., 2000) is calculated for each i as 
follows: 
1. Nominal is best: i.e. you ideally want all output values to be equal to a target value 

2

T 2

yS/ N 10log
s

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

where y  and  are defined by Equations 2s (2.1) and (2.2) respectively. This signal-to-noise ratio is 
applicable whenever there is a target value and a two side specification. For example, the size of piston 
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rings for an automobile engine must within the lower and upper limits and ideally close to a target to 
ensure product’s high quality. 
2. Larger the better: i.e. you want to maximize the output characteristics, e.g. breaking strength 

b

L 2
j 1 ij

1 1S / N 10log
b y=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

where b is the number of observations at each treatment. 

3. Smaller the better: i.e. you want to minimize the output characteristics, e.g. out of roundness 
b

2
S i

j 1

1S/ N 10log y
b =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
j∑  

Taguchi’s methods of using the S/Ns in the analysis are detailed in Taguchi (1987b) and Wu & Hamada 
(2001). To illustrate, a case study, originally reported by Miller et al. (1993), is considered. We will use 
this example later to compare Taguchi, desensitization and robustness approaches in a simulation study. 
In automotive manufacturing, the drive pinion and gear “set” provides the transmission of power from 
the vehicle drive shaft to the rear axle. The parts are heat-treated to improve strength and wear 
characteristics. A quality problem arose from part distortion during heat-treatment, and a Taguchi style 
experiment was conducted in the attempt to find a way to improve the process. The five control factors 
(A-E) and three noise factors (F-H) are given in Table 2.2. 
 
Table 2.2: The control and noise factors for the Gear experiment 
Control Factors Noise Factors

A carbon potential F furnace track 

B operating mode G tooth size 

C last zone temperature H part position 

D quench oil temperature 

E quench oil agitation  
 
The design matrix and response data are given in Table 2.3. The response is the dishing of the gear. Two 
levels were considered for each of the factors. A 25-1 fractional factorial design was used for the inner 
(control) array and a 23 full factorial design was used for the outer (noise) array. There are 16×8=128 
runs in total. The purpose of experiment was to find a way to run the process that has less gear dishing 
variation around a target value. 
As the objective was to reduce the variation of response around a target value (nominal the best), S/NT is 
used by experimenters. The last two columns of Table 2.3 contain y  and S/NT values for each of the 16 
inner-array runs.  
 
 
 
 
Table 2.3: Design matrix and response data for the Gear experiment 
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            Outer Array
F 1 1 1 1 -1 -1 -1 -1
G 1 1 -1 -1 1 1 -1 -1
H 1 -1 1 -1 1 -1 1 -1

Inner Array
Run A B C D E Y bar S/NT

1 1 1 1 1 1 7 12 6.5 14 3 14 4 16.5 9.625 5.485
2 1 1 1 -1 -1 13.5 14.5 5.5 17 -7.5 15 -4.5 12 8.1875 -1.2167
3 1 1 -1 1 -1 3 11 5.5 18 3 19 1 21 10.188 1.9288
4 1 1 -1 -1 1 10.5 14.5 6.5 17.5 3 14.5 9 24 12.438 5.4641
5 1 -1 1 1 -1 10 23 3.5 23 4.5 25.5 10 21 15.063 4.4752
6 1 -1 1 -1 1 6.5 22 14.5 23 5.5 18.5 8 21.5 14.938 6.1476
7 1 -1 -1 1 1 5.5 28 7.5 28 4 27.5 10.5 30 17.625 3.5878
8 1 -1 -1 -1 -1 4 14 6.5 23 9 25.5 9 24.5 14.438 4.4127
9 -1 1 1 1 -1 -4 18.5 11.5 26 -0.5 13 0 16.5 10.125 -0.4057

10 -1 1 1 -1 1 9 19 17.5 21 0.5 20 6.5 18 13.938 5.2955
11 -1 1 -1 1 1 17.5 20 10 23 6.5 21.5 0 26 15.563 4.6716
12 -1 1 -1 -1 -1 7 23.5 1 20 7 22.5 4 22.5 13.438 2.9881
13 -1 -1 1 1 1 2.5 22 12 19.5 7 27.5 8.5 23.5 15.313 4.6048
14 -1 -1 1 -1 -1 24 26 14.5 27.5 7 22.5 13 22 19.563 8.6539
15 -1 -1 -1 1 -1 5.5 27 2.5 31 12.5 27 11.5 32.5 18.688 3.854
16 -1 -1 -1 -1 1 11 21.5 12 27 16.5 29.5 16 28.5 20.25 8.708

6

 
 
One approach to the analysis of this experiment is based on the “play the winners” rule. With this 
analysis we look for the treatment combination(s) that maximizes S/NT. As can be seen in Table 2.3 the 
last treatment combination maximizes the signal-to-noise ratio and setting factors A, B, C, D to their low 
levels and E to its high level is the recommended solution based upon this rule. An alternative analysis 
involves using analysis of variance (Montgomery, 2001) or the half-normal and main effect plots (Wu 
and Hamada, 2000) to determine the main factors that influence the signal-to-noise ratio. For the Gear 
experiment, Table 2.4 and Figure 2.2 show that operating mode (B) and quench oil agitation (E) are 
marginally significant control factors. 
 
Table 2.4: Estimated effects and coefficients for S/NT in the Gear experiment 
 
 Term      Effect    Coef  SE Coef    T      P 
 Constant           4.291   0.5230   8.20  0.000 
 A         -1.011  -0.505   0.5230  -0.97  0.357 
 B         -2.529  -1.265   0.5230  -2.42  0.036 
 C         -0.322  -0.161   0.5230  -0.31  0.765 
 D         -1.531  -0.766   0.5230  -1.46  0.174 
 E          2.409   1.205   0.5230   2.30  0.044 
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Figure 2.2: The normal probability plot of the effects for the Gear experiment 

Once the significant control factors are determined, two different ways for deriving conclusions can be 
used. First, graphs of the main effects, called "marginal graphs" by Taguchi, are employed to find the 
robust solution. Figure 2.3 illustrates these graphs for the Gear example. The usual approach is to 
examine the graphs and "pick the winner" (Montgomery, 2001). In this case, factors B and E have larger 
effects than the others. As the objective is to maximize S/NT, the low level of factor B and the high level 
of factor E are recommended as a robust solution. 
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Figure 2.3: The main effect plot for the S/N  in the Gear experiment T
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The graphical analysis can be supplemented with a regression model of the signal-to-noise ratio (Wu 
and Hamada, 2000). A regression model is used to model S/NT in terms of the significant control factors 
and the robust solution is obtained by maximizing the function. Based on Table 2.4 the corresponding 
signal-to-noise ratio model for the Gear experiment is: 
 

S/N  = 4.29 – 1.265 X + 1.205 XTT B E 
 

To maximize this function we would select the low level of factor B and the high level of factor E which 
is the same conclusion as in the graphical approach. This kind of model building analysis of Taguchi 
experiments is called “loss-model analysis” in the literature. 
Taguchi advocates claim that the use of the S/N ratio generally eliminates the need for examining 
specific interactions between the control and noise factors (Montgomery, 2001). However, we believe 
that examining control-noise interactions by either including noise terms in the response model or 
exploring the corresponding interaction plots can improve the efficiency of experiment and has the 
advantages of yielding additional information about the specific noise-control interactions that may 
allow reduction of output variability induced by varying (noise) inputs. Shoemaker et al. (1991) point 
out this drawback of the loss-model approach, but the role of the dominant cause in improving the 
efficiency of the experiment and the advantages of knowing the dominant cause in the planning stage of 
the experiment have not been given much attention. 
Taguchi recommends using engineering judgment to select noise factors and assumes that the choice 
includes all important noise factors. Since we do not assume a known dominant cause(s), selecting noise 
factors and determining noise factor extreme levels is difficult in Taguchi experiment. This coupled with 
the difficulty of choosing appropriate fixed inputs usually leads to a large experiment. In the Gear 
experiment, for instance, 128 tests were run to try to find a robust solution. We show in Section 3.3 that 
only one of the three noise factors is a large cause and we could have gained this knowledge using 
inexpensive observational investigations before running the Taguchi experiment. Excluding two other 
noise factors from outer array (i.e. using desensitization experiment) can reduce the number of runs to 
16×2=32 without reducing the efficiency of experiment. Some critics of Taguchi (e.g. Shoemaker et al., 
1991 and Miller et al., 1993), recommend using a combined array instead of crossed array to reduce the 
number of runs, but we believe that a more critical issue is finding the dominant cause before proceeding 
with an experiment. This not only reduces the number of runs (by removing ineffective factors from 
outer and inner array) but is also, as shown later, more efficient. 

2.3 Desensitization 

In a desensitization experiment we choose a number of fixed inputs (candidates), based on knowledge of 
the dominant cause supplemented by engineering knowledge. We use an experimental plan to determine 
if these candidates and their new settings will make the process less sensitive to variation in the 
dominant cause. 
Desensitization can be considered a version of the Taguchi method to RPD problem in which only the 
dominant cause is involved in outer array. Steiner and MacKay (2005) suggest using a full factorial 
design for the candidates, if there are three or fewer, and using a fractional design with resolution at least 
III otherwise. They also recommend selecting two levels for the dominant cause at the extremes of its 
normal range and using a crossed design where, for each treatment combination of candidates, there are 
runs for both levels of the dominant cause. Comparing desensitization and robust experiments, having 
knowledge of dominant cause reduces the size of the outer array and can lead better choices of 
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candidates for the inner array. Thus, desensitization experiments usually require fewer runs which 
reduces the cost and complexity of experiment. Also note that once a dominant cause is identified, in 
some instances, the remedy is obvious (dominant cause is controllable) and no further investigations are 
needed. Statistical Engineering methodology (Steiner and Mackay, 2005) and some other variation 
reduction approaches like Shainin System and Six Sigma (Steiner et al., 2007) present a diagnostic 
journey for finding the dominant cause using progressive search and observational investigations. 
Generally observational studies are cheaper than experimental investigations because changing process 
settings and interrupting normal operations of the process are not needed. The knowledge of the 
dominant cause also assist us in selecting appropriate levels of dominant cause which makes our 
experiment more effective. 
Like the robustness and Taguchi method, analysis of a desensitization experiment can be carried out 
graphically or using a regression model. Drawing a plot of the output by each treatment is first step in 
the graphical analysis to look for promising treatment combinations. Then, all cause by candidate 
interaction effects plots are drawn and finally the levels of candidates that make the output less sensitive 
to variation in the dominant cause are determined by examining these plots.  
To analyze the results of desensitization experiment using a statistical model, a regression model, known 
as “response model”, is employed to model the response (output) in terms of the control factors and the 
two term interactions of the control factors and the noise factor. A robust solution can be determined by 
minimizing the standard deviation of output based on the response model. 

3   DESENSITIZATION VERSUS ROBUSTNESS AND THE TAGUCHI 
METHOD 

3.1 Qualitative Comparison 

Desensitization experiments have the following advantages over robustness and Taguchi style 
experiments: 

 As mentioned in Section 3.2, in robustness experiments fixed inputs (candidates) are 
selected based only on engineering knowledge whereas in desensitization experiments 
engineering judgment is supplemented by knowledge of the dominant cause. Considering 
the dominant cause, the analyst tries to choose only fixed inputs that she/he feels are likely 
to have a favorable interaction with the dominant cause. This smart selection can improve 
the effectiveness of experiment. Generally, the more you know about the dominant cause of 
variation, the greater the chance you will select fixed inputs to change that will mitigate the 
variation in the dominant cause. 

 Knowing the dominant cause in desensitization can also help experimenters reduce the size 
of outer array. Including only the dominant cause decreases the total number of 
experimental runs when comparing desensitization to a Taguchi style experiment. Fewer 
runs leads to an easier, cheaper and shorter experiment. 

 Since noise factors or varying inputs are usually hard to control in the normal process 
operation, running a Taguchi experiment may be difficult, costly or sometimes impossible 
since you have a number of noise factors in the outer array and you need to fix the levels of 
these factors in each run of the experiment. This problem is mitigated somewhat in the 
desensitization approach that recommends an outer array defined only using the dominant 
cause. 
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 Having the dominant cause as a factor in the desensitization experiments, allows the analyst 
to model interactions between the dominant cause and the candidates directly whereas in the 
robustness experiments this interaction can not be assessed directly since dominant cause is 
not included as one of the experiment factors.   

 As mentioned before, the desensitization approach recommends first finding the dominant 
cause of variation and then if the dominant cause is not controllable, running a 
desensitization experiment. In some situations, once a dominant cause is identified, the 
remedy is obvious and no further investigations are needed. In these cases the dominant 
cause is controllable and variation in the output can be reduced by reducing the variability of 
the dominant cause. 

 Conducting baseline and observational investigations, as recommended by desensitization 
approach for finding the dominant cause, provides useful information about how the process 
operates under current conditions. This information can be used to specify the problem goal 
by stating how the baseline should be changed. Although experimenters who follow the 
Taguchi or robustness method may also conduct these kind of investigations before 
proceeding to experimental investigations. However, conducting observational studies 
before any experimental investigations is not explicitly mentioned in Taguchi or robustness 
literature. In desensitization approach, however, conducting observational experiments for 
finding the dominant cause is a requirement. So, the likelihood of limited information about 
the current process is high in the Taguchi or robustness methods and this is another 
drawback of these methods. Recall the examples presented in Sections 3.2 and 3.3; if none 
of the runs represent the current setup of the process, how can experimenters be sure that the 
new setting, recommended by experiment, improves the process? The recommended robust 
solution may be much better than other settings used in the experiment, but still worse than 
the existing setting. 

 One of the most important requirements for a robustness experiment to be successful is that 
the unknown dominant cause acts in a short-term family of variation (Steiner and MacKay, 
2005). This is important because the length of each run in a robustness experiment must be 
long enough to be sure that the dominant cause will vary over (close to) its full range within 
each run. Otherwise assessing the interaction between a dominant cause and the candidates 
is not possible (even indirectly) and we will not be able to see if any candidate settings make 
the process robust to the variation in the unknown dominant cause. If experimenters do not 
have any information about the time nature of the dominant cause they do not have any idea 
about the desired length of the experiment runs. If they know the unknown dominant cause 
acts in a time-to-time family, it will likely not be feasible to conduct a robustness 
experiment since the runs would need to be too long. In the desensitization experiment, 
however, the length of runs is not an important issue because we include the dominant cause 
in the experiment and we select two levels for the dominant cause at the extremes of its 
normal range which can reflect the full extent of output variation and this allows the 
experimenter to reasonably evaluate the effect of different settings of control factors and 
their interaction with the dominant cause on the output variation.  

 As mentioned in the Section 3.3, Taguchi recommends using engineering judgment for 
selecting noise factors and assumes that the choice includes all the important noise factors. 
However, without substantial process knowledge and/or extensive preliminary investigations 
(as recommended in the desensitization approach) a poor choice of noise factors is possible. 



 

We will consider this issue in the next chapter where it is shown that the effectiveness of a 
Taguchi method experiment depends critically on the choice of noise factors.  

 In a desensitization experiment, the experimenter selects extreme levels of the dominant 
cause using information from preliminary investigations (conducted earlier when searching 
for the dominant cause). In Taguchi method, however, this information might not be 
available for experimenters since they are not required to conduct such preliminary 
investigations before conducting the experimental investigation; So, for Taguchi 
experiments we only on engineering judgment and past experience for selecting the levels of 
noise factors. 

 Regarding model based analysis, using the response model in the desensitization approach is 
an advantage in comparison to the robustness and Taguchi approaches in which constructing 
a loss-model is recommended for the analysis. In the loss-model approach focus is on 
modeling the optimization criterion, signal-to-noise ratio in Taguchi experiments and 
usually log(s) in robustness experiments, which is a nonlinear, many-to-one transformation 
of response and It is shown by Shoemaker et al. (1991) that modeling the optimization 
criterion may hide some of the relationship between individual control and noise factors and 
it is less likely that the optimization criterion can be a low-order linear model. Shoemaker et 
al. (1991) give an elaborated comparison between the loss-model approach over response 
model approach in data analysis. 

 
Considering all these qualitative reasons, we conclude desensitization experiments are more effective 
than robustness and Taguchi method experiments. This is shown quantitatively in the next section. 

3.2 Quantitative Comparison 

3.2.1 Modeling 

To start, we consider the simplest situation where we have just one fixed input and only one dominant 
cause. Then, the idea of desensitization and robustness can be demonstrated by considering the 
following regression model: 
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R
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0 1 2 3Y X z Xz= β +β +β +β +    (3.1) 

where, Y represents a random variable that describes the possible values of output characteristic; X 
represents a random variable that describes the possible values of the dominant cause; z represents the 
levels of desensitizer (the fixed input that can desensitize the output to variation in the dominant cause) 
and R is a random variable that describes the effect of all other varying inputs on the response.  
Equation (3.1) can be rewritten as: 

0 1 3 2Y ( z)X z= β + β +β +β +     (3.2) 
If  is the value of z in the current process, 0z 1 3zβ +β is the slope of the relationship between the 
dominant cause (X) and the output (Y) with the current process settings (see Figure 3.1). 
 



 

X (dominant cause)

Y
 (

ou
tp

ut
)

Original process

 
Figure 3.1: Range of output values in the current process (z = ) 0z

 

Assuming the effect of all other causes, R, vary independently of the dominant cause, we can estimate 
the standard deviation of output using Equation (3.3). 
 
 

2 2 2
1 3 x rsd(Y) ( z)= β +β σ +σ     (3.3) 

where, and  are the variances of the dominant cause and residuals respectively. The purpose of 
desensitization and robustness experiments is to find a new setting for z that flattens the relationship 
between output and dominant cause. This means we are looking for a new level of z, say , where 

 is closer to zero than . With this change, while we continue to live with the variation 
of dominant cause (recall that we use these approaches when the dominant cause is hard to control or 
uncontrollable), we reduce the output variation (Figure 3.2) using the Xz interaction. We refer to this as 
a favorable interaction between X, a dominant cause, and z a (normally) fixed input. 

2
xσ

2
rσ

*z
*

1 3zβ +β 1 3zβ +β 0
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Figure 3.2: Range of output values with new setting (z = *z ) 

 
The purpose of robustness and desensitization experiments is the same; however, in the robustness 
approach we assume that the dominant cause is not known and the experimenter tries to find the 
appropriate level of z without having the knowledge of a specific dominant cause. 

3.2.2 Performance Measure 

To compare the efficiency of desensitization and robustness experiments we need a performance 
measure. The method that provides a better prediction of output variation will be better at determining 
the best choice of the levels of the candidates. One way to define “good” prediction is to require the 
method have a reasonably consistent variance of the estimated response at points of interest (at specific 
levels of control factors used in the experiment). Consistent variance can be interpreted by smaller 
variation in estimated variance of output in either approach. So, we introduce the standard deviation of 
estimated response variance as a measure of efficiency or performance index, denoted by Std (P) in this 
thesis. Next, we formulate Std (P) for each method and then we compare each method using these 
formulated performance measures. The smaller the performance index the better. 
In the case of desensitization, we first look for the dominant cause using observational investigations 
and a process of elimination (Shainin, 1993b; Steiner and MacKay, 2005), called the progressive search 
method. As such, to start we assume the standard deviation of dominant cause ( ), the slope of the 
relationship between the dominant cause and the output (i.e.

xσ

1 3z0β +β ) , and the standard deviation of 
residuals ( ), are known from our prior investigations. In Section 3.2.4 we relax this assumption. The 
elimination method is detailed in Steiner and MacKay (2005) and we will describe it briefly later. 

rσ

The model parameters are determined from our baseline investigation, an “input-output” investigation, 
and other preliminary enquiries for finding and verifying the dominant cause. Assuming xσ , rσ , and 

 are known and the current value of z (i.e. ) is equal to zero, the standard deviation of the 1 3zβ +β 0 0z
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output can be estimated with a desensitization experiment by estimating 3β  (denote the corresponding 

estimator as ). Thus, if we define  as  3β desP
2 2 2

des 1 1 3 1 x rP Var(Y | z z ) ( z )= = = β +β σ +σ   

=

x

  (3.4) 
 
The performance index in the case of desensitization is the standard deviation of  (i.e. ). desP desStd(P )
In the robustness method, on the other hand, we estimate the standard deviation of output directly based 
on the experiment results. This means that  is defined as: robP

2
rob 1P Var(Y | z z ) s= =     (3.5) 

where s2 is the sample variance of robustness experiment results when z=z1. 
 
Thus, the performance index in this case can be presented as the standard deviation of  (i.e. 

). Now, we derive  and . For the case that was modeled and describe early, 
we have z as the fixed input or control factor and X as the dominant cause in the desensitization 
experiment; each at two levels (say  for z, where “a” is a constant value, and  for x which 
are extreme levels of x). Using a crossed design, there are runs for both levels of the dominant cause for 
each treatment (each level of z). For the robustness experiment we have only a fixed input or z with the 
same levels in desensitization experiment (i.e. 

robP

robStd(P ) desStd(P ) robStd(P )

a± x 2μ ± σ

a± ). To be fair we compare desensitization and 
robustness experiments with the same number of runs. This means that if we have k replicates in the 
desensitization experiment, the number of replicates will be equal to 2k in the robustness experiment. 
The desensitization and robustness experiment plans for a simple case (k=2) are given in Tables 3.1.a 
and 3.1.b respectively. 
 
Table 3.1: Design matrix for desensitization and robustness experiment (k=2 here) 

a. Desensitization experiment with k replicates   b. Robustness experiment with 2k replicates 

Treatment Run z Y

1 1 +a y1

2 2 -a y2

1 3 +a y3

2 4 -a y4

1 5 +a y5

2 6 -a y6

1 7 +a y7

2 8 -a y8

1st replicate

4th replicate

2nd replicate

3rd replicate

Treatment Run z x Y

1 1 +a y1

2 2 +a y2

3 3 -a y3

4 4 -a y4

1 5 +a y5

2 6 +a y6

3 7 -a y7

4 8 -a y8

x x2μ + σ

x x2μ + σ

x x2μ − σ

first replicate

second replicate

x x2μ − σ

x x2μ − σ

x x2μ + σ

x x2μ − σ

x x2μ + σ

 
Note that the only random variable in Equation (3.4) is 3β

0

 and before formulating the Std ( ) we need 

to determine variance of β . This variance can be determined using a regression model that we fit based 
on the desensitization experiment’s results. Note that with z

desP

3

0 =0, knowing 1 3zβ +β  we know 1β . 
The regression model is presented as: 

i 0 1 i 2 i 3 i i iY x z x z= β +β +β +β +R   i= 1, 2 ,…, 4k  and  ),(~ 2
rri NR σμ
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 or 

i 1 i 0 2 i 3 i i iY x z x z R−β = β +β +β + ;  
   
This model may be written in matrix notation as: 

X= βZ  
where  
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ii 1Y x= − βZ   
0

2

3

β
β β

β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

1 1 1

2 2 2

4 4 4

1
1

1 k k k

z x z
z x z

X

z x z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Using standard regression results (Montgomery, 2001) the variance of β  is expressed in covariance 
matrix: 

2 T
rCOV( ) (X X) 1−β = σ  

a symmetric matrix whose diagonal entries give the variance of the individual regression coefficientβ . 
Thus,  is equal to 3VAR( )β 2 T

r (X X) 1
33
−σ  where T

33(X X) 1−  is the 3th main diagonal element of the 
matrix ). Considering the design matrix of desensitization experiment the 1( TX X −) 1( )TX X −  matrix can 

be calculated. By calculating  we can see that its 3th diagonal element is 1( TX X −) 2 2

1
16 xka σ

 where “k” 

is the number of replicates in the desensitization experiment and “a” is the absolute value of the levels of 

z. Accordingly  is equal to3VAR( )β
2
r
2 2

x16ka
σ

σ
  (i.e. 3β  ~

2

3 2 2( , )
16

r

x

N
ka
σβ

σ
). 

To find the Std ( ), we denote  as “A” in Equation desP 1 3zβ +β (3.4) and rewrite the equation as: 
),,22 2

AA
2

des N(~AAP σμσσ xx +=     (3.6) 

In above equation, “A” is a random variable and 2
xσ  & 2

rσ  are constants, so  
4

des xVAR(P ) VAR(A )= σ 2

nd

      (3.7) 
where  

1 3 A 1 3A z ; E(A) z a= β +β = μ = β +β  
2 2

2 2 r r
3 2 2 2

x x

VAR(A | z a) a VAR( ) a
16ka 16k

σ σ
= = β = =

σ σ
 

Based on the definition of noncentral chi-square distribution (Abramowitz and Stegun, 1972) we know 

that: 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A

A
σ

~ 
2

2
1 ( ) A

A

with μχ λ λ
σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

   

  
Thus, 2 2 2

A 1A ~ ( )σ χ λ  and 
  (3.8) 2 4 2 4 2 2 2

A 1 A A AVAR(A ) VAR( ( )) 2 (1 2 ) 2 ( 2 )= σ χ λ = σ + λ = σ σ + μA

Substituting Equation (3.8) into Equation (3.7), we get 



 

4 2 2
r r A

des 2

2 (16k )VAR(P )
8(4k)

σ + σ μ σ
=

2
x  

Thus, the performance index in the case of a desensitization experiment ( ) is the square root of 
above expression, namely: 

desStd(P )

4 2 2 2
r r A x

des 2

2 (16k )Std(P )
8(4k)

σ + σ μ σ
=     (3.9) 

 
Next, we need to find Std ( ) when  is defined by Equation robP robP (3.5) (i.e. s2). 
The sampling distribution of the sample variance is a scaled chi-square (Abramowitz and Stegun, 1972): 

2s  ~ 2
1

2

1 −− n
y

n
χ

σ
 

22 4
y y2

rob

2
VAR(s ) Var(P ) 2(n 1)

n 1 n 1
⎛ ⎞σ σ

⇒ = = − =⎜ ⎟⎜ ⎟− −⎝ ⎠
  

where n (# of data points used in the calculation of s2 )  is equal to 2k. So: 
 

 
4
y

rob

2
Var(P )

2k 1
σ

=
−

 

Thus, the performance index in the case of robustness ( ) can be formulated as square root of 
above expression: 

robStd(P )

4
y

rob

2
Std(P )

2k 1
σ

=
−

    (3.10) 

The performance measures, Equation (3.9) and Equation (3.10), were also validated by a simulation. 

3.2.3 Comparing Performance Measures 

As mentioned before, the smaller the performance index the higher the effectiveness. So, to 

quantitatively prove our claim that a desensitization experiment is more effective than a robustness 

experiment we should show that Equation (3.9) is always less than Equation (3.10) or  

 
4
y2

2k 1
σ

−
 > 

4 2 2 2
r r A x

2

2 (16k )
8(4k)

σ + σ μ σ   or   

  > 2 4
y256k σ 4 2 2

r r A(2k 1) ( 32 k )2
x− σ + σ μ σ  

 
Substituting 2 2 2( 2 )y A x rσ μ σ σ= +  into above expression and rearranging we obtain 
 
     2 4 4 2 4 2 2 2 2

A x r A x r256k 256k 512kμ σ + σ + μ σ σ
   >    (3.11) 
   4 2 2 2 2 2 2

r A x r r A(2k 1) 64k 32k− σ + μ σ σ − σ μ σ2
x
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Since  is positive2 4 4
A x256k μ σ 1, 2 4

r256k σ  is greater than 4
r(2k 1)− σ , and  is also greater 

than  we can conclude that inequality 

2 2 2 2
A x r512k μ σ σ

2 2 2 2
A x r64k μ σ σ (3.11) is true and consequently conclude that 

 is always less than . This conclusion indicates that the desensitization approach is 
always more efficient than the robustness approach (given our assumptions). 

desStd (P ) robStd (P )

To generalize this conclusion we need to first consider cases in which there are more than one fixed 
input and one dominant cause and show that  is also less than  in these situations. 
Second, we should challenge the assumption that we took in the desensitization case (i.e. 

desStd (P ) robStd (P )
2
rσ , 2

Xσ , 
 are known) and think about situations where one or all of these components are not known and 

we need to estimate them using either the desensitization experiment results and/or preliminary 
investigations. The next section shows how we generalized this comparison result. 

1 3zβ +β 0

zβ xσ

3.2.4 Generalizing the Result 

In Appendix, using a similar argument as given here, we show that the performance index of 
desensitization is less than the performance index of robustness even where we have “m” noise factors 
and “n” control factors. As mentioned early, the desensitization approach recommends using the method 
of elimination to find the dominant cause(s). This method concentrates on ruling out possibilities rather 
than looking directly for the dominant cause (Steiner and MacKay, 2005). Using elimination, the set of 
all causes is divided into families and then an observational investigation is conducted to rule out all but 
one family. This exercise is repeated on the remaining family until a single dominant cause or a small 
number of suspects cause(s) remain. At this point, when the family of remaining suspects is small, an 
“input-output” relationship investigation is used to isolate the dominant cause. In an “input-output” 
investigation a time frame is selected based on the full extent of output variation and a sample of 30 or 
more parts, spread across the time frame, is chosen. Then, for each part, the interested output 
characteristic and all remain suspects are measured. By plotting the output versus each one of the 
suspects any strong linear relationship can be found and the dominant cause can be identified. Steiner 
and MacKay (2005) not only recommend the method of elimination and a series of simple observational 
investigations to isolate a dominant cause but also recommend conducting a verification experiment to 
be sure that the suspected cause is dominant. Following these steps for finding the dominant cause 
before conducting the desensitization experiment it is reasonable to assume β + ,  and 1 3 0 rσ  are 
already known (or well estimated) since these components can be estimated using the observational 
studies needed to find and verify the dominant cause. However, we shall also consider the situations 
where ,  and  are not known and they are estimated using only the desensitization 
experiment results or using the desensitization results and a preliminary “input-output” investigation. 

1 3zβ +β 0

                                           

xσ rσ

For this reason a simulation study was employed. In the simulation study the model presented by 
Equation (3.2) is considered and without loss of generality we set: 
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0

2
0 r

1 r

2 x

3 0

0 1
1 0
0 0
1 z

β = σ =
β = μ =
β = μ =
β = =

1 Note that k, the number of replicates in experiment is positive 



 

 
With this setup, the levels of z in the desensitization and robustness experiments are used to quantify the 
size of the dominant cause and the potential to reduce process sensitivity to variation in the dominant 
cause. For fixed z the variance of output is : 
  2 2 2 2 2

1 3 x r xVar(Y) ( z) (1 1z) 1= β +β σ + σ = + σ +
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Then X is a dominant cause if . So in the current process where z=z2 2
x(1 1z) 1+ σ > 0=0, X is a dominant 

cause if . Note that with z2
x 1σ > 0 =0 knowing 1 3zβ +β  we know 1β .  

Then, four possible situations are considered: 
 

1. Assume the relationship between x and y (i.e. 1β ), xσ  and rσ  are known and then estimate the 
standard deviation of y at high and low levels of z by estimating 3β  and using Equation (3.3). 

2. Assume the relationship between x and y (i.e. 1β ) and the residual variation (i.e. rσ ) are not 
known, however  is known. In this situation xσ 1β  and rσ  are estimated using only the 
desensitization experiment results and then the standard deviation of y at high and low levels of z 
are estimated using Equation (3.3). This situation corresponds to a case where we know X is a 
dominant cause and know the distribution of X values (i.e. xσ ). If we know X is a dominant 
cause we would also have some knowledge of 1β . So this situation is not overly realistic but is 
included for the sake of comparison. 

3. The same situation as option 2, but we use a preliminary input-output investigation (sample size 
=30) to help estimation of  and 1β rσ . 

4. Assume nothing is known, we only suspect that X is dominant cause and use the preliminary 
input-output investigation (with the same sample size as option 3) to estimate  and use both 
input-output investigation and the desensitization experiment to estimate  and . 

xσ

1β rσ
 
As in the theoretical comparison, the levels of z for each run of the desensitization experiment are the 
same levels of z used in the corresponding robustness run and the level of X in desensitization runs are 
chosen to be extreme (i.e. ). Simulation results are given by Figures 3.3 to 3.6. X 2μ ± σX

In the figures we show contour plots of the performance ratio, which is  divided by . 
Values greater than one suggests desensitization is more effective than robustness. The simulation 
estimates the standard deviation of the output using 1000 trials of each of the desensitization and 
robustness experiments. Each of earlier listed four options is considered. Figures 3.3 to 3.6 show the 
performance ratio for option 1 through 4, respectively. These figures present the results for high levels 
of z, where X is a dominant cause. The number of replicates in all options is equal to 2 and the number 
of observations in the preliminary input-output investigations for options 3 and 4 is equal to 30. 

robStd (P ) desStd (P )



 

 
Figure 3.3: Performance ratio in situation 1 

 

 

 
Figure 3.4: Performance ratio in situation 2 
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Figure 3.5: Performance ratio in situation 3 

 

 

 
Figure 3.6: Performance ratio in situation 4 
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Figures 3.3 to 3.6 demonstrate that the performance ratio is bigger than 1 in all situations which 
validates and generalize, on some aspects, the theoretical results given earlier in Section 3.2.3. 
The Figures also indicate that when the values of z and xσ  increase the performance ratio increases as 
well. The reason is that the standard deviation due to dominant cause (the value of  in 
Equation 

2 2
1 3( z)β +β σx

(3.3)) grows when the value of z and/or xσ  increase. In other words, the effect of dominant 
cause in the output variation increases and we have a dominant cause that has higher importance. Thus, 
the desensitization experiment is more effective when the dominant cause has a greater effect. 

3.3 Case Study: Geometric Distortion of Drive Gears 

In this section, all three approaches are applied to the experiment introduced earlier in Section 2.2. We 
use a simulation study to compare three different experiments (i.e. robustness, Taguchi style, and 
desensitization experiments) for solving the Gear example problem. As described in the Gear example, 
there are five control factors and three noise variables. The main effect plot for dishing of the gear 
(Figure 3.7) suggests factor “H” as a dominant cause and scatter plots of the response versus noise 
factors (Figure 3.8) confirm this suggestion.  
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Figure 3.7: Main effects plot for the Gear experiment 
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Figure 3.8: Scatter plot of the response versus factor H, F, and G in the Gear experiment 
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Figure 3.9: Normal probability plot in the Gear experiment (when response is Y) 
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Considering the normal probability plot (Figure 3.9), a reduced model is constructed as:  

A B C D E

F G H C F B F F

D H C D F

Y 14.336 1.523x 2.648x 0.992x 0.312x 0.625x
0.422x 0.695x 7.195x 1.297x x 0.922x x 0.859x x
0.844x x 0.93x x x R

= − − − − +
+ − − + + +
− − +

H

2 2
C D F

  (3.12) 

 
The model in Equation (3.12) is assumed the true model of the process and is used in simulation 
program to generate the data. Given the model we can generate a response surface model for the process 
variance: 
 

2 2 2
y D H C B

2 2 2 2 2 2
G F H r

( 7.195 0.844x ) (0.422 1.297x 0.922x 0.93x x )

( 0.695) (0.859)

σ = − − σ + + + − σ

+ − σ + σ σ + σ
 (3.13) 

Here, it is assumed that F, G, H are uncorrelated random variables and F G H 0μ = μ = μ = . (Note that 
Var(XY)= Var(X)×Var(Y) where X and Y are independent and E(X)=E(Y)=0). The standard deviations 
of noise factors are also assumed to be all equal to 0.5 ( F G H 0.5σ = σ = σ = ) and the value of  
is taken from the ANOVA table (see MS of Residual Error in Table 3.2). 

2
r 11.72σ =

 
Table 3.2: ANOVA table in the Gear example 

 Analysis of Variance for Y  
 
Source               DF   Seq SS  Adj SS     MS       F      P 
Main Effects          8   8094.9  8094.9  1011.87  86.34  0.000 
2-Way Interactions   28    877.7   877.7    31.35   2.67  0.002 
3-Way Interactions   46    793.0   793.0    17.24   1.47  0.099 
Residual Error       45    527.4   527.4    11.72 
Total               127  10293.1 

 

 

 

 

 

Considering Equation (3.12) as the model that describes the real process, the simulator runs three 
different experiments (robustness, desensitization, and Taguchi style) and then analyzes the resulting 
data to determine the optimum treatment combination recommended by each experiment.  
Following the desensitization approach an experiment is designed to include only the dominant cause 
(H) and five control factors (A, B, C, D, and E). The desensitization experiment includes a 25-1 fractional 
factorial design for the control array and for each treatment combination of the candidates there are runs 
for both levels of the dominant cause. The dominant cause, factor H, is fixed at extreme levels (±1 i.e. 
± 2 Hσ ) and the total number of runs is determined based on the number of replicates. For example for 
just one replicate there will be 32 runs (1×25-1×2) and for two replicates we will have 64 runs. According 
to the Section 2.3, in the analysis a regression model is constructed based on the experiment results. The 
regression function models the response (output) in terms of the control factors and the interactions 
between the control factors and the dominant cause. This regression model is used to generate a 
response surface model for the process variance. For each simulation run, the solution is the setting that 
minimizes the process variance as predicted by the fitted response model. 
The robustness experiment is a 25-1 fractional factorial with only the five control factors. Each control 
factor is fixed at its low and high levels (±1) and the total numbers of runs are determined based on the 
number of replicates. To fairly compare the desensitization and the robustness experiment the same 
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number of runs is considered for the two experiments. So, the number of replicates in the robustness 
experiment is two times of the number of replicates in the desensitization case. For two replicates in the 
desensitization case (2×25-1×2 = 64 runs), for instance, there would be four replicates in the robustness 
experiment (4×25-1 = 64 runs). Noise factors are varied during the experiment as three random variables. 
The plan of the Taguchi experiment is the same as described for the Gear example in the Section 2.2. A 
25-1 fractional factorial design is used for the control array and a 23 full factorial design is used for the 
noise array. Using this plan the number of runs is 128 (25-1 × 23 = 128). So, given the described 
experimental plans, the number of runs in the simulated Taguchi experiment can not be less than 128, 
but for robustness experiment the number of runs can be the same as in the desensitization experiment. 
Table 3.3 shows  (i.e. square root of Equation yσ (3.13)) for all 16 combinations of factors A to E in a  
25-1 fractional factorial design. 
 
Table 3.3: Standard deviation of output for all candidates’ combinations 
Treatment      A       B     C      D     E

1     -1    -1    -1    -1     1 4.8816
2     -1    -1    -1     1    -1 5.3133
3     -1    -1     1    -1    -1 4.7662
4     -1    -1     1     1     1 5.2960
5     -1     1    -1    -1    -1 4.7080
6     -1     1    -1     1     1 5.3181
7     -1     1     1    -1     1 5.0158
8     -1     1     1     1    -1 5.3642
9      1    -1    -1    -1    -1 4.8816

10      1    -1    -1     1     1 5.3133
11      1    -1     1    -1     1 4.7662
12      1    -1     1     1    -1 5.2960
13      1     1    -1    -1     1 4.7080
14      1     1    -1     1    -1 5.3181
15      1     1     1    -1    -1 5.0158
16      1     1     1     1     1 5.3642

yσ

 
As you can see in Table 3.3 and from Equation, the smallest output variation (4.7080) is obtained when 
we have either treatment 5 or 13 as the setting of fixed inputs. So optimum setting can be determined as: 
 

A:  high or low B:  high C:   low D:  low  E: high or low 

Note that the most important control factor is D. We will use this optimum setting later to compare the 
suggested settings from the desensitization, robustness and Taguchi experiments. 
The simulation program runs each test experiment 1000 times. For each simulation run, the proposed 
new process settings suggested by each experiment are evaluated using Equation (3.13) (i.e. using the 
true model). Then, the mean and standard deviation of all 1000 yσ s for each type of experiments are 
recorded. Suggested settings are summarized in Tables 3.4 and 3.5. Looking at these tables we can say 
that the robustness experiment, for example, suggests factor A at its high level for 510 out of 1000 runs 
and at its low level for 490 times of simulation runs and suggests treatment #1 for 74 times of simulation 
runs. Table 3.4 also compares these recommendations with the optimum setting given by Table 3.3. 
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Table 3.4: Recommended settings by each method per 1000 runs of simulation  
Method Levels    A B C D E

Robustness H 0.5100 0.4680 0.4820 0.3260 0.5020
L 0.4900 0.5320 0.5180 0.6740 0.4980

interpretation high or low high or low high or low high or low high or low
Desensitization H 0.4920 0.4820 0.5010 0.0090 0.5280

L 0.5080 0.5180 0.4990 0.9910 0.4720
interpretation high or low high or low high or low low high or low

Taguchi H 0.2880 0.1930 0.3960 0.4450 0.5360
L 0.7120 0.8070 0.6040 0.5550 0.4640

interpretation low low high or low high or low high or low

Optimum setting high or low high low low high or low
 

 
Table 3.5: Number of each treatment combination recommended by each experiment for 1000 runs of 
simulation  
Treatment      A       B     C      D     E Desensitization Robustness Taguchi

1     -1    -1    -1    -1     1 4.8816 134 74 152
2     -1    -1    -1     1    -1 5.3133 0 39 149
3     -1    -1     1    -1    -1 4.7662 131 74 138
4     -1    -1     1     1     1 5.2960 2 47 112
5     -1     1    -1    -1    -1 4.7080 120 77 67
6     -1     1    -1     1     1 5.3181 1 54 50
7     -1     1     1    -1     1 5.0158 141 82 15
8     -1     1     1     1    -1 5.3642 0 49 11
9      1    -1    -1    -1    -1 4.8816 132 94 0

10      1    -1    -1     1     1 5.3133 0 50 85
11      1    -1     1    -1     1 4.7662 117 89 87
12      1    -1     1     1    -1 5.2960 0 48 31
13      1     1    -1    -1     1 4.7080 110 72 29
14      1     1    -1     1    -1 5.3181 2 36 7
15      1     1     1    -1    -1 5.0158 110 79 2
16      1     1     1     1     1 5.3642 0 36 1

4.7080, 4.7662, 
4.8816, 5.0158

4.7080, 4.7662, 
4.8816, 5.0158, 
5.2960, 5.3133, 
5.3181, 5.3642

4.7080, 4.7662, 
5.0158, 5.2960, 
5.3133, 5.3181

Possible values for

yσ

yσ

 
The mean and standard deviation of calculated yσ s for each experiment are shown in Table 3.6. 

Table 3.6: Calculated performance measures in each method 

Mean of      
s

Standard deviation of   
s 

Mean of      
s

Standard deviation of   
s 

Mean of      
s

Standard deviation of   
s 

32 5.0590 0.2523 4.9140 0.1957

64 4.9930 0.2456 4.8745 0.1627

128 4.9603 0.2356 4.8458 0.1229 4.9047 0.1717

Robustness Desensitization Taguchi method
Number of 

Runs

yσ yσ yσ yσyσ yσ
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Table 3.4 indicates that the desensitization experiment suggests the level of the most important factor 
(i.e. factor D) correctly in 99 percent of simulation runs. The reason that D is the most important factor 
(for making the process insensitive to the variation in the dominant cause) is that factor D is the only 
fixed input that has interaction with the dominant cause (see Equation(3.12)). From Table 3.5, it we see 
that the desensitization experiment more likely leads to small values of  compared with the 
robustness and Taguchi experiments. The largest possible value of 

yσ

yσ  using the desensitization 
experiment is 5.0158 while it is 5.3642 and 5.3181 in the robustness and Taguchi experiments 
respectively. 
Table 3.6 summarizes the simulation results. Note that the best method will yield the lowest average and 
the least variation in s. The results in Table 3.6 shoe that the desensitization experiment has the 
lowest average of the s and thus the highest efficiency comparing with the robustness and Taguchi 
experiments regardless of the number of runs. Moreover, if we compare the desensitization experiment 
in the case that has only 32 runs with the Taguchi experiment (with 128 runs); it is revealed that the 
desensitization experiment with 4 times fewer runs has almost the same efficiency of the Taguchi 
experiment. In other words, using the knowledge of dominant cause, a desensitization experiment which 
is smaller, easier and consequently cheaper (in desensitization experiment you need to fix fewer noise 
factors than in a Taguchi experiment) can be conducted and the same efficiency and results of a much 
larger Taguchi experiment can be expected. Equally important, the choice of noise factors in a Taguchi 
experiment is a critical issue. As mentioned in Section 2, Taguchi recommends using engineering 
judgment to select the noise factors and assumes that the choice includes all important noise factors. 
However, if the dominant cause is not known there is a risk of excluding the dominant cause from the 
outer array. This risk is one of the Taguchi method’s main drawbacks. To assess the consequences of 
risk we decided to exclude the dominant cause (e.g. H) from Taguchi experiment plan and then rerun the 
simulation and analyze the obtained data. Note that as we now have a 22 full factorial design for the 
outer array, we can also use a 64-run Taguchi experiment. Comparing the results in Table 3.7 with those 
in Table 3.6 shows that without the dominant cause in the noise array the Taguchi approach is the 
weakest approach. 

yσ

yσ

 
Table 3.7: Performance measures of Taguchi method (the dominant cause H is excluded)  

Mean of     s Standard deviation of     s 

64

128 5.0356 0.2556

Number of 
Runs

Taguchi method

5.0443 0.2647

yσyσ

 
 
So, a potential drawback of the Taguchi method experiments is that it depends critically on how well the 
noise factors are chosen. If the dominant cause is absent from the experimenter choice of noise factors, 
the experiment will likely fail. In the desensitization case, however, the dominant cause is known and 
we do not need to worry about the selection of noise factors. 
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4   CONCLUSIONS 

A qualitative and quantitative comparison of the desensitization approach versus robustness and Taguchi 
approaches was presented and both kinds of comparisons suggested the desensitization method is the 
cheapest, the most convenient, and the most effective approach to the RPD at the manufacturing stage of 
a product development life cycle. This result was reconfirmed by considering a real world problem and 
comparing the three different approaches in the context of that problem. To run a desensitization 
experiment we need knowledge of dominant cause(s) of output variation. As a result, searching for the 
dominant cause of variation is highly recommended before proceeding to any experimental investigation 
to look for a robust solution. After finding the dominant cause, if an obvious solution is not evident and 
the dominant cause can be controlled temporarily, we suggest conducting a desensitization experiment 
to find a robust solution. The robustness approach can be selected as a last hope when it is hard to fix the 
levels of the dominant cause during a desensitization experiment or when we can’t find the dominant 
cause. 

Appendix 

Performance Indexes (“m” noise factors and “n” control factors) 

• Performance index in desensitization case (Std( ) desP )
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Considering above equations and following similar procedure that we had in the case of one noise and 
one control factors, we can formulate the performance index in the desensitization case as 
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• Performance index in robustness case(Std( )) robP
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To prove that performance index in the case of desensitization is less than performance index in the case 
of robustness (i.e. desensitization is more efficient than robustness), we need to show: 

42
2 1−

y
m k
σ

     〉
2 4

r
n m 2

n 2(m 2
16 (2 2 k)

)σ + λ
×

  (A.1) 
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As is greater than  for all natural numbers (it can be proved using Mathematical 
Induction), we still have a true expression if we do not have 

2(2 2 )n m k× (2 1)mn k −
24(2 2 )n m
rkdσ×  in the both sides brackets 

of above inequality: 
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In this expression as it is mentioned before  is greater than 2(2 2 )n m k× (2 1)mn k −  and by 
Mathematical Induction we can also prove that 48(2 2 )n m

rk σ×   〉 2 4
rmn σ  (or in other words, 

) is true of all 28(2 2 )n m mn× 〉 natural numbers (see next subsection). So, expression (A.2) and 
consequently expression (A.1) is true. 
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