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ABSTRACT

Use of asymmetrical orthogonal arrays (OAs) for planning industrial
experiments with mixed levels has become increasingly popular. In addition to
applications to experimental investigations in many disciplines, they can also be
used in the balanced repeated replications method of inference from general stra-
tified survey samples. In this paper we propose a general approach to the con-
struction of asymmetrical OAs with economic run size and flexibility in the
choice of factor levels. As applications of this approach we construct several
general classes of arrays which include numerous existing classes of arrays as
special cases. An overwhelming majority of known asymmetrical OAs can be
reproduced by our approach in a unified and simple manner. Many new arrays
are obtained. A catalog of asymmetrical OAs with run size less than 100 is
given. Our approach consists of three steps. We first construct a symmetrical
OA as the Kronecker sum of an OA and a difference matrix. We then add, to the
constructed OA, columns which are based on another OA. Since the choice of
the second OA is quite flexible, the resulting array can take several forms. As
the third step we use the replacement method to substitute p -level columns by
p" -level columns, r > 1. It greatly increases the variety of asymmetrical OAs.
As an example, for 48 runs, we have found thirteen asymmetrical OAs with fac-
tor levels equal to 2, 3, 4, 6, 8, or 12. Out of these OAs, ten are apparently new.

*This research is supported by the US National Science Foundation Grant DMS-84-20968 and the
GM/NSERC Chair in Quality and Productivity through the Natural Sciences and Engineering Research
Council of Canada.



1 Introduction

Factorial experiments with mixed levels are often encountered in practice because the
choice of factor levels may vary with the nature of the factor. Asymmetrical orthogonal
arrays, to be defined below, are commonly used for planning such experiments. They have
been used extensively by G. Taguchi (1987) and his colleagues in industrial experiments
for quality improvement. Their use in agricultural experiments is also quite common. For
inference from stratified samples in sample surveys, use of asymmetrical orthogonal arrays
allows the balanced repeated replications method (McCarthy 1969) to be extended to
general sampling designs with arbitrary numbers of primary selections per stratum (Gupta
and Nigam 1987). In this paper we propose a method for constructing these arrays with
economic run size and flexibility in the choice of factor levels. Many new arrays are found
and several existing classes of arrays are reproduced in a unified and simple manner.

Formally an orthogonal array of strength d with k; s;-level columns, ¢t = 1,...,7, is an
N X m matrix, m = k; +--- + k,, in which all possible combinations of levels in any d
columns appear the same number of times (Rao 1947, 1973). Our definition follows the
convention in statistics of using rows to denote runs. An orthogonal array is symmetrical
or asymmetrical if its columns have the same or different numbers of levels. Since only

d = 2 is considered in the paper, we will use the notation
Ly (st ---8)

to denote an orthogonal array of size N and strength 2 having k; columns with s; levels.
An orthogonal array of strength 2 is saturated if Y7_; ki(si — 1) = N — 1, i.e., if all the
degrees of freedom are used for estimating the main effects of the m factors (columns).
Our approach consists of three steps. First we construct a symmetrical orthogonal
array as the Kronecker sum of a symmetrical orthogonal array and a difference matrix.
For this and the construction of difference matrices, see Section 2. Then we add to the

constructed array columns which are based on another orthogonal array. Since the latter



array can be asymmetrical and usually can be chosen in several ways, the resulting array
from this step shares the same properties. The last step is optional. If some p-level
columns of the array, p being prime, together with the column of zeros form a subgroup
under addition modulus p, they can be replaced by a p"-level column, r > 1. The most
useful case is the replacement of three 2-level columns by a 4-level column. The resulting
array is asymmetrical. For steps two and three, see Section 3. In Section 4 we construct
several new classes of asymmetrical orthogonal arrays which include numerous existing
methods as special cases. In Section 5 we give a list of orthogonal arrays, including many
new ones, with run size less than 100. Since the replacement method is applied to the
maximum number of disjoint sets of three 2-level columns, the number of 4-level columns

in the constructed array is maximized.

2 Construction through Difference Matrices and

Kronecker Sum

First we give a brief review of difference matrix. Let M be an additive group of p
elements denoted by {0,1,...,p —1}. A Ap X r matrix with elements from M, denoted by
D)y,rip, is called a difference matriz if among the differences, modulus p, of the correspond-
ing elements of any two columns, each element of M occurs exactly A times. It is known
that r < Ap (Beth, Jungnickel and Lenz 1985, p. 362). If the transpose of a difference
matrix is also a difference matrix, then we call it a generalized Hadamard matriz. For
P =2, Dy is a Hadamard matriz of order k. Without loss of generality we can always
put the column of zeros as the first column of Djy ,.p.

For prime p, a Dy, can be constructed as follows. Let x = [0,...,(p — 1)]T and 0,
be the px1 vector of zeros. Then D, ., = [0p, x, 2x, ---, (p — 1)x] is a difference matrix.
Several construction methods are reviewed as follows.

Bose and Bush (1952) provided a method of constructing Dyu+o putee for prime p



through Galois field. Masuyama (1957) gave a method of constructing Dy 3, for odd
prime p using equimodular matrices. For two matrices A = [a;;] of order n X r and B of

order m X s both with entries from M, define their Kronecker sum to be

A x B = [B%]1<i<n,1<i<rs (1)

where

B* = (B + kJ) mod p (2)

is obtained from adding k mod p to the elements of B and J is the m X s matrix of
ones. Shrikhande (1964) showed that for two difference matrices D,y s, and Djy ., their
Kronecker sum is a difference matrix Dj,p3 s,;p. For example, Dg g3 * Ds 3 gives a Dig 13.3.
Other results on difference matrices can be found in Beth, Jungnickel and Lenz (1985), de
Launey (1986) and Seberry (1979).

A collection of small difference matrices is given in the Appendix.

We now consider the construction of orthogonal arrays through difference matrices. It

follows from their definitions that an orthogonal array L),:(p") can be obtained from

DO

D!

where D), is a difference matrix and D* = (D,,,, + kJ) mod p is defined analogously
to (2). This method is due to Bose and Bush (1952). A more general construction method

is given by the Kronecker sum

D = Lup(p°) * Daprp (3)

of an orthogonal array L,,(p°®) and a difference matrix D), ,.,. It can be shown that D is
an orthogonal array Lj,,(p™) (Beth, Jungnickel and Lenz 1985, p. 417). Note that the

Bose-Bush method is a special case with u = s = 1.



3 Accommodation of Additional Columns and

Method of Replacement

By counting the degrees of freedom in (3), we have up — 1 > s(p — 1) for L,,(p°) and
Ap > r for Dy, ,,p which imply that Ap(up — 1) > rs(p — 1). Among the Aup? — 1 degrees
of freedom for the array D in (3), there are at least Ap — 1 (= Aup? — 1 — Ap(up — 1))
unused degrees of freedom. We can add additional columns to D to use up these degrees
of freedom. For example, if an orthogonal array Lj,(gi* - - - ¢ir) exists, the matrix [D L]
constitutes an orthogonal array Lj,p2(p™ - ¢7* -+ - i), where L = 0,,% Lyp(g7* -+ - gf) is a
matrix consisting of up copies of Ly,(gi* - - - gfr) as its rows. The orthogonality between the
columns in D and the columns in L is due to the fact that L has up identical submatrices
and D has up submatrices which are the permutations of each other.

The constructed array Ly,,2(p™ - ¢]

1...grm) is saturated if the three components in its
construction satisfy the following conditions:
(i) Lup(p®) and Lyp(g7* - - - gjr) are saturated, i.e.

s(p—1)=wpup—1and X2, ri(¢: — 1) = Ap—1;
(ii) in Djypyp, r attains its maximum, i.e., r = Ap.
Regarding (ii), recall that » < Ap in general (see Section 2).

To prove this, note that conditions (i) and (ii) imply
rs(p— 1)+ X2 ri(g — 1) = Ap(up — 1) + Ap — 1 = App® — 1.

Special cases of this method for adding columns were considered before, e.g., Ly,(p')
in Bose and Bush (1952), Ly,(¢") in Taguchi (1987) and Dey (1985).

Besides exploiting unused degrees of freedom, the method of adding columns provides
flexibility in the choice of factor levels because usually Ly,(q7*--- ¢ir) is available for a
variety of ¢; and r;. This flexibility can also be achieved by the following method of

replacement.

Suppose there is an orthogonal array containing three 2-level columns with one column



being the sum (mod 2) of the other two. These three columns can be replaced by a 4-level

column according to the following scheme:

2 — level columns 4 — level column
0 0 0 — 0
o 1 1 — 1 (4)
1 0 1 — 2
1 1 0 — 3

The 4-level column is balanced and is orthogonal to any other columns that are orthogonal
to the three 2-level columns (Addelman 1962). It will be used in Section 4 to construct
mixed 2- and 4-level arrays from 2-level arrays. Similarly if an array contains four 3-level
columns of the form a, b, a + b(mod 3) and a + 2b(mod 3), these four columns can be

replaced by a 9-level column. Extension to other prime p is obvious.

4 Construction of Some Classes of Asymmetrical

Orthogonal Arrays

In this section we construct several general classes of asymmetrical orthogonal arrays
by using the methods in Sections 2 and 3. Some existing classes of arrays are easily
obtained as special cases.

Denote a Hadamard matrix of order n by H,,. A positive integer n is called a Hadamard

number if H, exists. Without loss of generality, we rewrite
Hn = [On, Ln(zn_l)]a

where 0,, is the n X 1 vector of zeros. The following classes of arrays will be referred as

Class A, B, C, Al, B1, etc.

A. Construction of Ly (4° - 2"(¢-1)-2s . g7t...g'm) where n and t are Hadamard numbers,



s < min(n,t) and an L, (2° - ¢* - - - ¢/r) exists with its s 2-level columns coinciding with the

first s nonzero columns of a Hadamard matrix of order n.

An L.(2'71) exists since ¢ is a Hadamard number. Therefore we can construct
Lot(2°79% - gt i) = [Le(2"") % Hay OcxLa(2° - ¢+ 477)],

where the second part of the matrix is obtained by the method of adding columns.
Let L;(2) = [a1,-*,as,A], Ln(2"!) = [by,- -, b5, B] and
L.(2°-¢*---¢ir) = [b1,--+,bs, C], where A, B and C are the matrices of the remaining

columns in the corresponding arrays. Then for 1 <17 < s,
a; %0, + a;*b; = 0;xb; mod 2,

which is the ith column of 0;%L,(2° - ¢* ---¢ir). This implies that for each i a 4-level
column can be obtained from the 2-level columns a;*0,, a;*b;, and 0;*b; through the
method of replacement. Repeating this for all 7 gives L,;(4®-2"(¢~1)-2s.47t... "), The
constructed array is saturated if L,(2° - g;* - - - ¢[) is saturated.

By taking n = 4k and t = 2 in Class A, we have the following class of arrays which will

be used later.
Al. Lg;(4-2%%-2.g*--.¢'m), where an L(2- ¢ - - g[) exists.

If n >t and an L,(2"!) is used in the construction, i.e. ¢; = 2 for all 7, then Class
A gives Ly (4t -2m~3%*2) (Cheng 1987). In particular if an L (2*~') is used in the
construction, Class Al gives Lgk(4 - 28*~*) (Dey and Ramakrishna 1977). Using the array

L4 ((2k)* - 2%) = [L2(2) * D2k 2.2, 02 Lai((2k)1)]

in Class A1, we obtain Lg((2k)! - 4 - 2*¥-1) for odd k (Agrawal and Dey 1982). For even
k, a better array than Lg,((2k)! - 4 - 2*¥~1) will be obtained as a special case of Class BI.



B. Construction of Ly (4*-2"(t-1)-3¢.gl1... grm) where s =min(n — 1,t — 1), n and t/2 are

Hadamard numbers and an L,(g7* - - ¢/~) exists.

Since t/2 is a Hadamard number, we can construct

Lt(2t_1) = [L2(21) *Htﬂa 02*Lt/2(2t/2_1)]

= [L2(2")*0y, L2(2")* Lyn(27), 02% Lyp(2#71)).
Let L;(2*"') = [a1,-+,a:—1]. From the construction,
a; +aiy1 = aypyy mod 2, 1<i<t2-1. (5)
Let L,(2""') = [b4,---,b,,B]. Then we construct

Lt (277D - gt i) = [Ly(27Y) % Hyy Op% L (gt -+ )]

= [[a‘la“',at—l]*[ombla"'abcaB]’ot*Ln(q;l"'q:r:n)]' (6)
From (5), we have
a1 %0, + azxb; = ayp41*b mod 2,
a1 *bir1 + a;41%0, = apyirbiyn mod 2, 1<¢<min(s—1,¢2-1), ifs>1,

a1 *bypyi + Gip1*bypi = aypyi*0, mod 2, 1 < <s—t2, if s> tf2.
From these relations, we can group s triplets of 2-level columns in (6) to obtain s 4-level
columns through replacement, thus obtaining Ly (4°-2"(t-1)-32.g7 ... g'm), If L,(q[*--- ¢'™)
is saturated, then the constructed array is saturated.

The following special cases of the constructed arrays will be used later:

provided the existence of an Ly (g7 -+ g.m), we have

Bl. Lyer(43-212%-%. g7 ... g'™) and
B2. Ljgi(47 - 228521 . gl* ... g'm) for k > 2.

If an L,(n) is used in the construction, i.e. m = r; =1 and ¢; = n, then Class B gives

Lp(n -4°- 2”(“1)‘3"). Cheng (1987) gave separate constructions of these arrays according
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ton >t and ¢t > n in a complicated manner. If an L4 (2*%!) is used in the construc-
tion, i.e. ¢; = 2 for all ¢, then B1 gives Ljgr(4® - 21%%-1%) (Chacko, Dey and Ramakrishna
1979). Writing an even v as v = 2k and using L,,((2v)!) for Ly (q* - - - g7=), Class B1 gives
Ls, (43 - 25979 . (20)1).

C. Construction of Lu(8 - 4* - 2n(t-1)-34=6 . g1 ... grm) ' where s =min(n — 1,t — 1),

h =max(0,s — 3), n and /2 are Hadamard numbers and an L,(2 - ¢7* - - - ¢') exists.

Constructing L;(2*~!) and using the notation as in B, we have
Loe(2"70% gt oo qr) = [Lo(27Y) % Hp, OpxLn(2 - g1 -+~ q7))-

Rearrange the rows of L,(2- g7 --- ¢i) so that the first 2-level column coincides with b;.
Then the seven columns [[a1, @z, @yn41]*[On, b1], Os%b;] together with the column of zeros
form a group under addition modulus 2. Replace these seven columns by an 8-level column.
Then there are s — 3 (provided s > 3) remaining triplets of 2-level columns according to
the construction in method B. Replace these remaining triplets to obtain s — 3 (if s > 3)
4-level columns, thus obtaining Ly (8 - 4" - 2n(t-1)=3h=6 . 11 ... grm)  Again the constructed
array is saturated if L,(2- g7 - - - ¢/) is saturated.
The following special cases will be used later:

provided the existence of an L4 (2 - ¢7'---¢'™), we have

Cl. Lyek(8 - 21%%6. g0 ..-¢'=) and
C2. Lggi(8-4*-28k-18 . gt grm) for k > 2.

Remarks. 1. By reversing the assignment in (4), we can replace a 4-level column by
three orthogonal 2-level columns, i.e. replacing 4 by 2% in an array with 4-level column(s).
Similarly 8 in an array can be replaced by 4-2* or 27. We do not explicitly give arrays that
can be obtained in this fashion since they are straightforward. For simplicity we only give

arrays with the maximum number of 4-level columns. See also Remarks 2 and 3.



2. For Classes A1, B1, B2, C1 and C2, and general odd k > 3, the number of 4-level
columns in our construction is maximum unless special properties of k can be exploited.
Without loss of generality we assume k in Lgmj is odd. This is because Lsn; with even
J can be reexpressed as L= with odd k and m > n, which contains more 4-level and/or
8-level columns. We do not consider k£ = 1 in these classes because, when the run size is
a power of 2, a simple method of constructing Lj: (2™ - 4") for every possible m and n is
available (Wu 1988).

3. For the arrays in Classes A, B and C, the number of 4-level columns is maximized by

choosing n and t, for fixed nt, to be as close as possible.

5 Examples

In this section we give a list of asymmetrical orthogonal arrays with fewer than 100
runs. Asymmetrical orthogonal arrays whose run size is a power of 2 or 3 are not given
here since they can be constructed by replacement and grouping (Wu 1988). Only arrays
with the maximum number of 4-level columns are given, i.e. L,(4°--+) with maximum s.
Arrays of the type L,(4" - 23(s—v) .. ), 0 < u < s, can be easily obtained as explained in
Remark 1 of Section 4. The difference matrices used in the construction are given in the
Appendix. Unless otherwise stated, the arrays are apparently new.

1. 18-run arrays.

Using Dg g3, one can obtain an 18-run array from
[L3(3) *Dg,e;s, 03 *Le] .

Then L15(37), L1s(2-3") and L;5(6-3%) can be obtained by using respectively Ls(3), Ls(2-3)
and Lg(6) for L. These arrays have been used extensively by G. Taguchi and others.

2. 24-run arrays.

Using Hy, one can obtain a 24-run array from
[L2(2)* Hiz, O3% Ly, .

9



Then from Class Al we obtain Lz4(4 - 2?°) (Dey and Ramakrishna 1977), La4(6 -4 - 2'%)
(Agrawal and Dey 1982) and Lj4(3 - 4 - 2'%) by using respectively L;3(2!!), Ly2(6 - 2?) and
L12(3 - 2%) for L,,. Here

012345012345]
L26-22)={000000111111
(000111000111

and T
012012012012
000000111111

L3232)={000 111000111
100110011001
(010101110001 |

is a new array. Both will be used in Examples 3, 5 and 11. It can be shown that the
maximum for z in Ly5(3 - 2%) is 4.
3. 36-run arrays.

A 36-run array can be constructed from
[L3(3) * D13,12;3, 03 % L1] .

By using L12(3'), L12(2'!), L12(12'), L12(6 - 22), L12(3 - 4) and L5(3 - 24) for L,;, we obtain
respectively, Lss(3'®) (Seiden 1954), Lsg(3'% - 21!) (Taguchi 1987), Lsg(32 - 12!) (Taguchi
1987), Le(3' - 6 - 2%), Lgg(3"3 - 4) (Dey 1985, p. 62) and Las(3'% - 24). Here L;3(6 - 22) and
Li5(3 - 2*) are given in Example 2.

4. 40-run arrays.

A 40-run array can be constructed from
[Lz (2) *Hgo, 02 *Lzo] B

From Class Al with Ljy(20'), L20(2'°), L320(10" - 2?) and Lgo(5 - 28) for Lzo, we obtain
respectively, L4o(20" - 22°) (Dey 1985, p. 67), Lyo(4 - 2%) (Dey and Ramakrishna 1977),

10



L4o(10" - 4 - 2'°) (Agrawal and Dey 1982) and Lyo(5 - 4 - 225). Here

L20(10 . 22) = [L2(2)*D10’2;2, 02*L10(101)]

and
_ . T
000011112222 333344414
001100110011 00110011
01 010101010101 010101
0011010101101 1001010
Lo(5-2°)=|/00110110110010100101
00111001100101101100
0101001110101 0011100
0101110000111 0100110
|01 0110100110011 01001
is a new array. It can be shown that the maximum for z in Ly(5 - 2%) is 8.
5. 48-run arrays.
A 48-run array can be constructed from
[L4(2%) # H1z, 0% L] . (7)

From Class B1 with L15(2"), L12(6 - 2%), Ly2(3 - 2%), L12(3 - 4) and L;5(12") for Ly, in (7),
we obtain respectively, Lyg(4° - 2°®) (Chacko, Dey and Ramakrishna 1979), Lg(6 - 43 - 229),
Ly(4%-3-2%1), Lyg(4* - 3-2%7) (Dey 1985, p. 51) and Lyg(12 - 43 - 227) (Agrawal and Dey
1082).

From Class C1 with L;5(2'!), L12(6 - 22) and L;2(3 - 2) for Ly; in (7), we obtain re-
spectively Lys(8 - 2%°), Ls(8-6-2%) and Lys(8 - 3-2%2).

To obtain more 4-level columns, we use the difference matrix D;3 12,4 in 4 symbols in

the following construction

[L4(4)*Dy3,12,4, 04% Lys). (8)

11



By using L12(2'), L12(6 - 22), L12(3 - 2%), L12(3 - 4) and Ly5(12') for Ly, in (8), we obtain
respectively L43(412 . 211), L48(6 . 412 . 22), L43(412 -3 24), L48(413 . 3) and L48(121 . 412).
6. 50-run arrays.

A 50-run array can be constructed from
[Ls(5) * D10,10;5, 05 * Lyo -

By using Ljo(2-5) and L1o(10') for Lo we obtain respectively Lso(2 - 5!') and Lgo(10* - 51°)
(Masuyama 1957).
7. 54-run arrays.

A 54-run array can be constructed from
[L9(34)*D6,6;3, Og*Le] .

By using Le¢(3 - 2) and Lg(6) for Le we obtain respectively Lsy(32°-2) and Lg(6 - 3%4)
(Dey 1985, p. 70). The four columns Ly (3*) %06 in L9(34)*D6,6;3 can be replaced by a 9-
level column since the nine level combinations of these four columns appear equally often.
Therefore we obtain respectively Ls4(9 - 32! - 2) and Ls4(9 - 6 - 32°).

8. 72-run arrays.

A T72-run array can be constructed from
[L2(2) * Hse, Oz Lsg] .

Using Lsg(6 - 312 - 2%), Lsg(312-2!), L3s(3'%-2%) and Lse(12' - 3'?) given in Example
3 for Lsg, we obtain from Class A1l respectively Lz3(6-4-32.23%), Ly,(4-32.2%),
L7y(4 -3'3-237) and Lypp(12' - 2%¢-3!%). The last two arrays are better than the array
Ly2(4 - 3% - 2%) in Dey (1985, p. 65). As remarked in Section 4, from L73(6 - 4 - 3!% - 2%%) we
can construct an Lq3(6 - 312 - 238) which is better than the array Ly,(6 - 3!% - 237) given by
Gupta and Nigam (1987).

To obtain more 6-level columns, we use the difference matrix Dj;¢6 in 6 symbols in
the following construction

[Le(6) * D12,6:6, O * L132] .

12



By using Ly3(2"), L12(12'), L12(3 - 4), L12(3 - 24) and Ly, (6 - 22) for Lyz, we obtain respec-
tively Lr5(6° - 2'1), L75(12" - 6%), Ly5(6° - 4 - 3), L75(6° - 3 - 24) and Ly,(67 - 22).
9. 80-run arrays.

An 80-run array can be constructed from
[L4(23)*H20, 04*L20] .

From Classes Bl and C1 with Lj(2'°), Lo(10-2%), Lyo(5-2%) (given in Example 4)
and Ljo(20!) for Lo, we obtain respectively Lgo(43 - 27°) (Chacko, Dey and Ramakrishna
1979), Lgo(8 - 4% - 2%), Lgo(10 - 4% - 25%), Lgo(8 - 10 - 2%%), Lgo(5 - 43 - 2°9), Lgo(8 - 5 - 2°1) and
Lso(20* - 43 - 251) (Dey 1985, p. 50).

10. 90-run arrays.

L90(6 -5 330) = [Ls (3) *Dso’so;s, 03*L30(6 . 5)] .

Replacing L3o(6 - 5) by Lso(5 - 3 - 2), we obtain an Lgo(5 - 33 - 2).
11. 96-run arrays.

A 96-run array can be constructed from
[Ls(27)*H12, Os*Lu] .

From Class B2 with L15(12'), L12(2'), L13(4-3), L12(3-2%) and L;,(6- 2?) for Ly,
we obtain respectively Log(12'-47-2%) (Cheng 1987), Log(4”-274) (Cheng 1987),
Log(4® - 3+ 2%%), Los(4" - 3 - 2°7) and Log(4” - 6 - 2°°). From Class C2 with L;5(21), Ly»(3 - 24)
and Ly3(6-2%) for Ly;, we obtain respectively Log(8-4%-27%), Log(8-4%-3-2%°) and
Log(8 - 4* - 6 - 2°7). Since the seven 2-level columns Lg(27)#0;; in Lg(27) % Hy; together with
the column of zeros form a group under addition modulus 2, we can replace them by an
8-level column. Then we can construct an Lgg(12! - 8 - 277) by using L;5(12') for Ly,.
Rearrange rows of an L;; having a 2-level column, say b, such that this 2-level column
coincides with a nonzero column in Hy;. Then the fifteen columns [Lg(27)*[012, b], 0g b

together with the column of zeros form a group under addition modulus 2. Replacing these

13



fifteen columns by a 16-level column and using L3(2!), L12(3 - 2*) and L;5(6 - 22) for L,,
we obtain respectively Log(16 - 2%°), Log(16! - 3 - 27®) and Log(16! - 6 - 271).

Another class of 96-run arrays can be constructed by

[L2(2) % Hyg, Oz Lyg), (9)

where Lyg is an array constructed through D, 124 in Example 5. From Hys = Hy* Hy; and

the construction of such Lyg, (9) can be rewritten as
[L2(2) % (Hg* H1z), Oz (L4(4)* D12,12:4), O2%(04% Ly3)] .

Let Hy = [O4,bq,b3,bs] and Hyz = [O12,c¢1,¢2,¢s,¢4,B]. Now suppose there are s 2-level
columns in L;z, 1 < s < 4, which coincide with s nonzero columns in an H;,. Without loss

of generality, assume that these s columns are ¢;,...¢,. Then we have

Lz (2) * (04 *012) + Lz (2) * (04 *Cl) = 0g% (04*61) mod 2,
L2 (2) * (b, *012) + Lz (2) * (b, * c.~)

02%(04%¢;) mod 2 for2<i:<sif,s>1.

By replacing each of these s triplets of 2-level columns by a 4-level column, we obtain
s 4-level columns. Using Ly3(12'), L12(2'!), L12(3 - 2*) and Ly3(6 - 2?) for L3, we obtain
respectively Log(12! - 412 - 248), Lo (416 - 247), Log(416 - 3 - 2°) and Lgg(6 - 44 - 244). Here we
use the fact that the four 2-level columns of the L;2(3 - 2*) in Example 2 are part of an
Hi;. Such an H,; is given in the Appendix.

12. 98-run arrays.

Log(14 - 7) = [L7(7)*D14,14;7, 07*L14(141)] .

Replacing L14(14") by L14(7 - 2), we obtain an Lgg(7'® - 2) (Masuyama 1957).
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Appendix

Some Difference Matrices

0O 0 O

Deg ;3 (Masuyama 1957)
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;3 (Seiden 1954)
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D12,12;4 (Seberry 1979)
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addition table for Dj3 12,4
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D,36,6 adapted from a D;; 6,12 in Beth,

Jungnickel and Lenz (1985, p. 364)

0

0

0

0

0

0

D14,14;7 (Masuyama 1957)
0O 00 0OOOOOOUOOUODUODQ

01 2 3 45 61 2 3 4560
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D3 30,3 (de Launey 1986)
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