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ABSTRACT

Although manufactured products are typically subjected to an extensive
reliability assessment during their development and sometimes during their
manufacture, comprehensive analysis of product performance in the service of
customers (i.e. in the ‘field’) is less common for various reasons: Scientific sam-
pling of items in field use tends to be difficult and costly; warranty claims and
other failure record data are usually in a form inconvenient for statistical
analysis; and there has been a lack of interest on the part of many manufacturers
in assessing quantitatively the performance of products in the field, except when
major problems arise. Nonetheless, field performance data have the potential to
be valuable in the systematic improvement of products, in the assessment and
refinement of reliability predictions, in the comparison of products, in the design
of warranty programs, and in planning the supply of replacement parts. The
broad objectives of this paper are to draw attention to this area, and to discuss
some of the statistical aspects. More specifically, we suggest procedures for the
collection of field performance or reliability data, and propose some methods of
analysis.

* This paper was read as the Technometrics invited paper at the Fall Technical Conference of the American
Society for Quality Control, New Jersey, October, 1988. It will also appear with discussion in the No-
vember 1988 issue of Technometrics.
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1. INTRODUCTION AND SUMMARY

Although manufactured products are typically subjected to an extensive reliability assessment
during their development and sometimes during their manufacture, comprehensive analysis of product
performance in the service of customers (i.e. in the ‘field’) is less common for various reasons: scien-
tific sampling of items in field use tends to be difficult and costly; warranty claims and other failure
record data are usually in a form inconvenient for statistical analysis; and there has been a lack of
interest on the part of many manufacturers in assessing quantitatively the performance of products in
the field, except when major problems arise. Nonetheless, field performance data have the potential
to be valuable in the systematic improvement of products, in the assessment and refinement of relia-
bility predictions, in the comparison of products, in the design of warranty programs, and in planning
the supply of replacement parts. The broad objectives of this paper are to draw attention to this area,

and to discuss some of the statistical aspects.

More specifically, we suggest procedures for the collection of field performance or reliability
data, and propose some methods of analysis. Relatively little has been published about the collection
of field reliability data, although there are a few notable exceptions (e.g. Amster et. al. 1982, who use
the term “field tracking studies’). Similarly, there has not been much study of special statistical
problems which can arise in such studies, although again there are exceptions (e.g. Suzuki 1985a,

1985b; Hahn and Meeker 1982).
Three aspects of data which can be collected in field performance studies are

A. Information on types and frequencies of ‘problems’ (e.g. failures, replacements,...) and on time
patterns of problems (e.g. times to failure, performance degradation over time, life of the pro-

duct,...).



-3

B. Manufacturing characteristics of items in use (e.g. model, place or time of manufacture,...).
C. Environmental characteristics (e.g. personal characteristics of users, climatic conditions,...).

In this paper we assume that the objective is to examine data of Type A in relation to factors of
Types B or C; in this regard we will think of a (Type A) response variable, with regressor variables of
Types B and C. More specifically, we will consider situations where the response variable of interest
is the time to some event, which for simplicity we will refer to as a failure. In many applications, the
response is of a different type; categorical responses are, for example, common, or the response may
involve several failures or failure types. We remark that the methods and many of the points dis-

cussed below apply quite generally, and not just for the specific models discussed here.

The framework we consider is as follows: suppose that the random variable T represents time
to failure of a particular type for an item under study and that x is a vector of regressor variables
which may affect T. We wish to learn about the distribution of T, given x. This is a familiar prob-
lem, about which much has been written (e.g. Kalbfleisch and Prentice 1980, Lawless 1982, Nelson
1982). The novelty in what we discuss below arises from the fact that simple random samples of indi-
vidual items in field use are often not available. Instead, what we have is either failure record data
alone, or a combination of this and other selectively obtained data. In this article, we study this prob-

lem, propose statistical methods, and study related design issues.

Specifically we consider situations in which the time of failure and the corresponding regressor
variables are observed only for items that fail in some specified follow-up or warranty period (0,79].
It is noted that, for satisfactory inference about baseline failure rates or regression effects, it is usually
necessary to supplement these "failure record data" with prior information about the regressor vari-
ables in the whole population, or by taking a supplementary sample of items that survive to 7° The
general methods we propose can be used to combine these two types of information to make infer-
ences about the effects of the regressor variables on reliability. It is shown that, in the context of
exponential or Weibull failure time models, the methods proposed are simple to implement and are
highly efficient. Several extensions are also considered to allow more complicated sampling plans and

warranties that depend on both calendar time and operating time.
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Section 2 deals with the estimation of failure time distributions and regression effects from
failure record data. Section 3 discusses the use of additional supplementary data and methods of esti-
mation. Section 4 provides an example and some checks on the adequacy of asymptotic approxima-
tions used to get confidence intervals. Section 5 deals with efficiency and design considerations,
related to the amount of information in supplementary data. Section 6 discusses methods for some

other follow-up scenarios. Section 7 summarizes our conclusions and indicates some areas for further

research.

KEYWORDS: Warranty data, reliability follow-up, pseudo likelihood, likelihood methods, Weibull

data, field performance data, regression analysis.
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2. ESTIMATION FROM FAILURE RECORD DATA

Suppose that N items are in field use and that associated with the ith item is a time to failure

t; and a vector of regressor variables x;. We suppose further that (#:x;), i=1,...,N arise asa

random sample from a distribution with joint probability density function (pdf)

F(t]x;0)g(x),

where the conditional pdf of T given x, f(¢|x;0), is completely specified up to a vector of parame-
ters 0 to be estimated and g(x) is the pdf of X. It is convenient to let F(z|x;0) = P{T<t|x;0} be
the cumulative distribution function (cdf) of 7 given x and F(z|x;0) = 1-F(¢|x;0) be the survivor
function (sf). Our main interest is in estimating 6, and thus the conditional distribution of failure
time, given x. In doing this we prefer, as is common in regression modelling, to avoid making

assumptions about the distribution of x, i.e. about g(x).

Failure record data arise when the ith item is sampled if and only if T;<T° for some prespeci-
fied T°. For these items, the time of failure ¢ and the corresponding x; are observed; for all other
items, we know only that T;>T°. In particular, the x;’s for these items are not observed. Data of
this type arise, for example, if a warranty period (0,7°] is in effect with all failures under warranty
being reported. Two remarks seem important. First, it is assumed that 7 represents a relevant time
variable in terms of the item’s use, and that 7° is expressed in the same units. For some manufac-
tured items, there may be a warranty period which depends on more than one time scale (e.g.
mileage and calendar time, in the case of automobiles). We discuss this further in Section 6. Second,
it is assumed that all failures in (0,7°] are reported. Methods for relaxing this assumption can be

developed, but are beyond the scope of the present paper; see Section 7 for a comment.

If only the failure record data up to time 7° are available, inferences about 6 can be based on

the ‘truncated’ conditional likelihood function

F(t:]x:50)

)" ) @D

which arises from the conditional distribution of the failure time 7; given T;<T°. As exemplified
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below, however, (2.1) can be quite uninformative about @ unless a high proportion of items fail by
time 7°. Note that (2.1) does not depend on N and would seem suitable for inference when N is
unknown. When, as we assume here, N is known, however, it does not use the information that

items not included in (2.1) did not fail by time T7°. If the values of x; were known for all N items

in the population, then we could use the familiar censored data likelihood

Lp(0) = mgr,f (%50 )i:th,F (T°|x;;0). (2.2)

Very occasionally such information may be available: for example, if the regressor variables are
categorical and refer only to simple manufacturing characteristics of an item, then the manufacturer
may know how many items in the population have each possible combination of values. In general,

however, we suppose that the x;’s are known only for individuals chosen for observation; this is what

motivates subsequent developments in the paper.

Although the x’s for items that do not fail in (0,7°) are typically not known, occasionally the
pdf g(x) is known, or can be specified up to a few unknown parameters. The marginal probability

of surviving past 7T° is then
Pr{T;>T° = [F(T°|x;0)g(x)dx (2.3)

and inference can be based on the likelihood arising from the full data {(¢;,x;) for i:;,<T°, and

;>T° for all other items}: this gives

Lp(0) = qu{f(ti x:30)g(x;)} T_Pr(T;>T°). 2.9
t; < iw;>T

L

In most applications, and specifically those we consider here, the distribution of x is unknown, and
cannot be represented adequately by a parsimonious parametric model. An alternative approach to
that taken in this paper and which also would avoid modelling g(x) would be to attempt non-
parametric estimation of g(x) jointly with @, via the likelihood (2.4). We have not explored this
approach, but for general application it appears that it would be computationally very complex, and

there would be difficulties in obtaining interval estimates; this is the case for a simpler situation
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involving only categorical response and regressor variables discussed by Cosslett (1981).

Some detailed comparisons of (2.1), (2.2), (2.4) and alternative likelihoods are made in Section
5. To provide an example of the lack of information in failure record data, and additional motivation
for the approach taken in the next section, however, (2.1) and (2.2) are compared here when failure
times are exponentially distributed and no covariates are present. In this case, (2.2) and (2.4) are

identical and with f(¢;0) = 6e~** (+>0), (2.1) and (2.2) respectively give

Lr(0) = IL {oe” /(1-eT)) (2.5)

-t °
Le(0)= I e - TI T, 2.
F( ) i, <T° ¢ i:ti>1‘°e ( 6)

Since there are no covariates, the censored data likelihood Lp(8) is available for inference and there
is no need to use the truncated data likelihood Ly (9), but our purpose is to show that very little of
the information about ¢ is contained in L;(¢). Table 1 gives the asymptotic relative efficiency of
Ly(6) versus Lp(8), defined as the ratio of the asymptotic variance of the maximum likelihood esti-
mator (mle) 6 from Lp(9) to that of the mle §; from L;(6). (Appendix A gives relevant for-

mulas.) The relative efficiency depends upon F(7T°;0), the expected proportion of items failing by

time T°; unless this proportion is high, the relative efficiency of L;(6) is very low.

Table 1. Asymprotic Relative Efficiency of Lr(0) to
Lp(0) in the Exponential Distribution

F(T°) = 1-e'" Relative Efficiency”
.01 .00001
.10 .0009
.20 .0041
.50 .0391
.90 3454

9Relative efficiency = as var{VN (0 p—0)}=as var{VN (6 ;—06)}

These calculations illustrate that although it is possible to estimate failure time distributions from
failure record data only, much more precise estimation is possible if information on unfailed items can

be incorporated. Since the information needed to employ (2.2) is not available, we consider
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supplementing the failure record data with a sample of the items which did not fail.

3. SUPPLEMENTING FAILURE RECORD DATA

The utility of failure record data can be increased greatly by collecting a supplementary sample
on items which do not fail. This general approach is widely used in retrospective or case-control stu-
dies (e.g. Breslow and Day, 1980). For the present, we consider the following scheme: the failure
record data are supplemented by selecting a sample of those items that do not fail by time T° and,
for each sampled item, determining the corresponding x. This could be implemented under various
sampling schemes. The one most often used, and discussed here, is selection of a simple random

sample without replacement of n, = p,N, items from the N, items surviving at T°, where p, is
prespecified and typically small. We denote by D; the set of items failing by 7°, and by D, the
supplementary sample. For items in D,, we observe x; and know that #>T°. It should be noted
that this sampling scheme is response-selective; if 7;<7° an item is sampled with probability one,
and if T;>T° it is sampled with probability p,. For examples of response selective sampling in dif-

ferent contexts see Hausman and Wise (1983), Holt et al. (1980), Jewell (1985), Scott and Wild
(1986) and Kalbfleisch and Lawless (1988). Some authors refer to the sampling scheme described

above as ‘‘standard stratified sampling”’.

In this section, we construct a pseudo likelihood that may be used for inference with the sam-
pling procedure just described. First, however, we mention another supplementary sampling plan and

“ordinary”’ likelihood estimation for it and other plans.
3.1 Exact Likelihoods

As above, let D, represent the set of items that fail and define Ry; = I(ieD;), where I(A) is

the indicator for event A. Suppose that a supplementary sample of those who do not fail is chosen

according to the following ‘“Bernoulli’’ scheme: each item in D; is chosen for inclusion in the sup-
plementary sample with probability p, independently. Let D, be the set of items in the supplemen-
tary sample and Ry = I(ieD,). Finally, let R; = Ry; + Ry be the indicator of the event, “the ith

item is sampled.” For the ith item, we could then consider the distribution of the observed data
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given R;; and x; to obtain the exact conditional likelihood

XU, T(To . -0 \TR2
LC = IIYI f(tl 'xiyo) [PZF(T |X,,0)] z (31)

i=1 o r(T° R;
[F(T°|x;30) + poF (T°|x;30)]

where the ith term is 1 if R; =0 and otherwise gives the conditional probability density of
Ry =1 and ¢, 0r Ry; =1 and ,>T°, given R; =1 and x;. The contributions to (3.1) from dif-
ferent individuals are independent, and standard maximum likelihood procedures can be applied to
the estimation of 6.

Unfortunately, Bernoulli sampling is not often used. For other sampling plans, and in particular
the simple random sample of size n, = p,N, referred to above, it is still possible in principle to obtain
an exact likelihood from the conditional distribution of the data {(Ry;,Ry,t),i =1, ...,N} given
Ry, ...,Ry and xy, ...,Xy, where ¢ represents f; if Ry; = 1 and is otherwise null. However,

with this “‘standard stratified sampling” the data for different individuals are not independent, and
the likelihood is so complicated as to be intractable. In addition, it is not clear how to generalize it to
handle varying “entry”’ times as discussed in Section 6.1, or other more complicated observational
plans. Consequently, we introduce in Section 3.2 a pseudo likelihood which is easy to use for estima-

tion of @ with standard stratified sampling and other types of supplementary observational plans.

3.2 A Pseudo Likelihood

We present here a pseudo likelihood for 6, by which we mean a function of ¢ which, when
maximized, yields an estimator 8 with properties like those of an ordinary mle. For similar uses of

the phrase pseudo likelihood see, for example, Suzuki (1985a) and Prentice (1986).

We propose to use for the case of standard stratified sampling the pseudo log likelihood

log Lp(0) = Y log f(t;|x;:0) + iz log F(T°|x;30). 3.2)
ieD, P2,

This can be thought of as an estimate of the logarithm of the likelihood function (2.2) that arises if

the x;’s for all N items in the population are known; note that p, = ny/N, is the probability that
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any individual unfailed item is included in the supplementary sample D,. The use of this pseudo

likelihood is similar in spirit to the use of weighted least squares estimators in regression analysis of
data obtained from complex sample surveys (cf. Holt et al. 1980, Holt and Scott 1981). Godambe

and Thompson (1986) also discuss a similar idea in the context of estimating equations.

Under mild conditions, the estimator 6 obtained by maximizing (3.2) is consistent as N — oo

with p, fixed, and VN (0—0) has a limiting normal distribution with mean vector 0 and covari-

ance matrix V() = A(0)™ + A(0)"'C(0)A(0)~! where

1 8%og Lp
A@),, = lim —E {—W}, (3.3)
and
1-p, . 1 N, _ —
C(0 )r,s = TNII_IPOOWE { n2_1 igz(mir_mr)(mis_ms)}s (3 4)

m;, = dlog F(T°|x;;0)/86, and i, = > my/m. V(8) is consistently estimated by replacing A(0)
ieD,

and C(0) with Ay(8) and Cy(8) where

1 82%og L
O o Tr T
r s
330 |x;:;0 dlog F(T°|x;;0
s g fOnlxi0) 1 g F(T°[x:30) 3.5)
N5 00,90, Np2ip, 99,00,
and
Ny(1-py) _ _
CN(o )r,s = _"'—2 (mir'_mr)(mis_ms)' (36)

NP2(”2"1) icD,

Some notes and references on these results are given in Appendix B.

The pseudo log likelihood (3.2) is equivalent to the log likelihood from a censored sample except

that censored items have case weights p;? and uncensored ones have case weights one. If software

that allows case weights is available, it can be used to maximize (3.2) and will also give (3.5); (3.6)
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would need to be computed separately, but this is easy since (3.6) is essentially the sample covariance
matrix of m; = dlog F(T°|x;,0)/80, ieD,. Our experience indicates that estimates from (3.2) often
have high efficiency when compared with Lp(#) and Lp(0) in (2.2) and (2.4). Examples are pro-

vided in Sections 4 and 5.

We remark that the pseudo likelihood (3.2) can also be used with Bernoulli supplementary sam-
pling as described in Section 3.1. It is not really needed then, since (3.1) is available, but in situa-
tions where (3.2) is computationally much easier to handle than (3.1) it might be worth investigating
its efficiency. For Bernoulli sampling one needs to replace C() and Cy(¢) in (3.4) and (3.6) with

(see Kalbfleisch and Lawless 1988)

1-p
C*(0)r,s = —2E(S mymy}

ieD,

1-p,
C*N(o )r,s =" E m;ms.
Pi i,

3.3 Formulas for Weibull and Exponential Models

The Weibull proportional hazards model is perhaps the most widely used parametric lifetime

regression model; it has pdf and survivor function

Felx) = 681 exp(—17e™7),  Flt|x;) = exp(-r*e™?), (3.7)
respectively, where §>0 is a shape parameter, x; = (1,5, . . ., xz) is the vector of regressor vari-
ables, and B = (89,81, . . . ,B:)’ the vector of regression coefficients. The proportional hazards

exponential regression model has the same form but with § = 1. This model is discussed at length,
for example, in Kalbfleisch and Prentice (1980, pp. 55-62) and Lawless (1982, pp. 298-313). We give
here the expressions needed to employ the pseudo likelihood of Section 3.2. These will be used in an

example in Section 4 and in efficiency calculations in Section 5.

To make expressions more compact, we write S;=F(T°|x;), H;=1logS; and

Wy = (log 1)/rfe™’, j=0,12.
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For the pseudo likelihood (3.2) the pseudo score vector has components

dlog Lp 1
T 2 xir(1-Wig) + —3 %, H;
r ieD P2,
dlog Lp

= Y (67 +log ,—W;y) + 'LZ (log T°)H;
ieD, p.

946 2ieD,

and, corresponding to (3.5), we find

—-8%og L
NAN(B,6), s = =k _ 3 XirxisWig — iinri‘fi.vHi
i 0 ,3,.3 ﬂs ieD; P2 ieD,
—8%og Lp 1 .
NAN(B,6)r p41 = %505 - g,; xie Wiy — ;‘;% x;,(log T°)H;
1 ey
—8%og Lp 1
NAN(B,6 kt,k41 = T2 - YE 2+ W) - EE (log T°YH;.
i, iD,

To obtain asymptotic variance estimates with Lp, we need also the matrix Cn(B,6), with entries
given by (3.6):

Ny(1-py) - —
N CN (ﬂ >0 )r,s = Wi%z(xirlf i —H, r)(xi.yHi _Hs)

Nz_(l_p_z) 3’ log T°(x;, H;—H, )(H;—H)

NCy(B,6)r k41 = (n-D)p, 33
iy

NA1P2) (10 Toy2(r,— T

NCy(B,8 is1h41 = —(m 5
ieDy

where H = Y H;/n, and H, = ¥ x,H;/n,.
iD, iD,
4. AN EXAMPLE

Hahn and Meeker (1982) present field data on the reliability of a population of N = 5370

electro-mechanical devices. In their example, inspections to determine failure were held at various
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times up to 38 months, by which time 270 items had failed. Hahn and Meeker fitted Weibull and

lognormal distributions (no covariates) and discussed dangers of extrapolation beyond 38 months.

For purposes of illustration, we generated regression data based on this example with a single
binary regressor variable, x. Such a covariate might, for example, indicate two different environ-

ments in which the devices are used. Half the x values were 0 and half 1, and failure times ¢

were supposed to have arisen from a Weibull model with survivor function

F(t|x) = exp(—1Pe 0t , >0.
P

The follow-up interval was taken to be (0,7°] = (0,38] and ¢;’s were generated so that there were

270 failures by 38 months, 205 with x =1 and 65 with x = 0. More specifically, we chose

fo=-237, py=116 and =55 to obtain F(38]0) = .0246 = 65/2685 and

F(38]1) = .0766 = 205/2685. The & value was chosen to be close to that estimated by Hahn and

Meecker. The ¢; values were obtained as the expected values of the first 65 and 205 order statistics

from  the  respective  Weibull  distributions  for x=0 and x=1, giving
{2 (2686-1)"yWee™/? i1 ... 65 for x=0 and
1=1

(0 (2686-1)y1/5e~BoD/5 i 1 205 for x = 1. The truncated likelihood Ly, based only

I1=1
on this failure record data, is very uninformative with regard to g, and B; and it leads to no useful
estimation of these parameters.

In order to illustrate the utility of supplementary sampling along with the pseudo likelihood, we
considered two cases. In the first a 5% sample was taken with the result that, of the 255 items
selected from those surviving 38 months, 131 items had x =0 and 124 had x = 1. In the
second a 10% sample was taken with the result that, of 510 items selected, 262 were observed to
have x =0 and 248 to have x = 1. Table 2 summarizes the results of estimation based on L.
The estimates are compared with those arising from L, where complete knowledge of the covariate

values for the unfailed items is assumed and with those based on L; where it is assumed known that
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the covariate values were generated independently from the distribution P(X=0) = P(X=1) = .5
and no supplementary sample is available. Standard deviations in Table 2 are computed from the

appropriate formulas in section 3.3 or Appendix C.

To examine the effect of length of follow-up, Table 2 reports also the results when 7° = 28
months. In this case, 51 items failed, of which 12 had x =0 and 39 had x = 1. Supplemen-

tary samples had 266 items (134 with x =0 and 132 with x = 1) for p, = .05 and 532 items

(267 with x =0 and 265 with x = 1) for p, = .10.

All methods give close to the same estimates and SD’s. Increasing the sampling rate from

p2= .05 to p, = .10 has a relatively small effect on the standard deviations; the standard deviations
for Lp compare favourably with those for L,. This rather modest degree of supplementary sampling
is sufficient to overcome lack of information about the distribution from which covariate values in the
population arise. We note also that SD’s under L, are only marginally greater than those under
Lg.

An area which requires further study is the adequacy of large sample confidence interval estima-
tion methods used with pseudo likelihood estimates. An extensive investigation is beyond the scope
of this article, but we have run a few simulations to assess how close to standard normal the three
approximate pivotals Z; = (ﬁo—ﬂo)/s“o, Zy = (B1—B1)/51, Zy= (66 )/$, used in this example are.
Here By, B; and & are the estimates obtained from Lp and §p, §;, and §, are the corresponding

estimated asymptotic standard deviations obtained from (3.5) and (3.6). We used the parameter

values Bg = —-23.7, By =1.16, 6§ = 5.5 and the supplementary sampling procedures described above

to generate 500 samples for each of the four combinations of T = 28,38 and p = .05,.10. For

these situations, the distributions of Z,, Z; and Z, appeared close enough to standard normal so as
to give reliable confidence intervals. The distribution of Z, appeared to depart to some extent from

standard normal in the extreme left tail; a parameterization with ! or log § instead of § may be

better. Table 3 shows the proportion of samples for which each of Z,, Z;, and Z, were less than

selected N(0,1) quantiles, for two of the cases considered; the other two cases gave very similar
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results.
Table 2. Estimates and Estimated Standard Deviations (SD) of
Weibull Model Parameters

Follow-up to T° = 38 months (N = 5370; 270 failures)

A N

Method Bo SD B SD 5 SD
Lp(py = .05) 2413 1.241 1.176  .186 5.615 .339
Lp(py = .10) 22413 1.240 1.176  .163 5.615 .339

Lp -24.07 1.240 1.179 .144 5.625 .339
Lg -24.13  1.239 1.176 .142 5.615 .339
Follow-up to T°® = 28 months (N = 5370; 51 failures)

Method Bo SD 81 SD 6 SD
Lp(p, = .05) 25.31  2.797 1.189 .350 5971 .835
Lp(p, = .10) -25.30 2.797 1.181 .339 5971 .835

Lp -25.21 2.797 1.185 .331 5973 .835
Lp -25.31  2.797 1.189 .330 5.971 .835

Table 3. Proportions of Values of Zy, Z; and Z, in 500 Samples
that Fall Below Selected Standard Normal Quantiles

Standard Normal Quantile

Zoos Zms Zos Zgs Zgs Zgos

T=28 Z, .004 .020 .036 .946 .962 .986
p=.05 2z .002 .028 .048 .960 .986 .996
Z, .014 .042 .056 .962 .982 .996

T=38 Z, .008 .020 .030 .962 .978 .986
p=.05 Z .002 .026 .060 .958 .982 .996
Z, .014 .028 .038 .966 .980 .994

5. SOME EFFICIENCY AND DESIGN CALCULATIONS

As the example in section 4 and earlier discussion indicate, data on failure records only are
often uninformative about baseline failure rates and covariate effects. On account of this, we have
identified two ways to supplement these data: first, by inserting knowledge about the distribution of

covariates across the population and second, by taking a supplementary sample of those items which
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have not experienced failures. In this section, we evaluate the relative information in these
approaches. Although only two specific examples are considered, the qualitative aspects of the results

are likely rather general.
5.1 An example involving exponential failure times

We consider items with exponentially distributed time to failure and a single binary covariate x

which equals 0 or 1. The p.d.f. of the time to failure is

=i

Flx) = Ne (#:>0)

Bo+By%;

where )\; = e . For illustration we assume that half of the N items in field use have x; = 0

and half have x; = 1. This may or may not be known to the statistician. We will consider situations
where e’g‘, which equals E(T |x=0)/E(T|x=1), is 1 and 2, respectively, and suppose that the initial
follow-up period (0,7°] is such that the expected proportion of items failing by 7° is .10. (This
implies that .Sexp{—T°exp(Bo)} + .Sexp{—T°exp(Bo+p1)} = .1.) Without loss of generality we take
T° =1.

We consider various possibilities; in each of the following, the failure record data (the data ¢,
x; for items failing in (0,T°]) are available, but may be supplemented with additional data or

knowledge. In each case, the purpose is to estimate 8y, and ;.
L Only the failure record data are available; 8, and g§; are estimated from (2.1).

L. The x;’s are known to be generated independently with P(X; = 0) = P(X; = 1) = .50; B, and

B are estimated from (2.4).

IOI. A supplementary simple random sample of units with T;,>T° is drawn, the probability of selec-
tion for each item being p, = .11 (In this case, the total expected fraction of items sampled is

.1+ .9(.11) = .20); Bo and B, are estimated from the pseudo likelihood (3.2).

In addition, we also consider
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IV. A randomly selected sample of .2N items is followed from O to T° and estimation of A,

B is based on the likelihood

-\ T° 1-8,

L(Bg,61) = gs{)\ie_x'.ti}si{e }

where S is the set of items sampled and 6; = 1 if the ith item fails and 0 otherwise.

To compare the possibilities we compute asymptotic covariance matrices for
\/N—(ﬁo—ﬂo, ,@1—/31) and report asymptotic standard deviations in Table 4. In the cases of I and II,
this involves computing the expectations of —d2%log L;/3 8,88, and of —a8%log Ly/d 8,0 B,, respec-
tively. For III we need to evaluate (3.3) and (3.4). For IV a very straightforward computation

applies. Expressions for all of these are given in Appendix C. Table 4 reports asymptotic standard

deviations for VN (8g—B,) and VN (8;—8;) for each of cases I to IV.

Method 1 is indeed very uninformative relative to II or IIl. Of course, II requires knowledge

about the distribution of the x;’s and III involves the additional cost of obtaining the supplementary

sample. Both however, result in greatly increased precision. Note also that III gives considerably
greater precision than IV. Thus, we are better to observe the failures in (0,7°] and supplement this
with a secondary sample from the non-failed items, than to follow up a random sample of items over
(0,T°] of equivalent total size. This fact was noted by Prentice (1986) in the context of relative risk

estimation in medical follow-up studies and is important for reliability follow-up as well.
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Table 4. Asymptotic Standard Deviations for /90 and ,@1
Under Four Approaches and Two Models

Bo=-225 B =0 Bo=—2.65 pB;=.693
Method SD{VN (Bo—Bo)} SD{VN (B1—B1)} SD{VN (Bo—Bo)}  SD{VN ($1—B1)}
I Ly 147.8 209.0 246.2 264.1
1 Lp 4.59 6.67 5.51 7.00
I Lp 5.30 8.50 6.09 8.76
v 10.0 14.1 12.1 14.9

5.2 An example with Weibull failure times
Tables 5 and 6 report asymptotic standard deviations similar to those in Table 4, for the case of

Weibull regression models of the form (3.7). Two sets of models are represented:

A:  x;B = Bo+B1x;, with half of the items in the population having each of x; = 0 and x; = 1. The
follow-up interval has 7° = 1, without loss of generality. Results are shown in Table 5 for
6§ =25, B1=0 or B1=log2 = .693, and Bo chosen to make
Ave(S;) = .5exp(—T°8e'9°) + .5exp(—T°5eﬂ°+ﬂ‘) =.95,90 or .80. Note that Ave(S;) is the
expected proportion of items surviving past T°.

B:  X;B = Bo+B1xi+Boxni+Baxy, With x;=0 or 1, x=0 or 1, x3; =-1, 0 or 1, and one-
twelfth of the items in the population having each of the 12 possible combinations

(%1 X2, %3;). The follow-up interval has 7° = 1. Results are shown in Table 6 for § = 2.5,

Ba=pB3=0, Py=1log2=.693 or p;=1log3=1099, and pB; chosen to make
Ave(S;) = .90 or .80.

Asymptotic standard deviations are shown for estimators based on the following four likelihoods:

Lr. (2.1), based on the failure record data only.
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Lp. (2.4), which requires knowledge of the distribution from which the covariates X; in the popula-

tion are generated.

Lp. (3.2), which utilizes a supplementary sample of non-failed items; values p, = .01, .05, .10 and

.20 are considered.
Lp. (2.2), which requires that we know exactly the covariates x; for all items in the population.

The asymptotic covariance matrices upon which the calculations are based are given in Appendix C.

We examined a range of values for 6, Ave(S;) and p,, but to conserve space present results

only for the combinations shown in Tables 5 and 6; qualitative features of the results persisted across

other models. The tables show that, as with the exponential models, methods Lp, Lp and Ly are
much more informative than Ly although the difference is much greater with regard to the regression
coefficients B; than the shape parameter §. We observe that a modest amount of supplementary
sampling (p,>.05) yields most of the information that would be available if, as in method Ly, exact

covariates for all items were known. Even a one percent supplementary sample brings about very

large gains compared to Ly, and may well be adequate if N is large. Note that values in the tables

are divided by N* to obtain approximate standard deviations of the estimators.
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Table 5. Asymptotic Standard Deviations for Four Methods: Weibull Models A

éve(Si) =.95 Ave(S;) = .90 Ave(S;) = .80
Method Bo B & Bo B & Bo B 6
Ly 670. 604. 22.0 229. 208. 15.3 75.1 69.5 10.4
L, 6.58 9.18 11.1 4.88 6.67 17.80 3.92 500 5.45
Lp (pp=.01) 118 218 111 109 209 7.80 10.4 20.4 5.44
B1=0 (pr=.05) 1768 125 111 624 10.8 7.80 538 9.78 5.44
§ =25 (po=.10) 7.00 108 11.1 539 872 17.80 436 7.47 5.44
(pp=.20) 6.63 980 11.1 4.90 7.48 7.80 3.74 599 5.44
Lp 632 8.94 11.1 4.47 6.32 17.80 3.16 4.47 5.44
Ly 1094. 911. 21.9 371.  310. 15.2 120. 101. 10.3
Ly 791 9.68 11.1 574  7.00 7.79 439 520 5.44
Lp (pp=.01) 125 220 111 112 21.0 7.81 10.3 20.4 5.50
B = .693 (p2=.05) 883 129 11.1 6.90 11.0 7.80 5.64 9.88 5.44
6§ =25 (p2=.10) 826 112 11.1 6.16 897 7.80 475 7.60 5.43
(po=.20) 795 103 111 5.76 17.78 1.79 4.24 6.16 5.43
Ly 7.30  9.46 11.1 541 6.67 1.79 3.78 4.69 5.43

Table 6. Asymptotic Standard Deviations for Four Methods: Weibull Models B

Ave(S;) = .90 Ave(S;) = .80

Method Bo B B B 8 Bo B B By
Ly 382. 310. 180. 110. 15.2 124 101. 60.0 36.7 10.3
Lp 6.65 7.00 670 4.11 7.79 507 520 5.05 3.09 5.44
Lp (pp=.01) 156 210 218 134 7.81 14.8 204 212 13.0 5.51
B1 = .693 (pp= .05) 8.8 11.0 11.1 6.81 7.80 7.58 9.88 10.1 6.20 5.44
§ =25 (pp=.10) 7.61 8.97 8.92 546 7.8 6.11 7.60 7.68 470 5.43
(pr=.20) 690 7.78 7.59 4.65 7.79 523 6.16 6.11 3.74 543
L 6.27 6.67 6.32 3.87 7.79 439 4.69 4.47 274 543
Ly 533. 469. 156. 95.6 15.1 170. 150. 51.8 31.7 10.2
Lp 731 751 675 4.14 17.78 546 5.51 513 3.14 542
Lp (pp=.01) 162 212 229 141 7.81 15.1 205 222 13.6 5.58
81 = 1.099 (py=.05) 9.47 113 116 7.07 7.78 7.93 100 10.5 6.45 5.44
6§ =25 (po=.10) 825 938 9.18 562 7.78 6.49 7.82 795 4.87 5.44
(pr=.20) 756 825 7.72 473 7.78 564 6.42 6.26 3.83 5.42

Lp 6.96 7.21 6.32 3.87 7.78 4.84 5.03 447 274 541
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6. OTHER OBSERVATIONAL PLANS

There are many ways in which field performance data might be collected. The discussion to this
point has focussed on a very specific sampling plan, but the ideas and methods apply much more gen-

erally. We consider briefly some other schemes and generalizations of the methods given.
6.1 Variations in Follow-up Period

The pseudo likelihood extends in a natural way to incorporate independent censoring. Suppose,
for example, that items are placed in service over the calendar period (0,7] and that an assessment is
made at time 7. Let D; be the set of items placed in service prior to time r that fail during their
warranty periods and prior to . For these items, the time of failure # and the covariates x; are
observed. These failure record data are supplemented by a sample of items from D;, which are items
placed in service over (0,7] but notin D;. We suppose the i’th item in D; is sampled with proba-
bility py;, and let D, be the elements obtained in the supplementary sample. For elements in D,
we observe x;, §; (=1 if the ithitem failsin (0,7] and 0 otherwise), and ¢;, the time to failure
if 6; =1 ( which must exceed the warranty time 7°), or the time to censoring if §;, = 0. The

pseudo log likelihood is then

log Lp = Y log f(4;|x;;0) + Y] [6;log £(t;|x;50) + (1—6,)log F(¥;|x;;0)]/pai (6.1)
iD, iD,

which provides an unbiased estimate of the likelihood that would arise if full information were avail-

able on all items placed in use in (0,7].

Several questions of design arise. For example, the times that items entered service may be
known, and sampling could be conditional upon these times. If time of entering service is not prog-
nostic of subsequent failure experience given x, then there would be advantage to sampling with
higher probability those items that had begun exposure (entered service) early on. If, however,
interest centred on the dependence of reliability on calendar time of entry, or possible associations
between x and calendar time of entry, more uniform sampling would seem appropriate. Often we

may expect the first situation but want to guard against the second, so a compromise is in order.
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Estimators based on the pseudo likelihood (6.1) can be handled in the same way as those based
on (3.2), and the approach outlined in Appendix B yields asymptotic covariance matrices. We note
that withdrawals among items during the follow-up period, for example because of accidents, can also
be handled. Provided the withdrawals arise through an independent censoring mechanism, the

pseudo likelihood is unchanged.
6.2 ‘Case-Cohort’ Designs

Prentice (1986) and Suzuki (1985a) describe follow-up studies in which a random sample of say
n items out of the N in the population are followed up over a period of time, and in addition
observations are taken on any items among the remaining N—n that fail. Prentice calls this a case-
cohort design, in line with common terminology in medicine and epidemiology. Such plans are simi-
lar to those discussed in Section 3, and can be handled in the same way with regard to L,. We
remark that Prentice shows how to carry out a semi-parametric analysis for proportional hazards and
more general Cox models; his methods do not require the assumption of a specific failure time distri-
bution but depend heavily on proportional hazards (e.g. Cox 1972) assumptions. Moreover, they only
allow estimation of relative regression effects and not of the full distribution of failure time. We

emphasize that our methods, based on the pseudo likelihood Lp, apply quite generally to arbitrary
parametric models and so apply beyond the proportional hazards family.

For the case of proportional hazards models, and the case cohort design, Kalbfleisch and Law-
less (1988) explore the relationships and make comparisons between L, and the pseudo likelihood

given by Prentice (1986). In particular, asymptotic variances of estimates of regression coefficients

obtained by Prentice are compared with those obtained from Lp. A semi-parametric pseudo likeli-

hood is also constructed; this gives rise to an estimating equation that is not exactly unbiased, but is a

Fisher consistent estimate of zero.
6.3 Incorporating Additional Follow-up Information

Sometimes a decision may be made to carry out supplementary sampling at some point after the

initial warranty or failure record period (0,7°]. Suppose for example that at time T!>T° a simple
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random sample of items who had not failed by T° is taken, any individual item being selected with

probability p,. Define
Ry = I(T;<T°)
Ry = I{T; = 4;¢(T°,T'] and item i is sampled}
Ry = I{T;>T' and item i is sampled},

where I(A) is the indicator function for event A. Then a pseudo log likelihood is

R

N ” Ry _
log Lp = Y Rylog f(#:|x:50) + o log f(#; |x;30) + -;,;'—log F(T'|x;;0).

i=
6.4 Follow-up when warranties have calendar time limits

Suppose that the warranty covers a fixed period of calendar time but that the distribution of the
time of failure depends on operating time. To be more specific, suppose that each item has an associ-
ated usage process Y;(¢), 0<t<T° where Y,;(t) takes values 1 or 0 depending on whether the
item would or would not be in service at calendar time ¢. The probabilistic structure by which

{¥Yi(t),i =1, ..., N} is generated conditional on x, . ..,xy is left entirely arbitrary. Note how-
ever that it would often be expected that the Y;(r)’s would be dependent (due to common environ-
mental factors). Let Y; = {¥;(z): 0<¢t<T°}, i =1,...,N. To complete the specification, we work

conditionally upon Y, ..., Yy and suppose that the p.d.f. of the time of failure T; is

fo(s|xi30), Yi(2) =1
F@&:Y, o YNx) = 0, Y,(t) = 0 6.2)

t s

where s = [Y(u)du is the operating time logged up to time ¢. Let F°(s|x;0) = [ f°(u|x;;0 )du
0 0

and F°(s|x;0) = 1-F°(s|x;0). Note that we have assumed that items are at risk of failure only when

in use and that the probability of failure, conditional on Y;, ...,Yy and x, depends only on the

operating time s.
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Suppose that all items that fail prior to 7° are observed so that, for these items, we know X;,

4

the chronological time of failure ,<T° and the operating time at failure 5 = f Y(u)du. In addition,
0

suppose that a supplementary simple random sample of items that have not failed by time T° is

taken, each such item being sampled with probability p,. For these items we observe x; and the

TO
operating time s; = JY(u)du at the end of the warranty period. Let T; represent the chronological
0

time to failure and let
Ry = I(T;<T°)
Ry = I(T;>T° and item i is sampled)

The pseudo log likelihood analogous to (3.2) is
i o R2‘ rofc’
log Lp = Y {Ry;log f°(s:|x;30) + Elog Fo(s; |x;50)}. (6.3)
1

Suzuki (1985a), under a slightly different scenario (see Section 6.2), derives a likelihood that is
equivalent to (6.3) for the case in which there are no covariates present. He formulates the problem
in terms of a joint distribution of s; and s; (i.e. the operating time at failure, and the total operat-
ing time which accrues over the warranty period; the latter then acts as a censoring time with regard

to the former), however and restricts attention to the case in which s; and s; are independent.

Formulation in terms of the processes {Y;(¢)} avoids these problems.

6.5 Warranties with calendar and operating time limits

Sometimes, for example with automobiles, a warranty may extend for a fixed calendar period or
a fixed operating time, whichever comes first. The example of the previous section can easily be

extended to this case. Let 7° be the fixed calendar time as before and Y(r) represent the usage
Ti

process. If the chronological time to failure 7;<7° and in addition S; = JY(u)du<S®, the fixed
0

operating time limit, then (z,s;,x;) are observed for the ith item. If either T;>T° or §;>S°, the
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TO

item is sampled with probability p, and S; = min(S°, JYi(u)du) the operating time until expiration
0

of warranty, and x; are observed. Then under the same conditions and definitions as in Section 6.3,

the pseudo log likelihood is

R

N 2i Sor *
log Lp = Y Ry;log £°(s; |x;) + s log F°(s/ |x;).

i=1

7. DISCUSSION

The likelihood methods proposed here need additional study to evaluate their robustness to
incorrect assumptions, and to examine the appropriateness of the asymptotic approximations for infer-
ence. It seems likely that, in assessing the covariate effects on failure over the interval (0,7°], the
methods have good robustness properties, but care must clearly be taken in extrapolation of any infer-
ence about survival patterns or effects past T°. The demonstrated benefits of employing supplemen-
tary sampling of unfailed items or information about the distribution of covariate values for the items
in field use are, however, quite general, and with proper choice of model, the methods presented in

the paper are widely applicable.

The models and sampling schemes considered here were fairly simple and chosen in order to
study efficiency and other properties of the likelihood methods proposed. In a broader context, relia-
bility studies may involve many modes of failure, continuous placement of items in the field, continu-
ous observation of reliability problems, problems with data quality, and so on. It will also be common
for there to be information on some covariates but not others, and sampling may be stratified with
respect to both the response and the covariates. In addition, interesting and challenging problems
exist when the two time scales of operating and calendar time are relevant. The ideas put forward
here can be extended in various directions. The pseudo likelihood, in particular, allows relatively sim-

ple adjustment for complex sampling schemes. We are currently studying its uses further.
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APPENDIX A

The asymptotic variances of the estimators associated with (2.5) and (2.6) can be obtained by

straightforward procedures involving direct computation of the Fisher information. We find, for (2.5)

0 2(1_8—0T°)

as var(VN (67—9)) = e TP T (A.1)
and for (2.6),
as var(VN (6 p—0)) = 1—_2_2_—”-,—. (A.2)

The asymptotic relative efficiencies in Table 1 are the ratios of (A.2) to (A.1).
APPENDIX B
Asymptotic Properties of the Pseudo Likelihood Function (3.2)

We show that the pseudo score vector s,(0) = dlog Lp/86 has expectation zero and apply
results of Inagaki (1973) and Crowder (1986) which show that under regularity conditions on
f(t|x;0) the estimator @ from an unbiased estimating equation s(#) = 0 is consistent and asymp-
totically normal. In particular, VN (0—0) has a limiting multivariate normal distribution with mean

0 and covariance matrix A(8)~'B(0)A(0)~!, where
A@®) = lim SE(25) and B0) = lim L E(s(0)s(@)").
N—o N o0 N = N
If complete data on the whole cohort of N individuals over the period (0,7°] are available,
the log likelihood is

=Y log f(t|x:;0) + > log F(T°|x;;0) (B.1)
ieDy ieD;



—27—
with corresponding score function

s=3 - logf(t |x;,0) + 3 m;(0) (B.2)

ich chl

where, as before, m;(0) = dlog F(T°|x;;0)/86. The pseudo log likelihood (3.2) can be written

1 - (7T°
lp = Y log f(t;|x;;0) + EP_IOg F(T°|x;30)

ieD, ieD, P2

Ry _
=1+ Y (=2 - Dlog F(T°|x;30) (B.3)
icﬁl D2

where, as before, Ry = I(#;>T° and i is sampled) and p, = P(Ry = 1|ieD;). The corresponding

pseudo score function is

Ry;
sp=8+ Y, (— - D)m;(0). (B.4)

i€51 D2
Since, for ieDy, P{Ry =1|(t;,x;), i=1,...,N}=p,, it follows that
E{sp|(t;x;))i=1,...,N}=s and so E(sp) = 0. It can also be seen that the two terms in (B.4)

are uncorrelated. Since s is the full data score function,

COV(S) =-E 2 6060' logf(t,lx,,()) + Z lOgF(t |x,,0) = VN(”)

8 0 a0’
The covariance matrix of the second term in (B.4) requires calculation. As in Section 3, we assume

that a simple random sample of size n, = p,N, of the N, itemsin D, is selected. It can be shown

that

Un(0) = COV{E(T - Dm;(0)} = 1 >, (m;(0) — m(0))(m;(0) — m(0))’

“Dl 2 2 leDl

- P T (o)) O)-m@)  (B.S)
) %) hy— iD,

where m;(0) = dlog F(T°|x;;0)/86, m(0) = Y, m;(0)/n, and W(0) = Em,(o)/Nz Other sam-
chz IEDI
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pling schemes could also be considered that, for example, involve stratification on some manufactur-

ing characteristic that is known for each item.

Applying results of Inagaki (1973) and Crowder (1986), suitably specialized, shows that under

regularity conditions
VN (6-0) 5 N(0,A(0)1+A(8)'C(0)A(0)™)

where A(0) = Nlim Vy(@)/N and C(0) = Nlim Un(0)/N. 1t is assumed here that the central limit
— 00 — 00
theorem applies to the pseudo score sp(0) as N — oo and that

82p

A®) = plin =557 ®6)

The estimates Ay(#) and By(8) for A(0) and B(#) follow from expressions (B.5) and
(B.6).
APPENDIX C
Asymptotic Variance Calculations for Exponential and

Weibull Examples of Section 5

The exponential results are a special case of the Weibull results with é = 1. For the exponen-

tial, only differentiation with respect to g is considered.

C.1. The Truncated Likelihood Ly

For method I, the truncated log likelihood for (2.1) is

N ’
log Ly(8,6) = Y Ry{log 6+ (6 —1)log #;+x; B—W;o—log(1-S;)}

i=1

where Ry; = I(ieDy) and W; and S; are defined as in Section 3.3. Straightforward calculation

now gives
d¥og Ly NR WioCo/ (1-5)) .
T 98,08, 'E=l 1%isXir {Wio—C; / (1-5;)} i
d%og L N
A Y Ryixi {Win—(log T°)C;/(1-S5;)} (C.2)

Top0s &
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8%og Ly

N1
- 5— = 2 Ru{=5 + Wir—(log T°)’C;/(1-S)}
98 P

where C; = S;log S;{1+log S;/(1-S;)}.
Expectations of these quantities involve the integrals
—log S; . .
Ej(xi) = fO (lOg }’)’ye—ydy, J = 0’1’2'
It is easily verified that
E(RyWo) = Eo(x;) = Silog S; + 1-S;
while the quantities E;(x;), Ex(x;) require numerical computation. Further,
§E(Ry;Wy;) = Ey(%;)—x; BEo(x;)

§%E (Ry;Way) = Ex(x;)—2(x; B)E1(x;)+(x; B)Eo(X;).-

(C.3)

(C.4)

(C5)

(C.6)

(o))

For method I, the Fisher information matrix I; can be obtained by taking expectations in (C.1),

(C.2) and (C.3) to give

N
Ir)rs = leisxir{Eo(xi)—ci}

f)xisxir{l"si_si(lo&g Si)z/ (1-5;)}

i=1

N
(T skt = 55 [E1(5) X, BE(x,)-log(T**)C}]

i=1

N ! ’
(Tr)este+1 = '('}5'2:11—Si+[EZ(xi)“zxiﬁEl(xi)+(xiﬂ)ZEO(Xi)_(IOg T°°)2C;].

Asymptotic variances are obtained as the appropriate entries in the inverse of Ij.

C.2. The Pseudo Likelihood Lp
The asymptotic covariance matrix of § is the probability limit of

Ayt + AyICyAN!
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where Ay and Cy are given by (3.5) and (3.6). We find

N
E(NAN)r,s = inrxis(l_si)

i=1

N ’
EQVAN) a1 = 5525, (E1(%) - PEo(xi)—(log T**)(0g 5,)5)

N ’ ’
E(NAN)k41,54+1 = "‘}2‘21 {1=8;+Ex(x;)—2(x; B)E1(x; )+ (x; B)*Eo(x;)—(log T°*)*(log S;)S;}.

In addition
. 1-p, . 1 X - —
lel_l.moo(CN)r,s = ) Nhinoo ﬁg}lst (xirHi_Hr)(xisHi"Hs)
. l-p . 1 X o — -
'ehm (CN)r,k+1 = lim _Zsilog T°(x; H;— »)(H;—Hy)
) N—c N i=1

I-pp . 1X o —
> lim =37 5;(log TY(H,~y)?

)glim (Cn)isr e+ =
— 00 2 N - i=1

— N — N
where H; =logS;, H, = Y ,x,H;/N, and Hy= Y )H;/N.

i=1 i=1

C.3. The Likelihood L;,

For method II, suppose that the covariate vector x can take L distinct values X1, ..

*
. XL

with known probabilities g¢j, . . .,q, independently for each individual in the cohort. (In the

specific example of Section 4, x; = (xio,%i1), L =2, g1=¢=.5, x = (1,0) and x5 = (1,1).)

In keeping with the previous notation, let

S; = exp{~T*%¢" ﬂ}.

The likelihood (2.4) is then written as

N , Lo,
log Ly(8,6) = Y Ry;[log 6+(6—1)log t;4+x; 8—Wy;] + (1—R1i)10821 sy -

It is convenient to define
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L
U = q;Slog 51/2161151 and V,' = U/(1+log S/).
1=

Straightforward calculation now gives the second derivatives:

3210g Lp N L T ‘A N
———— = Y Ruxip X Woi—(1—R; ) {3 i Vi = 3, Uy S x5, U}
aﬂra ﬂ: i=1 =1 =1 j=1
6210g LD N L wy gk L g— L *
————— = Y Rux; Wy;—(1-Ry;)(log T°)X Vi =3 %, Ul S UG}
96,06 im1 1=1 =1 im1
j
d%og L .
= ElRl, L Wa)-(1-Ru)(tog TS VI-(S U
i= I=1 1=1

Finally, taking expectations, we obtain the entries of the Fisher information matrix I, as

1
=(Ip)rs = E aaxiEo(x))— (E s ){E xpx Vi — Exh u; Exst }
N = =1 = j=t

'}V’(I D)rk+l = —E axr[Ex(x)—x; BE«(x)] — "‘(EQISI )(log T°8){2x1er ‘“ExlrUI ZU }

=1 ]=1

N
'I%,‘(I D)k+Lk+1 = 61—2;1611{1—51*+E2(x1‘)—2(xf'ﬂ)El(xl')+(Xf'ﬂ)on(Xf )}
(E 4:57)(log T°8)2{121VI —(E U'.

Asymptotic variances are obtained as the appropriate entries in I

C.4. Full information on population covariates available
The calculations here are straightforward but can be obtained as those arising with pseudo likeli-
hood when p, = 1. The resulting information is then I, = E(NAy). For a random sample of size

n followed on (0,7°], the informationis nIz/N.
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