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ABSTRACT

In reliability studies, incomplete data whose values are not known
exactly are frequently collected. This paper investigates the asymptotic
and small sample costs of using several types of incomplete exponential
data. Situations are identified where the information loss is substantial.
Moreover, the small sample properties of the estimators are even worse
than suggested by their asymptotic counterparts. These results provide
guidance regarding the severity of the costs that can be incurred. This is
especially helpful when it is possible to choose the type of incomplete
data to be observed.
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Abstract

In reliability studies, incomplete data whose values are not known exactly are fre-
quently collected. This paper investigates the asymptotic and small sample costs of
using several types of incomplete exponential data. Situations are identified where the
information loss is substantial. Moreover, the small sample properties of the estimators
are even worse than suggested by their asymptotic counterparts. These results provide
guidance regarding the severity of the costs that can be incurred. This is especially

helpful when it is possible to choose the type of incomplete data to be observed.
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1. Introduction

Before an experimenter performs a reliability study, he must choose the type of
observation scheme he will use to collect the lifetime data. Data which are known
exactly are called complete data and contain the most information for inference.
Because complete data may be too expensive and sometimes are impossible to collect,
incomplete data are frequently observed. These data arise for example when the exper-

iment is stopped before all units have failed or when a unit cannot be monitored



continuously so that periodic inspection is required until the unit fails. There are costs
incurred when using incomplete data in terms of information loss and realized in max-
imum likelihood estimators (MLE) with poorer small sample properties. The aim of

this paper is to investigate these costs for different types of incomplete data.

We investigate four observation schemes: censoring, grouping, and two special
cases of grouping, rounding and rounding-censoring, where the latter refers to inspect-
ing at evenly spaced intervals up to a censoring point. The exponential distribution,
one of the basic lifetime distributions, was successfully used by Davis (1952) to model
several data sets. The focus of our study is the maximum likelihood estimator (MLE)

of 6, the mean of the exponential distribution with density fy(t) = (1 /8)exp(-t/9).

This paper presents both the asymptotic and small sample costs of using several
types of incomplete data by bringing together previous and new results. Situations are
identified where the information loss is substantial through the use of asymptotic rela-
tive efficiencies (ARE’s). Moreover, the small sample properties of the estimators are
even worse than suggested by their asymptotic counterparts. These results are useful
to the experimenter when he can choose the type of incomplete data that he collects.
The expreséions for some of the MLE’s and ARE’s are more natural than previous ones.
Also, new interpretations are given to some of the ARE’s. One contribution is a study
of the small sample properties of the MLE’s for censored, rounded, rounded-censored,
and grouped data. Although formulas exist for small sample properties of MLE’s from
censored data (Mendenhall and Lehman 1960), they cannot be calculated by computer
for sample sizes as small as 100. While there are asymptotic approximations for small
sample properties of the MLE’s from rounded and rounded-censored data (Kulldorff
1961), their use was recommended for sample sizes larger than 50. It is shown that
certain criteria depend on the sample size and only on the degree of rounding, censor-
ing, or the grouping boundaries relative to 8. Therefore, relatively few evaluations or
simulations are needed to characterize the small sample behavior of the MLE’s from

these types of incomplete data.

Section 2 gives some notation and presents the estimators and their Fisher infor-

mation for the different types of incomplete data. Section 3 focuses on the asymptotic



loss of information using asymptotic relative efficiency (ARE). Small sample properties
from a simulation study are presented in Section 4. Section 5 concludes with a sum-

mary and discussion.

2. MLE’s and Their Fisher Information
In this section we establish some notation and present the MLE’s from complete
and incomplete data and their Fisher information. Let T, ..., T, be a random sample

of size n from the exponential distribution with density fy(t) = (1 /8)exp(-t /6).

For complete data, the T;’s are exactly known, and the MLE 6 is simply 6 =T.

The Fisher information for @ is
1(6)=n/62. (2.1)

For singly Type I censored data with common censoring point L, the T,’s are

either censored at L or exactly known. Letting r denote the number of exactly known

observations, the MLE from censored data 90 = Y, T;/r. The Fisher information for

8, from Deemer and Votaw (1955) is
I(6;) = E(r)/ 6% = (n/6%)(1-exp(-L /) . (2.2)

We take rounded data to be recorded as {(2i-1)h / 2}, the midpoints of the inter-
vals {[(i-1)h, ih)} for i = 1, 2, ... . The interval width h determines the degree of round-
ing. Equivalently, rounded data can be viewed as data from equally spaced inspections
of length h in the form of intervals {|(i-1)h, ih)}. For rounded-censored data, we take
the common censoring point L to be a multiple of h. The MLE from rounded-censored

data is



8 =h/log((z+1)/(2-1)) , where z = (2/h)(¥ Ti/r) , (2.3)

where the T,’s are rounded or censored. With no censoring, the MLE from rounded

data 8, is given in (2.3) with z = (2/h)T. The Fisher information for 8,, is
1(8;c) = (E(r)/ 6%)g(h/ 8) = (n/ %) (1-exp(-L / 8))g(h/ ), (2.4)

where g(a) = a’exp(-a) / (1-exp(-a))? .

From (2.4), the Fisher information for 9, is

1(6,) = (n/6%)g(h/ 6) . (2.5)

McNeil (1966) considered rounding where {(i-1)h} are recorded for the intervals [0, h/2)
and {[(2i-1)h/2, (2i+1)h/2)} for i=1, 2, ... . He showed that the Fisher information

from this rounding scheme is larger than that studied here.

Grouped data are recorded as intervals {(x;_;, X;)}, where the interval boundaries
partitioning (0, od into k groups are xy = 0, Xy, ..., X, = 00. Note that rounded data

and rounded-censored data are special cases of grouped data. For arbitrary intervals,

the MLE from grouped data 9g does not have a closed form and can be found itera-

tively via a Newton-Raphson procedure. The Fisher information for 9g is

I(Bg) = (n/ 6% (1/ pi)(exp(-xi/ 6)(xi/ ) -exp(-xiy / O)(xis [ 6)),  (2.6)

where exp(-x / 6)(xx / 6) is set to zero. Note that

1(6,) = (n/6%M({x;/ 6}) , (2.7)

where M(e) is a function of only {x;/ 6}, the group boundaries relative to . Formulas

(2.3)-(2.6) are equivalent to expressions found in Kulldorff (1961). However, (2.3)-(2.5)



are more natural for the setup given in this paper. When using the computer to evalu-

ate I(ég), (2.6) is preferred because it offers more stability.

3. Comparison of the ARE

The existence and the uniqueness of the MLE’s were established in Kulldorff
(1961). Hamada and Tse (1988) give results for the regression setting which can be
applied to the univariate setting by using a single covariate vector of ones. Kulldorff
(1961) also established the consistency and asymptotic efficiency of the MLE’s. There-
fore, the asymptotic relative efficiency (ARE), which is related to the increase in
asymptotic variance incurred, is a meaningful quantity to compare the MLE’s from the
different data types. Let § and 9X denote the MLE’s from complete and incomplete
data, respectively. Then, the ARE for 8, (relative to 8) is ARE(d,)
= AsVar(d)/ AsVar(d,) = 1(8,)/ 1(8), where AsVar(-) and I(-) denote the asymptotic
variance and Fisher information, respectively. To compare the MLE’s from two incom-
plete data types, the ARE of 9x relative to 9y is denoted by ARE(@X, 9y) We now use

the results from the previous section to assess the asymptotic costs of using different

incomplete data types.

3.1. The Effect of Censoring
From (2.1), (2.2), (2.4), and (2.5), the ARE for 8, and the ARE for 8, relative to

N

6, are equal to

ARE(éc) = ARE(érc’ 9r) =1-exp(-L/6). (3.1)

Notice that ARE(8,) = P(T <L), so that if L is the 100oth percentile, ARE(4,) = o
ARE(@C) is a function of only L./ 6. Table 3.1 presents the ARE’s for several values of

L/ 6 and shows that the information loss can be serious for censoring before the mean

@#. These results also indicate that the extra costs for censoring in addition to



rounding can be substantial if the censoring is heavy.

Table 3.1 ARE(4,), ARE(4,,, 8,)
Censored versus Complete, Rounded-Censored versus Censored

L/6] 5 75 1 15 2 25 3
ARE | .393 528 .632 .777 .865 .912 .950

3.2. The Effect of Rounding
From (2.1), (2.2), (2.4), and (2.5), the ARE for 8, and the ARE for . relative to

8. are equal to

ARE(6,) = ARE(d,, .) = g(h/ 6) (3.2)

for g(a) from (2.4). ARE(S,) is directly related to the reduced variation in the random
variable T, obtained from rounding T: ARE(8,) = Var(T,)/ Var(T). Note that (3.2) is
a function of h/ 6 only. Table 3.2 presents the ARE’s for 8, and the ARE's for 8,
relative to 90 for different values of h/ 6. Note the small information loss for

moderately heavy rounding. For example, there is only an 8% loss of information when
the degree of rounding is equal to the mean 6. These results also indicate that there is
little extra cost for rounding in addition to censoring even when the rounding is

moderately heavy.

Table 3.2 ARE(4,), ARE(4,,, 8.)
Rounded versus Complete, Rounded-Censored versus Censored

h/0 | .5 1 15 2 25 3
ARE | 979 .921 .832 .724 .609 .496




3.3. The Effect of Rounding and Censoring
Using (2.1) and (2.4), the ARE for 8, is

ARE(6,,) = (1-exp(-L/ 6))g(h/ 6) (3.3)

for g(a) from (2.4). Note that effect of both censoring and rounding is multiplicative.
That is, ARE(d,.) = ARE(8,) ARE(d,). ARE(d,.) is a function of L/ 6 and h/ 4.
Table 3.3 presents the ARE’s for 9,0 and the number of groups to the left of the cen-
soring point for several combinations of L/ 6 and h/ 8. The first column is ARE(4,)
and the last row is ARE(d,). Table 3.3 shows that the information loss is small for

moderately heavy rounding (equivalently, a small number of groups) provided the

amount of censoring is not severe.

Table 3.3 ARE(d rc) and Number of Intervals Left of Censoring Point
Rounded-Censored versus Complete

L/6 h/ 0
0 N | 5 1 2 4
5 393 393 .385
o’} 5 1
1 632 .631 .619 .582
fo’e} 10 2 1
2 865 .864 .847 797  .626
lo’s) 20 4 2 1
4 982 981 961 .904 .711 .299
fo’e) 40 8 4 2 1
fo') 1.000 .999 979 921 .724 .304
00 00 00 00 fe’e} 00

3.4. The Effect of Grouping
From (2.1) and (2.7), the ARE for 9g is



ARE(8) = M(fx;/ 6}) - (3.4)

For finite number of groups k, x,_; can be viewed as a common censoring point L.

Using (2.2) and (2.7), the ARE for 93 relative to 8, for x,_; = L is

ARE(fg,8.) = M({x;/ 8})/ (1 -exp(-L/ 9)) . (3.5)

From (2.4) and (2.7), the ARE for 8, relative to 9g forx, ; =L is

ARE(0,,8) = M({xi/ 8})/ (1-exp(-L / 6))g(h/ 6)) (3.6)

for g(a) from (2.4).

We have already examined two special cases of grouping schemes, rounding and
rounding-censoring. We next consider three schemes with a finite number of groups k.
The ARE are studied for optimum unconstrained (OU), optimum equally spaced
(OEQ), and equal probability (EP) designs. For the OEQ designs, the widths of the
first k — 1 intervals are equal. For the EP designs, an observation has equal probabil-
ity of being in any of the k groups. Hughs (1949) and Kulldorff (1961) gave solutions
for the OU and OEQ group boundaries, respectively. From (3.4), only the interval

boundaries relative to # need be considered. Let a; denote x; /6.

The ARE’s and the a;’s for the OU, OEQ, and EP designs when k = 2, 3 are

presented in Table 3.4. The optimal interval designs have similar ARE’s, whereas that
of the equal probability interval designs are somewhat lower. For a larger number of

groups, say 10 or more, the superiority of the optimal designs is negligible.



Table 3.4 ARE(@S) for Some Optimal Group and
Equal Probability Designs: Grouped versus Complete

Design a; ARE(@S)
EP(k=2) 0.693 480
OU(k=2) | 1.594 648
EP(k=3) | 0.405 1.100  .650

OEQ(k=3) | 1.207 2.414  .808
OU(k=3) | 1.018 2611  .820

The ARE of the optimal designs are surprisingly high for even a small number of

groups. For example, the ARE for the OU(k=2) design is .648 when only the number

of observations before the censoring point L = x, is recorded. Bartholomew (1963)

observed that there is little additional information in knowing the uncensored lifetimes

when the censoring is heavy. Table 3.5 demonstrates this where .288, .693, and 1.386

correspond to the exponential quartiles.

Table 3.5 ARE(f,,8,) for k = 2
Grouped versus Censored

a, 288 5
ARE 993 979

.693
961

1
921

1.386 2 4
854 724 304

In practice the optimum intervals can be used if there is a priori knowledge about

6. Table 3.6 presents the ARE for several guessed values of 6 under the OU, OEQ, and

EP designs for k = 3.



Table 3.6 ARE(@S) for Some Group Designs for Guessed Values of 6
Optimum Unconstrained, Optimum Equally Spaced, Equal Probability

Guessed Optimum Optimum Equal
Value of & | Unconstrained Equally Probability
Spaced
0.256 475 .450 240
0.506 704 .680 .420
1.006 .820 808 .650
1.508 772 746 .764
1.756 728 .689 794
2.006 .680 .624 811
2.506 D575 491 .819
3.000 471 370 .806

There is a small decrease in information for guessed values larger but near 8. The two
optimal designs behave similarly for values less than 6, whereas the OU design per-
forms better for values greater than . The EP design behaves poorly for values less
than 6, but behaves exceptionally well for values between 1.50 and 30; it even outper-
forms the optimal designs (for true 6) in the latter region. Kulldorff (1961) also con-
sidered the two optimal designs for larger k and observed that the effect of making a
wrong guess is much smaller. In practice, this suggests using a larger k and equally
spaced intervals for convenience. This is further confirmed by observing the perfor-

mance of 9, in Table 3.2. The results for the EP design suggest that these designs are
also useful for a liberal guess of 6.
Optimal constrained and equal probability constrained designs, where x,_; =L,

were studied in Hamada (1987). It was shown that these designs gave practically the

same ARE as the rounding-censoring schemes studied here for three or more groups.
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4. Comparison of Small Sample Properties

In this section small sample properties of the MLE’s from rounded, censored,
rounded-censored, and grouped data are investigated. While assessment of interval
estimation properties may be preferable, point estimation properties are simpler to cal-
culate and can be directly compared with the ARE. Although the MLE’s are asymp-
totically unbiased and efficient, their small sample properties may be quite different.
The MLE’s can be seriously biased or its variance may be much larger than its asymp-
totic variance. Only the MLE from complete data is unbiased. The criteria we focus

on are relative bias (RBIAS = bias(d,)/8) and relative MSE (RELMSE =
MSE(8) /MSE(@X)). Small negative RBIAS is desired, since negative bias gives a con-

servative estimate of reliability. RELMSE is compared with its asymptotic counterpart

ARE to determine if the small sample costs are significantly larger than that suggested
by the ARE.

For the exponential distribution with mean &, RBIAS and RELMSE for the MLE’s
from incomplete data depend on n and € only through the quantities L / 8 for 90, h/6

for 8, L/ 6 and h/ 6 for 6., and {x,/8} for 9g. This follows from the exponential

distribution being a scale family and the MLE’s being scale equivariant. Therefore,
these criteria share a property which implies that few calculations or simulations are

required to characterize the behavior of the MLE’s from incomplete data.

A simulation study was performed to evaluate RBIAS and RELMSE for the MLE’s
from censored, rounded, rounded-censored, and grouped data. 5000 samples of size 25,
50, and 100 from an exponential distribution were drawn using the IMSL subroutine
GGEXP. Note that for each simulation, a sample of size 100 was drawn first. Then
the first 25 and first 50 observations of the 100 were the samples of size 25 and 50,
respectively. The results for the MLE from censored data for n = 25 and n = 50 were
calculated using the formulas given in Mendenhall and Lehman (1960). The results for
n = 100 are from a simulation since the the formulas could not be calculated by the
computer for this sample size. While asymptotic approximations exist for small sample
properties of the MLE's from rounded and rounded-censored data (Kulldorff 1961),

their use was recommended for sample sizes larger than 50.

11



Graphs of RBIAS and RELMSE for the MLE’s from the incomplete data types
appear in Figures 4.1-4.5. A summary for each incomplete data type is given next with

an emphasis on the criteria behavior for small sample size (n = 25).

4.1. Results for Censoring

The exact and simulation results for 90 are displayed in Figures 4.1 for L /§ = .5,
.75, 1(.5)3. The MLE 8, is overbiased. For small sample size, the bias is substantial

when censoring is heavy (small L / ). However bias is minimal for heavy censoring if
the sample size is increased. For light censoring, the bias is negligible for small sample
size so that little is gained by increasing the sample size. A similar pattern can be seen
for RELMSE. For small sample size and heavy censoring, RELMSE is substantially

smaller than ARE; the main reason is that Var@c is much larger than Var#.

4.2. Results for Rounding

Simulation results for 8, are presented in Figures 4.2 for h / 6 = .5(.5)3. The MLE

0. is underbiased. For small sample size, the bias is substantial when rounding is

heavy (large h/ ). However, the bias is small for heavy rounding if the sample size is
substantially increased. For light rounding, the bias is negligible for even small sample
size. A similar pattern can be seen for RELMSE. However for heavy rounding,

RELMSE is substantially smaller than ARE even when the sample size is large.

4.3. Results for Rounding-Censoring

Simulation results for 9rc are displayed in Figures 4.3, where L/ § = 2 and h/ ¢

= 0, .125, .25, .5, 1, and 2. These values of h/ § correspond to the following number
of intervals left of L: oo, 16, 8, 4, 2, and 1, respectively. The bias is negligible even for

small sample size and heavy rounding. The MLE 9rc is overbiased for L / § = 2. For
lighter censoring, say L / § = 4, 9,0 is underbiased for heavy rounding. Recall that 9r

is underbiased whereas éc is overbiased, so that the sign of the bias of 8,, depends on

12



the degree of rounding and censoring. The RELMSE are close to the ARE even for

small sample size.

4.4. Results for Grouping

Simulation results for 9g based on the OU, OEQ, and EP designs are presented in
Figures 4.4. The MLE 9g is overbiased for these designs, although the bias is negligible

for even small sample size. The two optimal designs perform better and are less sensi-

tive to the sample size. In fact, 95 performs better for OU(2) than EP(3); more inter-

vals do not necessarily lead to better results. Similar patterns can be seen for
RELMSE. The EP designs perform poorly for small sample size where the RELMSE is
much smaller than the ARE.

Simulation results for 9g based on the OU(3), OEQ(3), and EP(3) designs for dif-
ferent guessed values of @ are presented in Figures 4.5 (n = 25). For guessed 9* > 20 ,

the EP design outperforms the optimal designs. Whereas the overbias for the optimal
designs is substantial, the EP design has negligible overbias. Furthermore, the proba-
bility of the MLE not existing for the optimal designs in this region is substantial.
However, for guessed 9" < 0, the EP design performs poorly with significant overbias
and substantially smaller RELMSE.

5. Summary and Discussion

The MLE’s of the mean of the exponential distribution from censored, rounded,
rounded-censored, and grouped data have been studied. Intuitively, these data contain
less information than complete data. The loss of asymptotic information is minimal in
many situations. Surprisingly, it can be quite small for coarse grouping if the interval
boundaries are chosen optimally. In practice, the optimal designs are not useful unless
good a priori knowledge about the mean exists. The equal probability designs perform
surprisingly well for a liberal guess of the mean. However, there is a significant asymp-
totic loss of information for heavy rounding, heavy censoring, and coarse grouping (far

from optimal grouping).

13



Small sample properties should also be considered. While assessment of interval
estimation properties may be preferable, point estimation properties are simpler to cal-
culate and can be directly compared with the ARE. Conseqﬁently, this paper focused
on bias and MSE. The bias is substantial for the same situations where there is a sig-
nificant loss of information. Furthermore, the loss of information as measured by the
increase in MSE is much larger than its asymptotic counterpart ARE suggests. For
these extreme situations, the probability that the MLE does not exist can also be sub-
stantial. Increasing the sample size can offer some improvement, but the small sample

properties can remain poor.
Results of this study have practical implications.

(1) Censoring too soon produces overbiased estimators with inflated variances which

result in liberal reliability estimates.

(2) A measuring device with low precision or rounding data too heavily yields under-
biased estimators with inflated variances which result in conservative reliability
estimates. However, the costs for moderately heavy rounding as large as the mean

are minimal.

(3) Grouping data too coarsely and far from optimal grouping leads to estimators with

poor small sample properties as above.

(4) Given that one is resigned to do some censoring, the additional costs of making a

relatively few inspections (resulting in grouped data) is negligible.

Good a priori information about the mean is important in designing an experiment
when incomplete data will be taken. Careful consideration must be made about what
type of data should be taken. The time or cost savings of using incomplete data must
be weighed against the bias, increased variance, and possible non-existence of their

estimators, for it is too late after the experiment is finished.

The exponential distribution is a special case of the Weibull distribution. The
results above can be applied to the Weibull distribution with known shape parameter
since a power transformation of exponential data using the shape parameter yields
Weibull data. For unknown shape parameter, Meeker (1986) has studied the efficiency

of several grouping designs and Type I censoring for estimating a given quantile.

14



Ostrouchov and Meeker (1987) study the small sample properties of the equal probabil-
ity designs. Comparison of information loss and small sample properties of MLE’s from

other types of incomplete data is a topic for future study.
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FIGURES 4.3 ROUNDED-CENSORED DATA SIMULATIONS
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FIGURES 4.5 GROUPED DATA SIMULATIONS (n==25)
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