A CRITICAL LOOK AT
ACCUMULATION ANALYSIS AND
RELATED METHODS

M.S. Hamada and C.F.J. Wu

IIQP Research Report
RR-88-03

November 1988
(Revised November 1989)



A CRITICAL LOOK AT
ACCUMULATION ANALYSIS AND RELATED METHODS*

M. Hamada and C.F.J. Wu

Department of Statistics and Actuarial Science
University of Waterloo
April 1989

ABSTRACT

Industrial quality characteristics are often measured categorically rather than
numerically, such as recording a response as "slight", "moderate", or "extreme." Accumu-
lation analysis, a method proposed by Taguchi (1974) for analyzing ordered categorical
data from industrial experiments, is used in Japanese industry and is becoming popular
in the United States. Nair (1986) proposed using the first two components of the accu-
mulation analysis statistic separately as well as simpler alternatives to detect location
and dispersion effects, respectively. We expose some problems with accumulation
analysis in the multifactor setting, the usual industrial setting since it is more efficient
to simultaneously investigate many factors. Owur results show that accumulation
analysis detects spurious factor effects and reverses the order of factor importance.
Furthermore, reanalysis of data from two real experiments reveals that these problems
with accumulation analysis are realized in practice. We demonstrate an inherent prob-
lem with detecting dispersion effects from ordered categorical data. Even in the
absence of this problem, we show that the dispersion tests still detect spurious effects
and reverse the order of factor importance more seriously than does accumulation
analysis. On the other hand, the location tests are generally useful, especially Nair’s
simple alternative which happens to be the Kruskal-Wallis test. Moreover, we provide
an explanation of why location tests provide a particularly sensible method of analysis in
the industrial context. We also consider other alternatives: the method of scoring
categories, a mean response model, and a proportional odds model. The method of scor-
ing the categories is simple and particularly effective if the scores are reasonably chosen.

Key Words: quality improvement, ordered categorical data, multifactor experiments, location
effects, dispersion effects, Kruskal-Wallis test, method of scoring categories, mean response model,
proportional odds model.

* This report will appear with discussion in the May 1990 issue of Technometrics.



1. Introduction

Accumulation analysis (henceforth abbreviated as AA) is a method proposed by
Taguchi (1974) for analyzing ordered categorical data from industrial experiments.
Taguchi advocates AA as a superior alternative to Pearson’s chi-squared test because
"it accounts for the ordered nature of the categories." He also criticized the chi-squared
test for reversing the order of importance among factors and detecting spurious sig-
nificant factors (Taguchi 1987, p. 105). AA has been used in many Japanese indus-
trial studies. In North America it is becoming increasingly popular. For example, in the
Fourth Sympostum on Taguchit Methods, almost a quarter of the case studies used
accumulation analysis. Nair (1986) and Box and Jones (1986) pointed out several
unnecessary complications of Taguchi’s AA statistic and proposed using its numerator
sum of squares instead. Throughout the paper we refer to this modified version as the
AA statistic. Nair (1986) showed that in the single factor setting the AA statistic can
be expressed as a weighted sum of score statistics. Since the scores are linear, qua-
dratic, etc., the first two components have been interpreted as tests for location and
dispersion effects. Then he proposed using these two components and simpler alterna-

tives to test for location and dispersion effects.

The main purpose of our paper is to study the properties and particular shortcom-
ings of AA and related methods and to consider methods more useful for analyzing
ordered categorical data from industrial experiments. Previous authors considered
these methods primarily for the single factor setting. This paper concentrates on the
problems with these methods in the multifactor setting which is common in industrial
experiments. For ANOVA on continuous data, no problems are encountered for
orthogonal experiments. For ordered categorical data, however, the design’s ortho-
gonality does not insure independence of test statistics for different factors. This defi-

ciency of ordered categorical data leads to serious consequences.

We begin with a brief review of AA and its components in Section 2. This
includes AA’s equivalence to analyzing collapsed tables in the multifactor setting and
an interpretation of AA useful for explaining AA’s problems. We reanalyze data from

two real experiments in Section 3 to demonstrate that serious problems with AA and



the dispersion tests are realized in practice.

In Sections 4 and 5, we study these problems with AA and related methods. In
Section 4.1 we review some previous work on problems caused by analyzing collapsed
tables. Results from a simulation study based on two models demonstrate that AA and
the dispersion tests can often detect spurious effects. If a formal significance testing
is not adopted, one can still identify important factors by ranking the factor effects.
In Section 4.2 it is shown via two simulation studies that order reversal of factor
importance is most serious for the dispersion tests, somewhat serious for AA, and not
of much concern for the location tests. Recall that AA is a compromise between loca-
tion and dispersion tests. In Section 4.3, we demonstrate that AA and the related tests
for a factor depend on the other factors. This dependency is a main source of the

problems observed in the multifactor setting.

Recall that Taguchi criticized Pearson’s chi-squared test for the very same rea-
sons, order reversal of factor importance, and spurious detection of effects. Detection
of spurious effects and misidentification of important factors have serious practical
implications. A more complicated situation may be perceived than really exists,
unnecessary experimental effort may be expended to resolve ambiguities, and factor
levels may be chosen that unnecessarily result in increased material costs and process-

ing time.

In Section 5, we study the location and dispersion tests in the multifactor setting.
We discuss and summarize the problems with the dispersion tests in Section 5.1. Unless
some very stringent and difficult-to-verify conditions are met, they cannot be used to
detect genuine dispersion effects. In some situations there is an inherent problem with
detecting dispersion effects from ordered categorical data. But even in the absence of
this problem, we show that the dispersion tests still detect spurious effects and reverse
the order of factor importance more seriously than does accumulation analysis. In Sec-
tion 5.2, we demonstrate how problems with these methods are also caused by a
categorization effect; locations of observed distributions can appear different from
those of underlying distributions. However, the location tests are shown to be gen-

erally useful and thus are recommended for identifying legitimate effects. Moreover,



we provide an explanation of why location tests provide a particularly sensible method

of analysis in the industrial context.

In Section 6 we consider some advantages and disadvantages of other alternatives
by reanalyzing the first real data set from Section 3. The methods considered are the
method of scoring categories, a mean response model, and a proportional odds model.
The method of scoring the categories is simple and particularly effective if the scores

are reasonably chosen. The paper concludes with a summary and discussion in Section
7.

2. Review of Accumulation Analysis and Related Methods

We begin by describing AA and related methods in the single factor setting and

then consider their extensions to the multifactor setting.

Consider a single factor A with I levels and n observations taken at each level.
Let y; = (¥i1y - - - ,yiK)T denote the frequencies of K ordered categories observed at the
ith level of the factor; the data can be viewed as an IXK contingency table. Let Cj be
the cumulative frequencies of the first k categories at the ith level and let C,, be the
average of the Cjy across the I levels. AA is so named because it analyzes these cumu-
lative frequencies.

AA is an ANOVA-like procedure which can be seen as follows. AA builds K-1 IX2
tables where the ith row of the kth table is (Cj, n-Cj). Standard ANOVA is per-
formed on each table by analyzing it as if C;, ones and n-Cj, zeros had been observed

at the ith level of the factor. AA then weights the sums of squares from the kth table
ANOVA by (di(1-dy))™, where d, = C,/n, and adds the corresponding weighted sums

of squares over the K-1 tables. This yields the AA sums of squares:

K-11
SSA = 112 z (Cik_Co k)2 / (Co k(n_Co k))’ (2.1)
k=1i=1

SSiot, = nI(K-1), and



K1 1
SSe = SSyot—5S4 = 1n3}] 3] Cix(n-Cy) / (Co k(n-C, x))-
k=1i=1

To obtain mean squares (MS), AA uses (K-1)(I-1) and (K-1)I(n-1) as degrees of freedom
for SS, and SS,, respectively. Finally, AA calculates an F-like statistic given by

Fp = MS,/MS,. Thus, AA is an ANOVA-like procedure.

AA’s simplicity and similarity to ANOVA is appealing. Unfortunately, it does not
possess ANOVA’s property of independent sums of squares. Noticing that
SS, = constant — SS,, Nair (1986) and Box and Jones (1986) pointed out the undesir-
able property that SS, depends on the effect of factor A. Consequently, they proposed
using only the numerator sum of squares SS, from (2.1). In the following, we also con-
sider this modified statistic and refer to it as the AA statistic T (T, for factor A).
Furthermore, Nair (1986) noted that in the multifactor setting, the modified AA statis-
tic eliminates one way in which the AA statistic for a factor depends on the other fac-
tors. For example, this can be easily seen in the two-factor main effects setting, where

the distribution of the original AA statistic for factor A depends on factor B since
S8, = constant — SS, — SSp.

Nair (1986) and Box and Jones (1986) decomposed the AA statistic by solving an

eigenvalue problem as

K1,
j=1

Nair interpreted the first two components, 212 and Z22, as tests for location and disper-
sion effects, respectively. Because the weights )\j decrease rapidly in j, Nair inter-
preted AA as a test primarily for location.

Nair suggested using the first two components of the AA statistic separately to
increase the power of detecting location and dispersion effects. He also proposed using

simpler alternatives SS(1) and SS(d) with data-based scores 1 and d (see (5.1)-(5.5) of
Nair(1986)), where



ss(l) = 33 (%(y; - y. ) /n

=1
and

(dT(Yi —Ye ))2 /n,

M-

SS(d) = .

1

.ﬁ'

I
and y, = },y; / I. Interestingly, SS(1) can be shown to be equivalent to the Kruskal-

=1
Wallis statistic. Note that the scores 1 and d depend only on the marginal frequencies

of the ordered categories.

The components Z;? can also be shown to have the same form as SS(1) and SS(d):
1
T
Zj2 = Zl(sj (yi — Y. ))2 /Il ’ (2.2)
1=
where the s; also depend only on the marginal frequencies of the ordered categories.
Since (y; — ¥. ) can be interpreted as a comparison of the distribution at the ith level

of the factor with a reference distribution (the mixture of all the distributions at the I

levels), Zj2 can be viewed as a comparison of the distributions at the I levels of the fac-
tor with a reference distribution. Since Zj2 tests whether the factor has an effect with
respect to the scores s;, AA can be viewed as a weighted combination of K-1 different

tests to detect a factor effect.

Next we describe AA in the multifactor setting. Consider a multifactor experi-
ment using a fractional factorial design (or more generally an orthogonal array) with r
runs and n observations taken at each run on a K ordered categorical response.

Denote the frequency of the jth category for the ith run by n;;. For the extension of

AA to the multifactor setting, K-1 multiway ANOVA’s (over all the factors) are llcoer-
k

formed. The data for the kth multiway ANOVA consists of > n; ones and n - > njj
j=1 =1

zeros for the ith run. The AA sums of squares (i.e., the AA statistics T) are then
formed by adding the corresponding weighted ANOVA sums of squares (using the same

weights as in the single factor setting).



Recall that in multiway ANOVA, the sum of squares for a particular factor is the
same as that for a one-way ANOVA treating the multifactor experiment as a single
factor experiment. Consequently, the AA statistic for a factor main effect, say factor
A with I levels, is equivalently obtained up to a constant by collapsing the design onto
the factor (producing an IXK contingency table) and by calculating the AA statistic
for the single factor as was described above. It follows that the extension of the data-
based scoring methods to the multifactor setting which includes AA’s components can

be explained as applying the single factor procedure to this collapsed table.

3. Problems Encountered in Analyzing Real Data

In this section we reanalyze data from two real experiments to demonstrate some
problems with AA and the dispersion tests. These problems are studied in Sections 4
and 5. In Section 6 we consider some alternative methods and apply them to the first

experiment.

3.1. An Arc Welding Experiment

This experiment was performed by the National Railway Corporation of Japan
and reported in Taguchi and Wu (1980). One facet of the experiment was to find the
important factors which affect the workability of an arc welded section between two
steel plates. Workability is the degree of difficulty in welding the two steel plates
together which was classified into three categories: easy, normal, and difficult. The
experimenters were initially interested in nine factors (A-I) and four two-factor interac-
tions (AG, AH, AC, GH). An experiment using a 2% fractional factorial design was
performed with one observation per run. The experimental design and workability
data appear in Appendix 1 (x-ray response data are also included which Koch, Tangen,

Tudor and Stokes will use in their discussion).
Table 3.1 presents the results of AA, its first two components, Zl2 and Z22, SS(1),
and SS(d). For this data, the AA statistic T = 1.28Z,% + .72Z,%. Using AA, the origi-

nal analysis concluded that the main effects for factors D, F, and G were significant.

However, Z;2 or SS(1) identify only the main effects for factors D and F as important

location effects, while Z,% or SS(d) identify main effect G as an important dispersion



effect.

The results in Section 4 suggest that for this experiment the factor G main effect
that AA detected was spurious; they demonstrate that AA detects spurious interac-
tions when the corresponding main effects are significant. For this experiment, this
very situation holds since the factor G main effect is confounded with the DF interac-
tion effect, where D and F main effects are significant. Furthermore, related results in
Section 5 show that if the dispersion tests had been used, they would have identified a

spurious factor G dispersion effect.

Table 3.1: Results of AA, Z,2, Z,%, SS(1), and SS(d) for the Welding Experiment

Factor | AA | Z,2 | Z,2 | Ss(1) | Ss(d)

1.74 10 | 2.23 18 2.15
41 28 .16 13 31
1.74 | 1.26 18 1.32 12
5.03 | 3.70 41 3.52 .59
41 .16 .28 13 31

9.03 | 7.01 10 | 7.09 .02
5.03 23 | 6.55 .09 6.69
41 .16 .28 13 31
1.74 | 1.26 18 | 1.32 12
41 .16 .28 13 31
1.74 10 | 2.23 .18 2.15
41 .16 .28 13 31
1.74 10 | 2.23 .18 2.15

QRER~TIoTEOQw >

Taguchi uses a simple way to choose the "optimal" levels of the important factors
(Taguchi and Wu 1980). He simply looks at the marginal frequency table for each fac-
tor and chooses the level with the most desirable distribution (i.e. the distribution with
the most in the most desirable category or with the least in the least desirable
category). For this data, this yields recommendations of setting factor D at the low
level and factor F at the high level. Since AA erroneously identified factor G in the

original analysis, it was recommended to set factor G at the low level. It turns out that



for this experiment, the low level was in fact more costly to use.

3.2. A Contact Stain Experiment

A company produces a rubber product which must meet a contact stain specifica-
tion; it should not stain or mar the painted panel to which it is attached. The data and
original analysis are found in Lear and Stanton (1985). A 2*! fractional factorial
experiment (4=123) was performed to determine the important factors affecting the
contact stain characteristic of the product. The four factors were chemical compounds
used in making the rubber product. For each run, one product was attached to a
painted metal panel and subjected to high temperature for three days. The panel was
then inspected and its contact stain characteristic was classified as one of the follow-
ing: none to very slight, slight to moderate, and moderately severe to severe. The
experimental design and stain data appear in Appendix 2. Table 3.2 presents the
results of AA, its first two components, Z,% and Z,%, SS(1), and SS(d). For this data,

the AA statistic T = 1.45Z,2 + .55 Z,2

Table 3.2: Results of AA, Z,% Z,%, SS(1), and SS(d) for the Stain Experiment

Factor AA | 2.2 | Z,2 | ss() | ssd)
A 320 | 28 [ 5.05 [ .11 | 5.23
B 53 | 18 | 48| .24 43
C 7.47 | 5.05 | .28 | 5.23 11
BC 53 | 18 | 48 | .24 43
D 53 | 18 | 48| .24 43
BD(=AC) | 3.20 | 1.93 | .74 | 1.71 .96
CD 53| 18 | 48 | .24 43

Based on the AA statistics, the original analysis declared the main effects for factors A
and C and the BD interaction significant (actually BD is aliased with AC and is

referred to as AC in the following). However, using Z,? or SS(1), factor C main effect is

the only significant location effect, although the BD interaction effect appears to be



relatively important. As was mentioned for the previous experiment, the results in
Section 4 show that AA detects spurious interactions when the corresponding main
effects are significant. The difference in the conclusion for the factor A main effect
can be explained by the fact that for this experiment, factor A main effect is con-
founded with the ACXC interaction effect, where C and AC are relatively important.
Thus for this experiment, AA spuriously detected a factor A main effect. Moreover,

while Z22 or SS(d) seem to identify main effect A as an important dispersion effect,

related results in Section 5 suggest that this apparent important effect for this experi-

ment is also spurious.

We can use the s; scores from Z;? or the 1 scores from SS(I) to choose the

"optimum" level of C. By adding up the product of the category frequencies with their
corresponding scores for each level, choose the level whose quantity is smallest (since
the "none to very slight" category is the most desired). For this data, the high level of
factor C is the optimum level. Because AA also detected a factor A main effect and a
BD interaction effect, the original recommendations (Lear and Stanton, 1985) chose the
high level of factor A and the low levels of factor B and D. Based on our correct sta-
tistical analysis, these additional recommendations are suspect. Although these recom-
mendations do not affect the contact stain characteristic, they may have significant
financial implications. The difference in our recommended settings from that of the
original authors cannot be judged solely by statistical analysis. Engineering judgement
and compromise settings when several quality characteristics are involved also need to

be considered.

A cautionary note about both experiments is warranted: only one observation was
taken per run and the responses were classified into three ordered categories. The
small number of replications and categories may not provide enough information for

detecting smaller yet important factors.

4. Pitfalls of AA and Related Methods

In this and the next section we explain why AA and the dispersion tests spuriously
detected effects in the real experiments. We review some previous results in Section

4.1 and then present new results for AA in Section 4.2 and 4.3. Section 5 concentrates



on the location and dispersion tests in the multifactor setting.

4.1. Some Previous Results

Nair (1986) and Hamada and Wu (1986) exposed some inherent problems with

analyzing ordinal data as well as problems with AA and the dispersion tests. The

salient findings are summarized in the following.

(1)

(2)

(3)

Since the scores s, and d in Z,? and SS(d) are functions of only the marginal fre-

quencies, neither test can simultaneously account for the different locations of the
distributions at the I levels of the factor. They can only be interpreted as tests
for dispersion in the single factor setting when there is mo location effect. A
simple example to illustrate this problem was given in Hamada and Wu (1986). A
simulation study found in Hamada and Wu (1988) further demonstrates this prob-

lem under a more general situation.

Unlike continuous data, there is an inherent problem with detecting dispersion
effects with ordered categorical data. Nair (1986) pointed out that it is hopeless to
make any reasonable in ference about dispersion effects in the presence of strong
location effects. He observed that with strong location effects some levels of the
factor appear to have less dispersion than others since most of the observations
are pushed into the extreme category. Thus, any reasonable method would detect

a spurious dispersion effect in this situation.

Since the AA statistic for a factor in the multifactor setting is computed by col-
lapsing the design onto the factor, by using the interpretation of AA following
(2.2) Hamada and Wu (1986) noted that AA is no longer comparing I distributions
but I meatures of distributions. This suggests the possibility of the I mixtures of
distributions being different even when there is no factor effect. Thus, AA has the
potential for detecting spurious effects. A simple example to demonstrate this
was given in Hamada and Wu. To further understand this problem, we study the
performance of AA and the two dispersion tests under more realistic situations via
simulation studies for underlying location and dispersion models. Note that in

industry latent models are often natural ones.

10



Example 1: Consider an experiment with a 2%~ fractional factorial design (I=123). For
the underlying location model, suppose the ordinal response is generated by an under-
lying  continuous random  variable Y, where Y =A+B+4+C+¢€ and
(o0, -1, 0, 1, 409 defines four ordered categories. Let A=0, B=41, C=x4.5, and € be
N(0, 0?). For the underlying dispersion model, Y = (exp(A + B + C))€, where A=0,
B=+75, C==.5, € is N(0, ¢?), and (o0, —-1.25, 0, 1.25, +09 defines the categories. Ten
observations are taken at each design setting. Table 4.1 summarizes the size of the .05

and .10 tests for factor A based on 10,000 simulations. A d><2v and XQ1 approximation

(Nair 1986) was used for AA and the dispersion tests, respectively. Note that factor A

has neither a location nor a dispersion effect in both models.

Table 4.1: Size of .05 and .10 Tests for
Factor A Effect Using AA, Z,?, and SS(d)

Nominal AA Z," & S8(d)
o2
Level
Location | Dispersion || Location | Dispersion

Model Model Model Model
1/4 .05 .85 .13 1.00 .45(.49")
.10 .94 .33 1.00 .64(.66")

1/2 .05 .39 12 .92 .34

.10 .60 .26 .96 49

1 .05 .08 .06 .55 12

.10 19 13 .67 22

* Size of SS(d)

For these two scenarios, AA detects the difference between the dispersions of the
two mixtures of distributions. The second component Z,2 detects this difference as
demonstrated by Table 4.1 The substantial dispersion difference between the mixtures
of distributions explains the dramatic results for the location model. For the disper-
sion model, AA appears to be performing quite well for large o2. However, there is still

a (smaller) dispersion difference between the mixtures of distributions. AA does not

11



detect this difference because the ten observations per run and four ordered categories

do not provide enough information to do so.

The results for the two models for the 25! design above also suggest what could
happen in the full factorial setting. Since factor A has no effect, these examples can be
viewed as a 22 factorial experiment in factors B and C. The test for factor A would
correspond to a test for BC interaction. The examples above show that AA can falsely
detect an interaction effect. This can seriously mislead the experimenter to consider a

more complicated situation than is necessary.

4.2. Order Reversal of Factor Importance

For the purpose of product or process improvement, the interest is often in identi-
fying factorial effects that are more important in a relative sense. Formal testing of sig-
nificance of these effects is less relevant here to achieve this and may not be adopted
in practice. We demonstrate a problem with AA and related methods when they are
used to assess the relative importance of the factors. The factor associated with the
largest AA statistic is identified as the most important and so on. The next two exam-
ples serve as warnings that this procedure can yield misleading results. The first exam-
ple demonstrates that not only can a spurious factor be detected but it can be errone-
ously identified as more important than two real factors. The second example demon-
strates that the least important real factor can be erroneously identified as the second

most important factor.

Example 2: For an experiment with a 2% fractional factorial design (D=ABC, E=AB,
F=AC, G=BC), suppose that the ordered categorical random variable is generated by
an underlying continuous random variable Y, where
Y=A+B+C+D+E+F+G+e Let A=41, B=+75, C==+5, D=4.45,
E=F=G=0, and € be N(0,1). Four ordered categories are defined by
(-0, -1, 0, 1, +09 and five observations are taken at each run. Table 4.2 presents the
probability of declaring factors A through G significant based on 5000 simulations.
Clearly, AA declares factor E to be more important than both real factors C and D.

Because of the confounding relation E=AB=CD, the dispersion difference in the

12



mixtures of distributions for factor E which AA detects is attributed to the relatively

large A and B effects as well as the somewhat smaller C and D effects.

Table 4.2: Probability of Detecting Factors
for Example 2 Using .10 Tests

Factor
A B C D E F G
AA 1.00 .82 .25 .16 .30 Jd1 .10

Z,2 | 100 .85 .28 .18 .03 .02 .02

7,2 03 .06 .08 .08 .80 .48 .46

SS() | 1.o0 .84 .28 .17 .01 .02 .02
SS(d) | .03 .06 .07 .07 .81 .49 .46

Example 3: Consider an experiment with the same setup as in Example 2 but with
A=#1, B=+.5, C=4.55, D==+.45, E=4.40, F=G=0. Table 4.3 presents the proba-
bility of declaring factors A through G significant based on 5000 simulations. AA iden-
tifies the least important real factor E as the second most important factor. This can
be explained by the confounding pattern E=AB=CD as was discussed in the previous

example.

Table 4.3: Probability of Detecting Factors
for Example 3 Using .10 Tests

Factor
A B C D E F G
AA 1.00 .40 .45 21 .53 .15 A1

Z, | 100 .37 .48 .23 .40 .03 .03

7,2 03 24 .09 .08 .52 .55 .44

SS) | 1.00 .34 .48 .24 .36 .03 .03
Ss(d) | .03 .26 .08 .7 .56 .55 .43

13



From Tables 4.2 and 4.3, observe that it is primarily the dispersion component
which accounts for AA’s reversing the order of factor importance although from Table
4.3 the location component contributes as well. This order reversal property is worst
for the dispersion tests, not as serious for AA, and least serious for the location tests.

AA'’s performance reflects the fact that it is a combination of the two tests.

4.3. AA and Its Components Depend on All Factors

The simulation study in Section 4.1 showed that the distribution of the AA statis-

tic for a factor can depend on the other factors. In fact, this dependence on the other

factors can be given a theoretical justification.

We use the 23! fractional factorial design to show this dependence. The four
design settings for (A, B, C) are given in Table 4.4.

Table 4.4: 23! Fractional Factorial Design

Factor
Run
A | B|C
1 + | + | +
2 + - -
3 - + -
4 - - +

K
Let n; = (ny, ..., ng)T, where > nj; = n. Denote the category probabilities at the ith
j=1

run by p; = (pi;, - Dix)" and the average of the p; by p.. For I =2, the AA statistic
T can be expressed as
T SN

=1

4
where Z = QT(I/'\/IT)(yl ~Y.), A =diag(N), (y1 - ¥y.) =Y 4n;/2 and the sign of
i=1

n; for each factor is given in Table 4.4. For factors A and B, T4 and Tg can be

expressed as T, = v, v, and Ty = vglvg, where

14



va = (1/2)AY?QT(1/Vn)(n; + ny - 4 - ny)
and

VB = (I/Q)AI/QQT(l/\/IT)(nl -ng +nzg—ny) .
Then the covariance of v, and vy is easily calculated as
cov(vy , vg) = (1/4)A1/2C,2T(E1 -¥,-2Y:+%)Q A2

Thus v, and vg are dependent except when there are no factor effects (all p; equal so
that all 3; equal) or when only one factor (either A or B) has an effect. Generally, Ty
and Tp are dependent. By using the same argument, one can show an analogous
dependence property of Z,%, Z,?%, SS(1), and SS(d).

In general, if none of the factors has an effect, i.e., the p; are equal, then as
n — oo, ij are independent X?; and the AA statistic T is distributed as a linear com-
bination of independent le random variables. Under the more general assumption

1/2

that p; approaches a common value at the rate n™'/, i.e.,

p; = p. +n7'/26 (4.1)

where 0 is a constant independent of n, as n — oo Z]-2 are independent noncentral X21

and T is a weighted sum of these independent random variables. The noncentrality

parameter of Z]-2 for a factor does not depend on the other factors. Both results can be

found in Nair (1987). Note however that (4.1) is an unrealistic assumption for most fac-

torial experiments.

5. Location and Dispersion Tests in the Multifactor Setting

The results in Section 4 provide a compelling reason to consider alternatives to
AA. Nair (1986) proposed using the first two components of the AA statistic

separately as well as their simpler alternatives to increase the power of detecting

15



location and dispersion effects. In Section 4.1, we noted that there already was a prob-
lem with the dispersion tests in the single factor setting as well an inherent problem of
analyzing dispersion effects from ordinal data when strong location effects are present.
In Section 5.1, we show that the dispersion tests are rarely applicable in the multifac-
tor setting which suggests that they would have detected spurious dispersion effects for
the real experiments in Section 3. In Section 5.2, we investigate the location tests and
show that they are generally useful. Here we provide an argument why these tests are

especially useful for typical industrial experiments with ordinal data.

5.1. Dispersion Tests Are Rarely Applicable
In point (3) of Section 4.1, we noted that AA was comparing mixtures of distribu-
tions in the multifactor setting. A similar result follows for the dispersion tests Z,2

and SS(d). In the multifactor setting they are rarely applicable as dispersion tests as

the following restrictive conditions show:

(1) the factor has no location effect
(2) at most one of the other factors has a location effect, and

(8) at most one of the other factors has a dispersion effect.

The conditions must hold so that a difference in the mixtures of distributions implies a
real dispersion effect. The examples in Section 4 demonstrate the serious consequence
of detecting spurious dispersion effects when these stringent conditions are violated.
For these examples AA detected spurious effects when a dispersion difference between

the mixtures of distributions was picked up by the large Z22 component. Table 4.1

demonstrates that spurious dispersion effects can be detected quite often when the
dispersion tests are used. Further evidence is provided in Tables 4.2 and 4.3 in which

three and four spurious dispersion effects are often detected, respectively.

Spurious detection of effects for the dispersion model from Table 4.1 provides
additional insight into the performance of the dispersion tests. Recall that in the pres-

ence of strong location effects, any reasonable method would detect spurious dispersion
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effects; here, spurious detection is an intrinsic problem with the data, not something
that can be attributed to any particular method. However, this is not true for data
from the dispersion model where there are no location effects. Whereas the dispersion
tests which are based on analyzing marginal tables, detect spurious effects, any method
not based on marginal tables, such as modeling frequency counts (McCullagh 1980) or
analyzing an analogue of standard error based on scoring the ordered categories, would

not.

5.2. Location Tests Are Generally Useful

Next we consider the merits of the location tests Z;? and SS(1) by simulation stu-

dies. While there are some problems for the dispersion model, the location tests are
generally useful for the location model. The next two examples demonstrate that the
location tests can detect spurious effects. First we consider their performance for an

underlying dispersion model.

Example 4: For the same 237! fractional factorial design from Example 1 of Section 4.1,
let Y = (exp(A + B + C))¢, where € has a standard logistic distribution. The ordered
categories are defined by (-oo, -.08, .28, .85,2.09, +oc0). Let A=0, (B,C) =
(£5, +25), and (&1, +5). Note that factor B has no location effect. Table 5.1
presents the size of .05 and .10 tests for a factor B location effect using Z,% and SS(1)
based on 10,000 simulations. The results show that the tests can detect spurious loca-

tion effects quite often.
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Table 5.1: Size of .05 and .10 Tests for Factor B Location Effect
Using Zl2 and SS(1) Under the Dispersion Model of Example 4

Statistic
(B, C) Nominal
Level Z,2 | ss()

(£, £5) .05 35 | .16
.10 50 | .25
(+£5, £.25) .05 14 | .10
.10 23 | a7

These results can be explained by the choice of category boundaries. Although
the underlying distributions have the same location, the asymmetric boundaries (with
respect to the location) cause the observed distributions to appear to have different

locations. We call this the categorization effect. It is this apparent difference that Z12

and SS(1) are detecting. Since the first category contains approximately 50% of the
distribution, the observed location tends to shift to the right as the wvariance is
increased. The location tests detect more spurious effects for (B, C) = (&1, +.5) since
the variances vary more, causing more disparate observed locations. Observe that

SS(1) is less sensitive than Z;? to this categorization effect. Based on other studies not

reported here, the location tests did not detect spurious effects if the boundaries are

symmetric.

Next we consider an example that demonstrates the categorization effect can

cause the detection of spurious effects for the underlying location model.

Example 5: Table 5.2 presents the simulation results for the .05 and .10 tests using Z12

and SS(I) under the location model from Example 1 of Section 4.1 except that
(00, 0, 1, 2, +09 defines the category boundaries. We see the categorization effect
here: the asymmetric boundaries cause the locations of the mixtures of distributions of

factor A to appear different when they are not. It is this observed difference in
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locations that Zl2 detects so that a factor A effect can be spuriously detected often.

However, SS(1) performs differently. The size of the factor A test is somewhat conser-
vative. This suggests that SS(1) is less sensitive to the categorization effect as was also

seen in Table 5.1 for the dispersion model.

Table 5.2: Size of Tests for Factor A and Power of Tests for
Factors B and C Using Z,? and SS(I) Under the Location Model of Example 5

Category Boundaries = (o0, 0, 1, 2, +0o9

Factor

o? Level A B C
2.2 | ss) || 2,2 & ssq) || Z,2 | ssQ)
1/4| 05 | 24 | .01 1.00 65 | .31
10 | .54 | .06 1.00 85 | .58
1/2 ] .05 [ .15 ] .01 1.00 58 | .42
10 | .34 | .05 1.00 77 | .64
1 05 | .08 | .01 1.00 45 | .41
10 [ a8 | .05 1.00 62 | .58

It was pointed out in Section 4 that Z;% and SS(1) for a factor depend on all the

other factors. This dependence on the other factors causes small location effects to be
missed in the presence of factors with larger effects. This can be seen by examining
the noncentrality parameters of the approximate x° distribution of these statistics.
For two-level factors, the noncentrality parameter depends on ¢1n, where ¢ represents

the scores sy or 1 and 7 = (1/n)E(y; — y. )- Note that +n compares how different the

mixtures of distributions at the levels of the factor are from a reference distribution.

Since (1/n)E(y., ) is independent of which factor is being considered, (1/n)E(y,) is more
different from (1/n)E(y, ) for a factor with a large effect than it is for a factor with a

small effect. Therefore, the noncentrality parameter for a factor with a large effect is
larger than that for a factor with a small effect. In fact, suppose that one factor has a

substantially larger effect than another. Then the mixtures of distributions of the
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factor with the smaller effect is very similar. That is, § = 0. Therefore, factors with

small effects in the presence of factors with large effects can be missed.

In Section 4.2, we exposed the problem that AA can reverse the order of factor
importance. For many of the situations studied here, the location tests maintain the
order of factor importance. (See Tables 4.1 and 4.2.) Note however that from Table
4.3, the location tests can reverse the order. In Example 3, the least important factor E
was identified as the third most important factor. Here and in general the location
tests still perform better than AA. Note that SS(1) reverses the order less often than

7,2, thus suggesting a preference for SS(1) over Z,2.

Finally, we give an explanation why the location tests are especially useful for typ-
ical industrial experiments with ordinal data. Because the desired category is usually
one of the extreme categories, it is sufficient to look for strong location effects which
result in most of the observations being pushed into the desired category. Moreover,

this is the very situation where it is hopeless to look for dispersion effects.

6. The Arc Welding Experiment Revisited

In this section, we consider some alternative methods of analysis for the arc weld-
ing data of Section 3.1. We consider (1) fixed scoring, (2) a mean response model using
weighted least squares (WLS) (Grizzle, Starmer, Koch 1969), (3) logistic regression, and
(4) a proportional odds model (McCullagh 1980). While one example does not provide
a comprehensive assessment of these methods, nevertheless it does suggest some advan-

tages and disadvantages of these methods.

6.1. Fixed Scoring

An alternative yet simple way to analyze this data for location effects is to assign
scores to the categories based on judgement, calculate effects, and use a normal or
half-normal plot of the effects to identify important effects. Using different scoring
schemes can lead to different conclusions. Figures 6.1 and 6.2 display the half-normal
plots using the scores (0, 1, 2) and (0, 1, 5), respectively. (The two error effects are
identified in the plots by z.) The latter scores might be chosen because the "Difficult"”

category is more costly. Using (0, 1 2), we identify the same effects as we did when
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using SS(1) and Z,%. However, using (0, 1, 5) results in the identification of an addi-

tional location G effect. If these latter scores are appropriate, then the G effect is a
valid one. This demonstrates that the results of the analysis depend critically on the

scores used.

The location tests can also viewed as data-based scoring methods. For this data,

the scores for Z;%> and SS(I) are (0,1.36,2.57) and (0,1.16,2.54), respectively, which

explains their almost identical values and agreement with the half-normal plot based
on the scores (0,1,2). From this perspective, the location tests use data-based scores
which generally have no optimal properties. This suggests that if these methods are
used, a necessary part of the analysis should be an inspection of the scores for reason-
ableness. Graubaud and Korn (1987) give an example where the data-based scores are

not reasonable.

6.2. A Mean Response Model Using WLS

Agresti (1986) considered analyzing ordinal data by a mean response model (Griz-
zle, Starmer, and Koch 1969) which uses WLS to account for the categorical nature of
the response. We used both sets of scores as above, (0, 1, 2) and (0, 1, 5). Table 6.1
displays the chi-squared statistics obtained from PROC CATMOD in SAS. Note that
adding 0.01 to empty cells was necessary to obtain a solution. Inspection of Table 6.1
reveals that the mean response model gives the same conclusions as was obtained from
the half-normal plots; D and F are important when using (0, 1, 2) and in addition G

becomes important when using (0,1,5).
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Table 6.1: Chi-Square Statistics from the Mean Response Model
for the Welding Experiment Using Scores (0, 1, 2) and (0, 1, 5)

Factor | (0,1,2) | (0,1,5)
A 1.5 1.6
B 1.5 3.5
C 15.4 7.8
D 40.3 45.5
E 5.1 6.6
F 78.7 59.8
G 1.5 23.8
H 1.5 3.1
1 22.9 12.7

AG 0.1 2.1
AH 1.5 5.1
AC 1.5 0.8
GH 1.5 0.6

6.3. Logistic Regression

Another alternative is to combine the ordered categories into two categories and
analyze this "binary" data by logistic regression. For this example, two separate ana-
lyses can be done by first combining the first two categories and then combining the
last two categories. Hamada and Tse (1989) find that estimability problems can occur
often because of the highly fractionated nature of the designs used and the paucity of
data. A check of the existence conditions given in Hamada and Tse for both "binary"
data sets revealed that even when only a main effects model is entertained (not even
the full model with an additional four interactions), the estimates do not exist. Thus,
logistic regression which might provide reasonable results if there were more data, is

not applicable for this data set.
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6.4. Proportional Odds Model

Rather than create "binary" data from the ordinal data, we might try to fit the
data directly using a proportional odds model for ordinal data (McCullagh 1980). Gen-
erally the results obtained can also be sensitive to the model assumptions; for example,
this method implicitly scores the categories since the underlying category boundaries
are estimated. For the welding data, we also encountered estimability problems when
fitting even the main effects model. As we found with logistic regression, there is not

enough data to apply this method.

7. Summary and Recommendations

Unlike continuous data, there are several inherent problems with analyzing
ordered categorical data. The data can suggest spurious dispersion effects in the pres-
ence of strong location effects. Furthermore, the dispersion tests have two deficiencies
which cause spurious effects to be detected. They do not account for the different
locations of the distributions being compared. Moreover, they analyze marginal tables
so that mixtures of distributions are being compared in the multifactor setting. Since a
difference between the mixtures of distributions need not imply a factor effect, they
seldom detect legitimate dispersion effects. Therefore, we do not recommend using
these dispersion tests. Because of the inherent problems with detecting dispersion
effects, we doubt that any method will work. One final problem with ordered categori-
cal data is that when the response has few categories, little information is available to
detect real effects. While one would like to refine the categories as much as possible,
there is a tradeoff between more information and increased difficulty in correctly clas-

sifying the response.

Taguchi (1987) promotes accumulation analysis (AA) as a central method of his
analysis strategy. He proposes AA not only for handling ordered categorical data but
also for off-scale data (see Phadke et al. (1983) for an application). While AA’s
ANOVA-like appearance perhaps makes it appealing, it shares none of ANOVA’s desir-
able properties. A fundamental problem with AA in the multifactor setting is that it

analyzes marginal tables. In fact, decomposing the AA statistic reveals that one of its
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components is a dispersion test based on marginal tables. Two serious consequences of
using AA are detecting spurious effects and reversing the order of factor importance.
It is interesting in this regard that in a discussion of how to reduce interaction effects,
Taguchi indicates the need for proper analysis methods and singles out AA for han-
dling ordered categorical data (Taguchi 1987, p. 171). Reanalysis of data from real
experiments demonstrated that AA does indeed detects spurious effects in practice.

Therefore, we do not recommend AA.

The problems encountered with the location tests revealed another inherent prob-
lem with analyzing these data rather than exposing a deficiency with these methods.
Referred to as a categorization effect is the phenomenon that the mixtures of observed
distributions can appear to have different locations, although the mixtures of the
underlying distributions might have the same location. It is this apparent difference
that the location tests detect as would any other method. The categorization effect is
usually small so that the location tests are generally useful. Interestingly, the location
test which is equivalent to the Kruskal-Wallis test is less sensitive to this phenomenon.
Coupled with its simplicity, the Kruskal-Wallis test is recommended for detecting loca-
tion effects. Moreover, since the desired category is usually one of the extreme
categories in the industrial context, we are especially interested in finding strong loca-
tion effects. By choosing the appropriate factor levels, most of the observations can be

pushed into the desired extreme category.

Besides the location tests, what else can be recommended? The simple alternative
of scoring the categories converts the categorical data into numerical data so that
usual methods like half-normal plots of the effects can be employed. Although the
results can be sensitive to the scores used, this method is generally useful if the scores
are reliable. Recall that the location tests use data-based scores (see Section 6) so that
if these scores are not reasonable measures for the categories, the results can be
misleading. This highlights the importance of knowing the relative weights of the

categories in a practical situation.

We considered a mean response model which gave similar results as the methods

above. Perhaps this is not surprising as commented by a referee that a variety of
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location tests usually give similar results.

Another alternative is to model the frequencies. Since these methods are based on
maximum likelihood estimation, there can be a problem with the existence of the esti-
mates. This is especially so in the industrial context because of the highly fractionated
nature of the designs and the paucity of data. Moreover, nonexistence of these esti
mates are more likely to occur when there are strong location effects, a situation of
great interest for quality improvement. Another problem with this approach is compu-
tation. Unlike ANOVA for continuous data, many model fittings may be required for
identifying suitable models. The results can also be sensitive to the model assump-
tions. For example, a proportional odds model (McCullagh 1980) implicitly scores the

categories since the underlying category boundaries are estimated.

Two possible remedies for the nonexistence of estimates are to take a likelihood
approach (Lawless and Singhal 1978) or Bayesian approach. For the likelihood
approach, model selection is based on percent contribution of each factor rather than
point estimation. Current research is focused on the feasibility of this approach.

Regarding the Bayesian approach, the issues of computation and sensitivity to priors
should be addressed.
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Appendix 1: Design and Data for Arc Welding Experiment

X-ray Response
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Appendix 2: Design and Data for Contact Stain Experiment

Stain*
A B C D Response

Factor

* 1=none to very slight, 2=slight to moderate,

moderately severe to severe
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absolute constrasts

absolute constrasts

Figure 6.1: Half-Normal Plot for Workability Data
Using Scores (0,1,2)
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Figure 6.2: Half-Normal Plot for Workability Data
Using Scores (0,1,5)
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