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Abstract 

Binary measurement systems that classify parts as pass or fail are widely used in industry especially 

for systematic inspection purposes. To support production and quality improvement, it is critical that 

the misclassification rates of such binary measurement systems are assessed. In this paper, we focus on 

the situation where a routine assessment investigation of the binary system is conducted and therefore 

the pass rate is known prior to the study. Also, large populations of previously passed and failed parts 

are readily available for the assessment study. We consider the case where there is no available gold 

standard and parts are repeatedly classified using the binary measurement system. We assess the gain 

of knowing the pass rate in the precision of the estimators of the misclassification rates and the 

conforming rate. We propose new sampling plans and compare them with the existing ones with 

respect to the precision of the estimators, and also give recommendations for planning an assessment 

study for a binary measurement system. 
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Introduction, background and goals 

 

In a manufacturing environment, critical decisions about process and product quality depend on the 

quality of the measurement systems. Therefore, a rigorous assessment study of the measurement 

system performance is required. When the quality characteristic of interest is continuous, Gauge R&R 

(AIAG, 2002) is the standard statistical plan used to assess precision or measurement variation. This 

paper focuses on the situation where the characteristic of interest is binary; for example, parts may be 

evaluated as conforming or nonconforming in a pass/fail inspection. These systems are called Binary 

Measurement Systems (BMS) and often involve automated inspection of manufactured parts. In many 

cases, a BMS is used for 100% inspection to protect customers against receiving nonconforming parts. 

 

An example of a BMS is an automated measurement system used to inspect blank credit cards. The 

system takes a digital picture of the front of each card and calculates hundreds of summary measures 

based on comparing the picture to a template of the ideal card. The cards are checked for many defects 

such as missing parts, surface scratches, bleeding of colors, fuzzy letters and numbers. If any of the 

summary measures fall outside a pre-specified range, the card fails the inspection. In this case, 

although some of the characteristics are continuous, because the final decision is to pass or fail the 

card, we consider the measurement system a BMS. 

 

The main goal of a BMS assessment study is to estimate the “customer’s risk”, the probability of 

passing a nonconforming part, a false positive, and the “producer’s risk”, the probability of rejecting a 

conforming part, a false negative. It may also be of interest to estimate the conforming rate, that is, the 

probability of producing a conforming part.  
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The statistical properties of a BMS can be assessed by measuring sampled parts using the BMS and a 

gold standard (a definitive measurement system, e.g. a human inspector in the credit card example), or 

by repeatedly measuring parts using only the BMS. BMS assessment based on the gold-standard 

approach was considered by Farnum (1994) and Danila, Steiner and MacKay (2008) among others. 

The essential requirement for this approach is that the true status of a part can be determined with no 

classification error. Farnum (1994) suggested a sampling plan where parts are independently selected 

from the population of conforming and nonconforming parts as determined by the gold standard, and 

then measured once by the BMS. This method is impractical for processes with a high conforming rate 

since it would require extensive use of the gold standard system to get the required number of 

nonconforming parts. Danila et al. (2008) proposed two alternative sampling schemes. The first 

involves independently sampling from the population of previously passed and failed parts and then 

measuring these parts with the gold standard system. In the second plan, parts are randomly selected 

and then measured using both the BMS and the gold standard system.  

 

The assessment of a BMS with repeated measurements and without a gold standard uses a latent class 

(LC) model. Latent class analysis methods have been known for decades (Lazarsfeld and Henry, 1968) 

and they have been applied in many areas of research, such as psychology, sociology, and more 

recently in assessment studies for medical tests (Hui and Walter, 1980, Walter and Irwing, 1988, Qu et 

al., 1996). In the industrial context, Boyles (2001) and Van Wieringen and Van den Heuvel (2005) use 

a LC model in the assessment of a BMS.  

 

This paper focuses on a particular context with two conditions often found in a high-volume 

production process. First, we assume the goal is the evaluation of the performance of the BMS after it 

has been in use for a period of time. Such assessments are often required as part of the Quality System.  
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Second, we suppose that the BMS is used for 100% inspection so that large populations of passed and 

failed parts are generated. As a consequence, we can assume that we have a precise estimate of the 

pass rate. In the credit card example, thousands of cards are inspected every day so it is reasonable to 

assume that the pass rate is known. It is the second condition that sets this work apart from the earlier 

literature.  

 

With the increasing use of automated inspection systems, this context is now widely found in industry 

but there is little available research. Danila et al. (2008) propose assessment methods for this context 

when a gold standard is available and convenient to use. Browne et al. (2009) consider assessment of a 

continuous measurement system in this context.  In this paper, we consider the case when the gold 

standard does not exist or is too expensive or time-consuming for an assessment study. We describe 

efficient sampling schemes when parts are repeatedly measured with the BMS using the available 

populations of passed and failed parts and a known pass rate. We use a LC approach to model the data 

and maximum likelihood for estimating the model parameters. 

 

Throughout the paper, we make use of the following important assumptions and notation for the 

parameters and available data. First we assume the BMS under study is nondestructive so that repeated 

measurements can be made without changing the part characteristics and, during the time of the 

evaluation, the production process is under statistical control and the BMS itself  is stable. 

 

In addition, we assume that each part has a true quality state, conforming or non-conforming, denoted 

by 

1,  if part i is conforming
0, if part i is nonconformingiX ⎧

= ⎨
⎩
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When there is no gold standard, the iX ’s are unobserved. The data that arises from the repeated 

measurement of each part, denoted by  ijy , are the realizations of the random variables 

1,  if the i  part passes the j  inspection
, 1,..,  and  1,...,

0, otherwise

th th

ijY i n j r
⎧

= = =⎨
⎩

 

where n  is the sample size and r  is the number of time each part is measured. The data can be 

summarized as the total number of passes 
1

r

i ij
j

s y
=

= ∑ , 1,...,i n=  for each of the repeatedly measured 

parts. 

 

Using this notation, the performance of a BMS is characterized by the two misclassification 

probabilities 

Pr( 1| 0)ij iY Xα = = =  

Pr( 0 | 1)ij iY Xβ = = =  

where α  is the probability of passing a nonconforming part and β  is the probability of failing a 

conforming part. In most applications, α  is of greater concern than β  since it quantifies the risk of 

nonconforming items reaching the customer.  

 

Also of interest are 

Pr( 1)P ijYπ = =  

Pr( 1)C iXπ = =  

where Pπ  is the probability that any randomly selected part passes an inspection and Cπ  is the 

probability that the manufacturing process produces a conforming part. Note that Cπ  is a function of 
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the production process whereas Pπ  depends on both the performance of the BMS and the quality of the 

production process. Also, since 

Pr( 1) Pr( 1| 1)Pr( 1) Pr( 1| 0)Pr( 0)ij ij i i ij i iY Y X X Y X X= = = = = + = = =  

we have the constraint 

              (1 ) (1 )P C Cπ β π α π= − + −                                                         (1) 

As the notation suggests, we assume that, given their true state, items have the same probability of 

passing. That is, the chance of passing any conforming (nonconforming) part is the same. We also 

assume events defined on different parts are independent and also that, conditional on the true quality 

state, repeated measurements on each part are independent. This conditional independence can be 

expressed mathematically as follows 

1 2
1

( , ,..., | ) ( | )
r

i i ir i ij i
j

P Y Y Y X P Y X
=

=∏ , for each 1,...,i n= .  

Using these assumptions and notation, the conditional distribution of the total number of times part i  

passes the BMS inspection, given the part is conforming, is 

|{ 1} ~ ( ,1 )i iS X Binomial r β= − , 

and given it is nonconforming is 

|{ 0} ~ ( , )i iS X Binomial r α= . 

Boyles (2001) uses the LC approach to model the data from a BMS assessment study when there is no 

gold standard and parts are repeatedly measured with the BMS. Boyles proposes selecting a random 

sample of n  parts from a population of parts produced. Then, each part is measured r  times with the 

BMS and the number of passes is recorded. 
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In this paper, we often refer to Boyles’ paper, as he discusses not only parameter estimation using the 

LC model, but also other issues such as the selection of the sampling plan and sample size 

determination. 

 

For Boyles’ random selection (RS) plan, using the notation and assumptions given above and noting 

that the distribution of the number of passes for part i  is a mixture of two Binomial distributions, the 

likelihood function is: 

                                           
1

( , , ) [(1 ) (1 ) (1 )]i i i i

n
s r s s r s

C C C
i

L α β π β β π α α π− −

=

∝ − + − −∏                            (2) 

To make the parameters identifiable, we have to assume that 1 β α− >  and that there are at least three 

measurements per part, i.e. 3r ≥  (Boyles, 2001, van Weiringen and van den Heuvel, 2005). The 

assumption 1 β α− >  is reasonable, since we expect the probability of passing a conforming part to be 

larger than the probability of passing a nonconforming part. In fact, for most measurement systems in 

use, we expect both α  and β  to be close to zero. 

 

To find the maximum likelihood estimates for α , β  and Cπ , Boyles (2001) uses the Expectation-

Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977). The algorithm uses the likelihood 

function (2), which is also called the observed or incomplete-data likelihood, as it is based on the 

observed measurements of the BMS, and the complete-data likelihood function which includes the 

number of passes, is , and the (unobserved) true state of the part, ix , given by                   

(1 )

1

( , , | ( , )) [(1 ) ] [ (1 ) (1 )]i i i i i i

n
s r s x s r s x

C C i i C C
i

L s xα β π β β π α α π− − −

=

∝ − − −∏  

Boyles derives confidence regions and confidence intervals based on the asymptotic properties of the 

likelihood. For constructing the confidence intervals, the observed-data information matrix is obtained 
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using the missing information principle (Meng and Rubin, 1991, McLachlan and Krishnan, 1997). The 

inverse of this matrix gives the asymptotic variance-covariance matrix of the Maximum Likelihood 

(ML) estimators. 

 

For sample size determination when planning an assessment study, Boyles uses the inverse of the 

Fisher information matrix for the complete-data likelihood, that is 

                               (1 )( ) ( , , )
(1 ) (1 ) (1 )

C C
c

C C

nr nr nJ E I diag π π
α α β β π π

−
= =

− − −
                                (3) 

as the asymptotic variance-covariance matrix of the estimators. Therefore, for pre-specified parameters 

values and some desired precision of the estimators, we can obtain the minimum number of parts n  

and the number of measurements per part, r .  

 

In the next section, we comment on the advantages and shortcomings of this model and investigation 

plan. Then, we consider the situation when the pass rate Pπ  is assumed known as it is commonly the 

case for routine assessment studies of a BMS. In Section 3, we assess the value of incorporating the 

known pass rate into the analysis when using Boyle’s sampling plan (RS). In Section 4, we propose 

new sampling plans that use the available populations of previously passed and failed parts and show 

that they improve the precision of the estimators compared to the RS plan when the pass rate is known. 

In Section 5, we propose an algorithm to determine sample sizes for the new sampling plans and in 

Section 6 we discuss some issues related to the model assumptions used in the LC analysis and provide 

a summary of our results.  
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Assessment of Boyles’ Latent Class Model  

 

Using Boyles’ latent class approach, all parameters of interest, that is α , β  and Cπ , can be estimated 

from the available data. Therefore, provided that the initial assumptions hold, both the performance of 

the BMS and the quality of the production process can be obtained without knowing the true state of 

the selected parts. This result, which is somewhat surprising at a first look, is based on the fact that for 

a sufficiently large number of repeated measurements and when the assumption 1 β α− >  holds, the 

BMS is able to classify parts almost surely as conforming or nonconforming based on the results of the 

repeated measurements. Furthermore, when α  and β  are small (e.g. less than 0.1), the BMS can 

distinguish between conforming and nonconforming parts for a relatively small number of repeated 

measurements (e.g. 5r = ). 

 

Boyles and other authors in the medical field (Dawid and Skene, 1979) use the EM algorithm to 

estimate the parameters as the score equations of the observed-data log-likelihood function do not have 

a simple form. This is not the only option for maximizing the likelihood function as other optimization 

algorithms can also be used, such as Broyden-Fletcher-Goldfarb-Shanno (1970) or Nelder-Mead 

(1965). These methods are not more computationally intensive than the EM algorithm and can also 

automatically provide the observed information matrix. In general, the EM algorithm is preferred when 

the number of parameters in the model is large, which is not the case here as there are only three 

parameters to estimate. Therefore, in our ML estimation, we use direct optimization methods to 

maximize the likelihood. 
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Boyles proposes using a random sample of parts from the process. When the conforming rate Cπ  is 

close to one, which is usually the case with high-performance processes, this scheme can lead to 

samples with no or only a few nonconforming parts. When there are no nonconforming parts in the 

sample, the parameter α  is not identifiable. In Section 4, we propose Conditional Selection (CS) to 

avoid this situation by sampling parts based on the result of a previous measurement. This sampling 

plan virtually eliminates the chance of having no nonconforming parts in the sample and, compared to 

the random selection, better balances the expected number of conforming and nonconforming parts in 

the sample. 

 

As noted above, Boyles also proposed the use of the inverse of the Fisher information matrix from the 

complete-data likelihood for sample size determination. Using the complete-data information for 

sample size determination is convenient because we can obtain the minimum sample size n  and/or the 

number of the repeated measurements r  by solving simple equations. Boyles is assuming that the 

Fisher information from the complete data is a good approximation to the one from the incomplete 

(observed) data. The missing information principle gives the following relationship between the 

information matrices from complete and incomplete-data likelihood (MacLachlan and Krishnan, 

1997): 

( , , ) ( , , ) [ ( , , ; )]C comp C miss C iJ J E J sα β π α β π α β π= − , 

where J  is the information from the incomplete or observed-data likelihood, compJ  is the information 

from the complete-data likelihood and [ ( , , ; )]miss C iE J sα β π  is the missing information. compJ  is a good 

approximation to J  only if the missing information is negligible. In the BMS assessment context, this 

is not the case for all values of the parameters or any number of repeated measurements.  
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We investigated this issue by comparing the asymptotic standard deviations of the estimators for the 

complete and incomplete case for a reasonable range of parameter values. Figure 1 shows the ratios of 

asymptotic standard deviations of the estimators derived from the complete and incomplete-data 

likelihood for the case 4r = , α  and β  in the interval [0.01,0.1]  and 0.9Pπ = .  We note that the ratio 

of the standard deviations given by the two methods for each estimator do not depend on the number of 

parts, n , but do depend on the parameter values and the number of repeated measurements r . 
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Figure 1: Contour plots of ( )
( )

sd complete
sd incomplete

 of  the estimators of α , β and Cπ , 

Random Selection  plan 0.9Pπ =  and 4r =  

 

For example, from Figure 1, we see that when 0.02α = , 0.08β = , 0.9Pπ =  and 4r =  the standard 

deviation of the estimator for α  given by the complete-data information is half that of the incomplete-

data. Clearly in this case, the missing information is not negligible. To determine when the missing 

information is negligible, we computed the asymptotic standard deviations for the estimators of α , β  

and Cπ  using both the complete and incomplete-data information matrices for larger values of r  and 
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other values of Pπ . In our investigation, we noted that for each choice of the parameter values, as the 

number of repeated measurements increases, the ratio of the two standard errors approaches one. 

Therefore, for r  large the complete-data information provides a good approximation for the standard 

deviation of the estimators. Figure 2 shows the minimum value of r  so that the ratio of the two 

standard deviations is larger than 0.999 for a range of α , β  and 0.9Pπ = . 
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Figure 2: Minimum number of repeated measurements that guarantees ˆ( )sd α , ˆ( )sd β  and 

ˆ( )Csd π given by the observed-data information are close to the ones given by the complete-data 

information ( 0.999ratio ≥ ), 0.9Pπ =  

 

From Figure 2 and other such plots, we conclude that for reasonable parameters values and a large 

number of repeated measurements, e.g. 15r > , the complete-data information provides a good 

approximation for the asymptotic standard deviations of the estimators. We can explain this conclusion 

intuitively because, for large numbers of repeated measurements and small misclassification 

probabilities, the BMS can identify the true state of the parts. 
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In this paper, we discuss and compare cases where the number of repeated measurements is relatively 

small, i.e. 10r < , the pass rate is high ( 0.9Pπ ≥ ) and the misclassification rates are small (α  andβ  

between 0.01 and 0.1). The asymptotic standard deviations of all estimators are based on the observed-

data information. For the case where r  is large ( 15r > ), we recommend using Boyle’s approximation 

(3) based on the complete-data information. 

 

Latent Class Model with Random Selection and Known Pass Rate 

 

When the BMS is used for 100% inspection, it is reasonable to assume the pass rate Pπ  known. In this 

section, we assess the value of including the a priori information about Pπ  in the analysis when parts 

are selected using a RS plan. The ML estimates are derived by substituting 
1

P
C

π απ
β α
−

=
− −

 in the 

likelihood (2). To quantify the gain in precision when Pπ  is known, we compare the asymptotic 

standard derivations of the estimators when Pπ  is unknown and known, using the Fisher information.  

 

In Figure 3, we show the ratios of the standard deviations of the estimators ( Pπ  unknown versus Pπ  

known) when the number of repeated measurements is  10r = .  
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Figure 3: Contour plots of (   )
(   )

P

P

sd RS unknown
sd RS known

π
π

 of the estimators of α ,β and Cπ , when 0.9Pπ =  

and 10r =  

 

In Figure 3, we see that knowing Pπ  improves the precision of all estimators, with a substantial gain 

for the estimator of Cπ . We also notice that the ratio of the standard deviations for the estimators of β  

gets larger whenβ  increases, whereas for the estimator of Cπ  the ratio decreases with larger values of 

β . These results are also valid for smaller values of r  closer to the identifiability condition boundary, 

e.g. 5r = . Looking at a wide range of such comparisons, we conclude that including the available 

information about the pass rate improves the precision of the estimators of α , β  and especially Cπ  

when parts are sampled using the RS plan. 
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Latent Class Model with Conditional Selection and Known Pass Rate 

 

In the context we are considering, there are large populations of passed and failed parts readily 

available for the assessment study. We propose a new sampling plan, called Conditional Selection 

(CS), where we randomly sample from these two populations of previously classified parts. As we see 

later in this section, the Conditional Selection is a solution to the “no nonconforming parts” situation, 

as we have better control over the expected number of nonconforming parts in the sample. We also 

show that CS provides uniformly better estimators than RS. 

 

The CS plan involves independently selecting a pre-determined number of parts from the populations 

of previously passed and failed parts. The likelihood function for the CS plan is: 

        

1

0

1 1

1

1 1

1

(1 ) (1 ) (1 )( , , | )
(1 ) (1 )

(1 ) (1 ) (1 )
(1 )(1 )

i i i i

i i i i

s r s s r sn
C C

C C i
i C C

n s r s s r s
C C

i C C

L s β β π α α πα β π
β π α π

β β π α α π
βπ α π

+ − + −

=

− + − +

=

− + − −
= ×

− + −

− + − −
+ − −

∏

∏
                  (4) 

where 1n  is the number of previously passed parts and 0n  the number of previously failed parts in the 

sample. For the CS plan, we can choose the proportion of passed parts, 1

1 0

nf
n n

=
+

, where 1 0n n n+ =  

is the total sample size.  

 

To explore the CS plan, we first investigate how the probability of having no nonconforming parts in 

the sample compare for RS and CS  for the same sample size and parameter values. For RS, 

Pr(no nonconforming)= n
Cπ , whereas for CS we have 

                  (1 )Pr(no nonconforming) = [ (1 )]
1

nC C

P P

f fβ π βπ
π π
−

+ −
−

                  (5) 
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For example, when 0.1β = , 0.05α = , 0.95Cπ =  and 50n = , the probability of having no 

nonconforming parts is 0.08  for RS plan, 0.0001  for CS with 0.5f =  and 091.56e−  for CS with 

0f = . In general, for reasonable CS plans, the probability of having no nonconforming parts is very 

small. 

 

Next, we compare the precision of the estimators for the two sampling plans, RS with 5r =  and CS 

with 4r = , when the pass rate is known and 0.5f = . We use one fewer repeated measurement for the 

CS plan to take into account the initial BMS measurement made before conducting the assessment 

study. This makes the comparison fair in some sense but we could consider the initial measurements in 

the CS plan free. The differences between the two plans are even greater if we use the same value of r  

in each case.  Figure 5 shows the ratio of the asymptotic standard derivations for the case where the 

total number of measurements with the BMS is 5 and the proportion of previously passed parts, f , is 

0.5.   
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Figure 5: Contour plots of (   )
(   )

P

P

sd CS known
sd RS known

π
π

 of the estimators of α ,β and Cπ ,  

0.5f = , 0.9Pπ =  and five total measurements by the BMS  

 

Figure 5 suggests that the CS plan with 0.5f =  gives substantially better estimators for all parameters. 

Next, we compare the precision of the estimators for ten repeated measurements and 0.9Pπ = . 
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Figure 6: Contour plots of (   )
(   )

P

P

sd CS known
sd RS known

π
π

 of the estimators of α ,β and Cπ ,  

0.5f = , 0.9Pπ =  and ten  measurements by the BMS  

 

From Figures 6 and 5, we conclude that as the number of repeated measurements increases, the relative 

advantage of CS over RS increases for the estimator of α  and decreases for the estimators of β  and 

Cπ . We also compared the precision of the estimators for higher values of the pass rate 

(e.g., 0.95Pπ = ) and conclude that CS becomes even more efficient than RS when the pass rate 

increases with r  fixed.  

 

For reasonable α  and β  values, a CS with 0.5f =  will better balance the number of conforming and 

nonconforming parts in the sample than the RS plan. For small values of α  and β , even better 

balance is given by selecting only from previously failed parts, i.e. using 0f = . In Figure 7, we 

compare the precision of each estimator given by the CS with 0.5f =  and 0f = , when the pass rate 

Pπ  is known. 
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Figure 7: Contour plots of (    0)
(    0.5)

P

P

sd CS known f
sd CS known f

π
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=
=
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Figure 7 shows that, for the range of  α  and β  given, the CS plan with Pπ  known and 0f =  is 

uniformly more efficient than CS with 0.5f = . We also compare the precision of the estimators for 

smaller values of r  (e.g. 5r = ) and conclude that the gain in precision when 0f =  is higher for the 

estimator of α  and lower for the estimators of β  and Cπ , when compared to 0.5f = . Also, for larger 

values of the pass rate ( 0.9Pπ ≥ ) , the ratios of the standard deviations are smaller for all parameters, 

therefore CS with  0f =  is even more efficient in that case. 

 

In conclusion, in cases where Pπ  is known, the BMS has good performance and the manufacturing 

process is high quality, i.e. α  and β  are small and Cπ  (and Pπ ) is close to one, we recommend the  
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Conditional Selection plan with 0f = , i.e. all parts are sampled from the population of previously 

failed parts. This plan has a negligible chance of having no nonconforming units in the sample and is 

substantially more efficient in estimating the parameters, when compared to the other plans we have 

investigated.  

 

Planning the Assessment Study Using Conditional Selection 

  

In this section, we discuss how to choose the sample size and the total number of repeated 

measurements in order to achieve a pre-specified precision for the estimators of α  andβ  when using a 

CS plan. As mentioned before, a reasonable BMS is characterized by small misclassification 

probabilities, e.g. α  andβ  less than 0.1. For such small parameter values, small changes can have 

large impact on both the producer and consumer and hence we need high-precision estimators. In that 

case, the required number of parts and the total number of measurements will be large, as we see in the 

following example. 

 

We now describe an algorithm to determine n  and r for the CS plan where we assume the pass rate 

Pπ  is known. As in any sample size calculation, we start with some conjectured values for the 

unknown parameters α  and β . The pass rate is a priori known and therefore the value of Cπ  can be 

determined using equation (1). We select a value of f  the proportion of previously passed parts 

( 0f =  is recommended) and then enter the required precision for the estimators of α  and β . Here, 

we focus on the precision of  α  and β , as they are the main parameters of interest. The algorithm 

provides several combinations of the total number of parts n  and the number of repeated 

measurements r . Also, the asymptotic standard deviations for the estimators of α , β  and Cπ  are 
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provided, along with the probability of having no nonconforming parts in the sample. R code for the 

algorithm can be found at www.bisrg.uwaterloo.ca/. 

 

The algorithm computes asymptotic standard deviations for the parameters based on the observed 

(incomplete data) information. This is different from Boyles’ approach where he uses an 

approximation to these standard deviations based on the complete-data information. As discussed 

earlier, we found this approximation not appropriate for small numbers of repeated measurements. 

After entering the parameter values and the required precision, the algorithm starts with the minimum 

number of repeated measurements, i.e. 3r = , and the minimum of parts 2n = , and then increases n  

until the required precision for the estimators of α  and β  are achieved. Next, r  is increased by one-

unit increments up to 10r =  and then by increments of five. For each r  value the corresponding n  is 

determined.  

 

The following example illustrates the output of the algorithm for the case 0f = . Suppose we know 

that the pass rate 0.9Pπ = . We also assumed that the parameter values are 0.01α =  and 0.02β = . 

Using identity (1), solving for Cπ  gives 0.92 . Suppose the desired precisions for the estimators of  α  

and β  are 0 ˆ( ) 0.005std α =  and 0
ˆ( ) 0.005std β = . The corresponding sample size n , minimum number 

of repeated measurements r , total number of measurements n r×  and actual standard deviations are 

given in Table 1. Note, in general, 1 0, (1 )n fn n f n= = − . 
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Sample size 

 n  

Number of 

repeated 

measurements 

r  

Total number of 

measurements 

n r×  

 

 

ˆ( )std α  

 

 

ˆ( )std β  

 

 

ˆ( )Cstd π  

170         3 510 0.0031     0.0050   0.0030   

125         4 500 0.0036     0.0050   0.0034    

98         5 490 0.0040     0.0050   0.0038    

81          6 486 0.0044     0.0050   0.0042    

70          7 490 0.0047     0.0050   0.0045    

  61         8 488 0.0050     0.0050   0.0047    

60          9 540 0.0050     0.0047   0.0047    

59         10 590 0.0050     0.0045   0.0047    

56         15 840 0.0050     0.0038   0.0047    

 

Table 1: Sample size determination using the observe- data Fisher Information, when 0.01α = , 

0.02β = , 0.9Pπ = , 0f = , 0 ˆ( ) 0.005std α =  and 0
ˆ( ) 0.005std β =  

 

When choosing a combination of the sample size n  and the number of repeated measurements r , each 

planner has to make a compromise on how to allocate resources, based on the relative cost of 

measuring and sampling a part. In the example, the plans with 5,6,7,8r =  all have roughly the same 

total number of measurements. 
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Discussion and Conclusions 

 

BMSs are extensively used in medicine where they are known as diagnostic or screening tests. The 

literature on assessing medical tests is much broader (Pepe, 2003, Walter and Irwig, 1988 and Rutjes et 

al., 2007 and many others) than in an industrial context. Many authors (Pepe, 2003, Qu et al., 1996, 

Vacek, 1983, Torrance-Rynard and Walter, 1997) have questioned the conditional independence 

assumption, a key requirement in the use of the LC model.  As a result, methods for accounting for 

conditional dependence have been proposed (Joseph et al., 1995, Fujisawa and Izumi, 2000, Qu et al., 

1996, Kosinsky and Flanders, 1999). We do not pursue this matter further here.  

 

In summary, we discuss assessment methods for a binary measurement system when there is no 

available gold standard. The goal of the study is to estimate the misclassification probabilities and the 

proportion of conforming parts coming from the process. In the study, parts are repeatedly classified by 

the BMS. We focus on a particular industrial context where the overall pass rate is a priori known and 

populations of previously passed and failed parts are available for use in the study. We conclude that 

using the known the pass rate improves the precision of all estimators, especially for the estimators of 

β  and Cπ . We also propose a new sampling plan, Conditional Selection, which involves random 

selections from the populations of the previously passed and failed parts. We conclude for a range of 

reasonable parameter values that it is best to sample only previously failed parts ( 0f = ). We give an 

algorithm for planning an assessment with Conditional Selection that provides several combinations of 

the sample size n  and number of repeated measurements r  for a specified precision of α  andβ . 
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