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ABSTRACT

Often interval-censored data are observed in designed experiments
for improving reliability because of cost and time constraints. Associ-
ated with this type of data are estimability problems because of the pau-
city of data collected in typical industrial experiments. We review the
equivalence of the estimability problem with a linear programming prob-
lem and then characterize situations where these estimability problems
occur by exploiting the structure in designed experiments.

The main conclusion is that it is difficult to tell just by looking at the
data whether the estimates exist or not. Some surprising situations
where the estimates exist and some where they do not are presented. In
practice, because of the potential danger of using meaningless results, we
recommend using a linear programming algorithm to check the estima-
bility conditions. We propose a simple alternative problem that can be
solved directly by standard linear programming software. These results
apply to popular reliability regression models including the Weibull, log-
normal, exponential, and gamma models, as well as a well-known model
for binary data.



1 Introduction

In the search to improve quality through experimentation, one critical quality character-
istic is a product’s reliability. The experimenter’s objective is to identify which factors
among many are the important ones that affect the product’s reliability. Because typ-
ical industrial experiments are small, estimability problems ensue unless one entertains
models whose number of parameters are constrained by the number of runs (factor level
combinations) in the experimental design. Moreover, in lifetesting experiments, censored
data are often collected because of cost and time constraints. While data are obtained
faster and cheaper, one can encounter estimability problems when fitting even those mod-
els mentioned previously. The purpose of this paper is to investigate and characterize these
estimability problems for typical industrial experiments.

Different types of censored data arise in lifetesting experiments. Limiting the duration
of an experiment yields right-censored observations. If the failure of a unit occurs before the
limit, then the lifetime is exactly known; otherwise it is right-censored. Periodic inspection
leads to left-censored or interval-censored data, where failures before the first inspection
yield left-censored observations. Periodic inspection combined with limited duration yields
all three types of censored data. In this paper, we will concentrate on the first scenario,
limiting the experiment’s duration. Application of the results to the other scenarios will
be discussed.

When the data are censored, they can be analyzed by calculating the maximum likeli-
hood estimates (MLE) for some popular reliability models such as the lognormal, Weibull,
and exponential regression models. Hamada and Wu (1988) propose a strategy and
methodology for analyzing interval-censored data in the industrial setting which also de-
pends on calculating MLEs. In the industrial setting, there can be estimability problems
because of the paucity of data. That is, for certain data configurations, the MLEs may

not exist for every component of the unknown parameter vector. Necessary and sufficient



conditions for the existence of the MLEs for these popular models are given in Silvapulle
and Burridge (1986) and Hamada and Tse (1988). They show that the problem of the
existence of the MLEs reduces to solving a linear programming problem. For simple linear
regression, Hamada and Tse (1988) describe how the linear programming problem can
be reduced to checking a few data configurations. Our initial motivation was to study
whether the structure in designed experiments could be exploited in characterizing where
estimability problems arise.

In practice, the experimenter uses a software package to calculate the MLEs. There
can be problems when the stopping rule of the optimization algorithm is based on the
increase of the likelihood function in successive iterative steps. Even when the MLEs of
some parameters do not exist, there may be no indication of anything going wrong. While
some of the estimates should diverge in theory, the stopping criteria may be met first since
the likelihood becomes flat as the estimates diverge. Thus, there is a potential danger
of making decisions based on meaningless results. Our results suggest that it is hard to
tell just by looking at the data whether the MLEs exist or not, except for a few simple
designs. However, as the design gets more complicated, it is much harder to characterize
the estimability problem.

First, we review the equivalence of the estimability problem with a linear programming
problem in Section 2. We discuss the special structure of designed experiments and how it
might help to simplify the linear programming problem. In Section 3, we show the enormity
of the characterization problem because there can be so many data configurations (i.e., the
patterns of censored and complete observations) to consider. For example, there are over
65,000 per model for the L;¢ design. In Section 4, we characterize the estimability problem
for the Ly and Lg designs. A table is presented giving the number of configurations for
which the MLEs do not exist. For the Lg design, we give a few simple rules which cover
all possible main-effect and 2 factor interaction (f.i.) models. For larger designs, the total

number of models and possible data configurations becomes unmanageable. We present
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some rules which include using results from smaller designs and smaller models to reduce
the number of data configurations that need to be considered.

In Section 5, we propose a simple alternative linear programming problem which can be
solved directly by a standard linear programming algorithm. We recommend its use which
can easily be incorporated as a subroutine in existing software. In Section 6, we conclude
with a summary and discussion. We also discuss how these results can be applied to a well-
known model for binary data. An interesting question is what additional experimentation
is needed to guarantee the existence of the MLEs. We observe that one of the reduction
rules suggests a simple way to do this. Finally, we discuss the issue of what to do when

the MLEs do not exist by commenting on some recent and ongoing work.

2 The Equivalent Linear Programming Problem

In this section, we give some necessary notation and review how the question of the ex-
istence of the MLEs for some popular reliability regression models reduces to solving a
linear programming problem.

By modeling the log lifetime, the lognormal, Weibull, and exponential regression models
fall into the following framework. Consider the model for n observations, y; = z;8 + o¢;
(1 €7 < n), where 3, the regression parameters, and z;, the covariates, are p dimensional
vectors. The ¢; are independent and identically distributed with known density. For the
lognormal model, € is Gaussian whereas for the Weibull and exponential models, € is the
standard extreme value distribution. Note that o equals one for the exponential model.
Assume that for 0 < r; < r, < r < n, the observations y; are (i) —oc0 = a; < ¥; < b; < o0
for 1 < i < r; (left-censored), (ii) —00 < @; < y; < b; = oo for r; +1 < 7 < 7, (right-
censored), (iii) —oo < a; < y; < b; < oo for r, + 1 < ¢ < r (interval-censored), and (iv)
known exactly for r + 1 <: < n.

Provided there is at least one exactly known observation, Silvapulle and Burridge (1986)



and Hamada and Tse (1988) show that the necessary and sufficient conditions for the
existence of the MLEs for these models are the same. The MLEs exist if and only if there
does not exist a non-zero e € RP for which: i) z;e < 0 for 1 < ¢ < ry; ii) z;e > 0 for
r1+1 <1< r;;andiii) z;e = 0 for r, + 1 < ¢ < n. Thus, the question of the MLEs’
existence reduces to solving a linear programming problem.

For designed experiments, in contrast with the general regression setup, there are a
finite number of covariate combinations, the columns of the design matrix are orthogonal,
and the entries in the design matrix for the 2 level designs are either -1 or 1. Note that this
structure implies that only a finite number of data configurations need to be investigated.
Our work was motivated by the question of whether this structure in designed experiments
could be exploited to simplify the necessary and sufficient conditions.

Next we set up some notation to describe data configurations for designed experiments.
Suppose the design has n runs. Each run is classified as L, R, or EI: classify the run as
L(R) if all observations are left-(right-)censored; otherwise, classify it as EI (exactly known
or interval-censored). Then, regardless of how many replications are taken, the necessary
and sufficient conditions above simplify to: there does not exist a non-zero e € RP for
which ze < (=)0 for an L(R) run and ze = 0 for an EI run, where z is the appropriate
row from the regression design matrix for the model being fitted. Thus, we have a linear
programming problem with n constraints in p variables.

Our focus will be on experiments with limited duration so that a run is either classified
as R or EI. We will explore the relation between the number of parameters, runs, and EI
runs. For instance, it is not always true that existence is guaranteed if the number of EI
runs exceeds the number of parameters. In fact, the following examples demonstrate that
it is difficult to tell whether the MLEs exist or not just by looking at the number of EI

runs.

Example 1: Consider the data from an L¢ design in 9 factors as shown in Table 1. Note



that 12 out of 16 are EI runs and there are 10 parameters (including the intercept). We
fit an exponential regression model (f(y) = fexp{—0y}, where § = exp{z3}) to the data
using ISMOD (Lawless and Singhal 1987a, 1987b). The optimizer went through 7 iterations
yielding the estimates and standard errors given in Table 2. The ISMOD output did not
indicate a problem; in the next section we will see that the MLEs do not exist for this data
configuration. As a caveat, one would generally be suspicious of standard errors based on
asymptotic variance formulas for such a small sample.

This example shows that although the MLEs do not exist, the optimization program can
terminate since the likelihood becomes flat as the estimates diverge. While many iterations
of the optimization routine can signal problems, the defaults in a software package may
preclude this possibility. Unless the stopping criteria are suitably chosen, our concern is
that practitioners are not aware of this estimability problem and can make decisions based
on meaningless results. Note that SAS (1985) did indicate a potential problem for this
example by noting that the negative hessian used in the LIFEREG procedure was not

positive definite.

Example 2: Consider the data configuration from an L,¢ design in 8 factors as displayed in
Table 3. Note that only 2 out of 16 are EI runs. An exponential regression model is fitted
to the data using ISMOD. Although there are 9 parameters (including the intercept), the
MLEs exist.

3 Enormity of the Characterization Problem

In this section we will show the enormity of characterizing situations where the MLEs
do not exist. Despite the finite number of data configurations for a given design and

model, the number of data configurations to consider can still be enormous. For the 2



Table 1: Data for Example 1

Design Matrix

Run | Data | Type | A|B|C|D|E|F |G |H] 1
1] 20] R[1 1 1 1 1 1 1 1 1
2/ 05| EBI|{1 1 1 -1 1 -1 -1 -1 -1
3 06| EI[1 1 -1 1 -1 -1 -1 1 -1
4| 20/ R|1 1 -1 -1 -1 1 1 -1 1
5/ 07| EI[1 -1 1 1 -1 -1 1 -1 -1
6/ 20/ R|{1 -1 1 -1 -1 1 -1 1 1
7] 20| R|1 -1 -1 1 1 1 1 -1 1
8| 08| EI[1 -1 -1 -1 1 -1 1 1 -1
9| 09| EI|-1 1 1 1 -1 1 -1 -1 -1
10| 10| EBI|-1 1 1 -1 -1 -1 1 1 1
1| 12| EBEI|-1 1 -1 1 1 -1 1 -1 1
12| 13| EI|[-1 1 -1 -1 1 1 -1 1 -1
13| 14| EIf-1 a1 1 1 1 -1 -1 1 1
14| 15| EI|[-1 -1 1 -1 1 1 1 -1 -1
15| 16| EI|-1 -1 -1 1 -1 1 1 1 -1
16| 17| EI|[-1 -1 -1 -1 -1 -1 -1 -1 1

Table 2: Estimates, Standard Errors from Example 1

| Parameter I Estimate ] Standard Error |

INT

~Hoa"mE0OQwW>

—1.95+ 00
—1.66 + 00
1.67 + 00
7.43 — 02
2.17 - 02
5.06 — 03
—1.99 + 00
—1.94 — 02
—4.04 - 03
—1.99 4+ 00

3.92 + 00
3.92 + 00
3.06 — 01
3.06 — 01
3.06 — 01
3.06 — 01
3.92 400
3.06 — 01
3.06 — 01
3.92 4+ 00




Table 3: Data Configuration for Example 2

Design Matrix
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level designs in n runs, there are 2" configurations; for the Lg, L, (Plackett and Burman
1946), and L6 designs, there are 256, 4096, and 65,536 data configurations for each model,
respectively. So as the run size increases, the number of data configurations increases
dramatically. Furthermore, the number of different models increases, so that total number
of configurations for larger designs becomes prohibitive. In spite of this large number
of data configurations, we can use the structure in the designs to reduce the number of
configurations that need to be checked by a linear programming algorithm. Some reduction
rules will be given in the next section.

In the following we will make reference to EI(R) sets. The EI(R) set for a particular
data configuration contains the run numbers of the EI(R) runs with #EI(#R) denoting
the number of runs in the set.

The results of Silvapulle and Burridge (1986) and Hamada and Tse (1988) suggest a
geometric approach for verifying the conditions: if there does not exist a p-dimensional
hyperplane which passes through all the EI runs, then the MLEs exist. If such a hyperplane
exists and all the R runs fall on one side, then the MLEs do not exist; otherwise, the MLEs
exist. For example, for the 2% design and three factor main effects model, we can represent
the runs as corners of a cube. For a given corner, there are three other corners joined to
it by edges of the cube. Suppose that EI runs are only at these three adjoining corners.
Then, a plane passing through the three corners can easily be visualized. Since one R run
will be on one side of the plane and four R runs will be on the other side, the MLEs exist.
This idea of finding separating hyperplanes is simple to use for up to three factors, but is
impossible to visualize for any more. Thus, this approach is not so useful for the industrial
experimental setting where many more factors are investigated.

There are two configurations which are easy to check, however. First, if two runs in
the EI set have design matrix rows with opposite signs, then the MLEs exist. Here, it
is impossible to have all the R runs on the same side of the hyperplane which passes

through the pair of runs. We will refer to this pair as the opposite sign pair. This result
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has implications for a strategy of additional experimentation which will be discussed in
Section 6. The opposite sign pair result explains why the MLEs exist for Example 2.
Second, if all the runs in the design with the same level of a factor are in the R set, then
the MLEs do not exist. Here, a hyperplane can be fit through the EI set with the entire
R set on the same side of the hyperplane. We will refer to this configuration as complete
separation.

In the next section, we use the two easily checked configurations and some other rules

which we develop to characterize the estimability problem of the L, and Lg designs.

4 Rules for Reduction and Some Results for the L,,

Lg, and Larger Designs

The results for the L, design are based on the two easily checked configurations and are
presented first. As the run size of the design increases, the complexity of the estimability
problem increases requiring the use of reduction rules which are presented in the following
section on results for the Lg design.

Recall that the EI(R) set for a particular data configuration contains the run numbers
of the EI(R) runs with #EI(#R) denoting the number of runs in the set. The EI(R) lists
are simply lists of EI(R) sets. The notation mEI(mR) denotes lists of m size sets. Finally,
let 22~ denote both model and design for a 2 level factors and ¢ 2 fi. based on a 27°

fraction of a full factorial design.

4.1 L4 Design Results

The L4 design matrix is given in Table 4. The 22 and 2*!(= 2%) designs are obtained by

using the first two and three columns, respectively.

The results for 2% are: (1) The MLEs exist for all 1R cases. (2) Of the 6 2R cases, 4



Table 4: Design Matrix for L,

Design Matrix
Run |1 ]2 | 12

111 1 1
211 -1 -1
31-1 1 -1
4;-1 -1 1

have complete separation (MLEs do not exist) and 2 are opposite sign pairs (MLEs exist).
(3) All of 3R cases have complete separation. For 23~1(=2%), all runs must be EI for the
MLEs to exist.

These results can be summarized as follows: for 22, if 12, 13, 24, or 34 are contained
in the R set, then the MLEs do not exist; for 23-1(=22), if the R set is contained in 1234,
then the MLEs do not exist.

4.2 Lg Design Results

The Lg design matrix is given in Table 5 with columns used for different models displayed
in Table 6. Note that for each given model, there are 256 data configurations to consider.
In the following, we present some rules which can be used to greatly reduce the number of

configurations that need to be checked.

1. For every data configuration, there are isomorphic configurations. That is, two con-
figurations are isomorphicif they can be made the same by renaming and rearranging
the design matrix rows and columns. For the Lg design, some of the models with 2
f.i. are identical or isomorphic to main effects models with a larger number of fac-
tors. We need to consider only one additional model; although there are 3 additional
models, 2 of these are isomorphic to main effects models. For example, the design

matrices of the following designs are identical: 23 = 25-2) 23 = 28-3 2371 = 274
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2572 = (237! or 26-2), and 2572 = 2¢7% = 2%, The simple summary for the Lg
design below demonstrates two aspects of isomorphism. First, the following designs
are isomorphic by interchanging the appropriate rows as given: 2°~2 = 217! (5 & 7,
6 « 8) and 2% ~ 237! (1 & 2, 5 & 6). Second, the summary for 2 gives 6 data

patterns which are isomorphic.

. If the MLEs do not exist for a given R set, then the MLEs do not exist for larger R

sets containing it.

. If the MLEs exist for a given EI set, then the MLEs exist for larger EI sets containing
it.

. If the MLEs exist for a given EI set and model, then the MLEs exist for that EI set

and any submodel.

. If the MLEs do not exist for a given R set and model, then the MLEs do not exist
for that R set and any supermodel.

. Results for a smaller design can be applied to a larger design provided that the larger
design is a replicate of the smaller design. A simple example is that complete sepa-
ration for the L, design implies that the MLE’s do not exist for complete separation
for any larger 2 level design. Another example is that the MLEs’ nonexistence for
1R sets for the 23~ design implies their nonexistence for some 2R sets for the 27
design. By collapsing one of the factors not involved in the interaction, the larger 8
run design reduces to two replicates of the smaller 4 run design. The 1R result for
2%-1 also implies that the MLEs will not exist for some 4R sets for the L;¢ design.
This explains why the MLEs do not exist for Example 1 since 16 = 1234 = 9. Note
that knowledge of the design’s alias structure is necessary to study this data pattern,

so that even this pattern would be hard to look for in practice.
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Table 5: Design Matrix for Ls

Design Matrix
Run |1 [2[3[123]12]13]23
11 1 1 1 1 1 1
2/1 1 -1 -1 1 -1 -1
3|1 -1 1 -1 -1 -1 1
41 -1 -1 1 -1 1 -1
5(-1 1 1 -1 -1 1 -1
6(-1 1 -1 1 -1 -1 1
71-1 11 1 1 -1 -1
8(-1 -1 -1 -1 1 1 1

Table 6: Columns Used for Lg Models

Columns Used
Model [1[2]3|12]13[23] 123
23 x|x|x
241 Ix|x|x x
252 |Ix|{x|x| x| x
263 Ix|x|x| x| x| x
24 Ix|x|x| x| x| x| x
28 |x|{x|{x|x
277 Ix|x|x|x X
2270 [x|x|x|x|x X

12



Thus, application of these rules eliminates the need to check every data configuration.
We use these rules extensively in obtaining results for the Lg designs. The number of
cases for which the MLEs do not exist for each R set size are presented in Table 7. These
numbers may also have a superscript and subscript. The subscript refers to the number of
EI sets for which the MLEs exist and do not contain smaller EI sets which insure existence.
The superscript refers to the number of R sets for which the MLEs do not exist and do not
contain smaller R sets which insure nonexistence. Therefore, if the number does not have
a superscript then all these R sets contain smaller R sets for which the MLEs do not exist.
Similarly, if the number does not have a subscript, then all these EI sets (complement of
the R set) contain smaller EI sets for which the MLEs exist. Hence, if we have these EI
and R lists, then Rules 2 and 3 can be used to characterize the existence problem. For
example, for the 2*~! design in Table 7, only 4 2EI sets and 16 4R sets are required to
characterize all 256 data configurations. Furthermore, for a given #R, Rule 5 can be used
as we move across the table from left to right. For example, 6 of the 16 4R cases for the
2%4-1 design we already know from the 23 design results. Similarly, Rule 4 can be used as
we move across the table from right to left. Note that the 24~! design is not contained in
the 25-2 and 253 designs so that Rule 5 cannot be used to apply the 2%~ design results
to the latter designs. Similar restrictions apply to Rule 4.

Next, we give a simple summary for all Lg models. This summary can be implemented
in a small computer program, thus eliminating the need for linear programming software.
However, as the run size of the design increases, a simple summary is no longer possible

as indicated in the next section.

e For 23, if the R set contains 1234, 5678, 1256, 3478, 1357, or 2468, then the MLEs

do not exist.

e For 2%71, if the R set is contained in 123678, 234567, 134568, or 124578, then the
MLEs exist.
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Table 7: Characterization of MLEs’ Non-Existence for Lg

Design
#R Total | 23 241 28-2 26-3 g7-4 93 2177 257
1 8] o] o] of of 8] o] o o

28 0 0 88 | 1616 28 44 8% | 1616
56 0 0 40 48 56 24 40 48
70 | 6° | 16¢ | 664 | 68, 70 | 5614 | 664 | 68,
56 | 24 32 56 56 56 56 56 56
28 | 244 | 244 28 28 28 28 28 28

8 8 8 8 8 8 8 8 8

|| O W|N

For 25-2, if the R set is contained in 1467, 2358, 1368, or 2457, then the MLEs exist.

For 26-3, if the R set is contained in 1467 or 2358, then the MLEs exist.

For 274, if the R set contained in 12345678, then the MLEs do not exist.

For 23, if the R set contains 12, 34, 56, or 78 or complete separation (1234, 5678,
1256, 3478, 1357, 2468), then the MLEs do not exist.

For 2171, if the R set is contained in 1458, 1368, 2457, or 2367, then the MLEs exist.

o For 2;71, if the R set is contained in 1368 or 2457, then the MLE s exist.

Finally, we make some comments about the results presented in Table 7. First, note
the dramatic increase in the MLEs’ nonexistence in moving from 2! to 252, Also notice
the following surprising cases where the MLEs exist for large size R sets and do not exist
for small size R sets: for the former where p > #EI, see (4R, Lg(2°72)), (6R, Lg(23),
Lg(2%71)); for the latter where p < #F1I, see (2R, Lg(2572)).
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4.3 Larger Designs Results

For larger designs, we can use the rules developed in the previous section to reduce the
number of data configurations that need to be studied. However, the complexity quickly
increases so that an exhaustive study becomes prohibitive. We studied the L, (Plackett
and Burman 1946) and L;¢ designs. The results for these designs exhibit similar patterns
as in the Lg design and thus are not presented here. There are also more surprising cases
where the MLEs exist for large size R sets and do not exist for small size R sets. In studying
the L., design, we cannot use the results from smaller designs since the L;, design is not
a replicate of them. While results from the L, and Lg designs can be used in studying the
L,¢ design, many configurations not covered by these results have to be investigated. This
increase in complexity makes a complete study of larger designs such as the Lj; and Leg
designs prohibitive.

While such information as displayed in Table 7 conveys the potential estimability prob-
lems one is faced with, it does not answer the question of whether the MLEs exist for a
particular data set. In the next section, we propose a simple alternative linear program-
ming problem that can be solved directly by standard linear programming software so that

the existence of the MLEs for a particular data configuration can be checked.

5 A Simple Alternative Linear Programming Prob-

lem

The main conclusion from Section 4 is that it is not easy to tell from looking at the pattern
of complete and censored observations whether the MLEs exist or not. Therefore, we rec-
ommend using a linear programming algorithm to verify the MLEs’ existence. This could
be easily added as a front end to the optimization program which calculates the MLEs.

Because standard linear programming algorithms cannot handle this linear programming
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problem directly, we propose a simple alternative linear programming problem. Silvapulle
and Burridge (1986) propose an alternative problem based on reducing the size of the
problem, but give up the simplicity of using a standard linear programming algorithm
directly. For the industrial context, reducing the problem is unnecessary since the run
size for designed experiments is typically small. As was explained earlier, even if several
replicates are taken, the problem is still solved in terms of the runs. For the alternative
problem we will propose, the worst problem for a L3, design would be 63 constraints in 63
variables which is still a small problem by linear programming standards.

The linear programming problem as stated cannot be solved directly by standard lin-
ear programming algorithms since the zero vector is always a solution. We propose the
following simple restatement of the linear programming problem. Suppose n is the design
run size and #R is the number of R runs. We change each inequality associated with a R
run into an equality by adding a new slack variable s. Since this new variable has to be
negative, we introduce the corresponding constraint, s < 0. Thus, the alternative linear
programming problem is to minimize the sum of all the new slack variables given all the
constraints consisting of n equalities plus #R new inequalities (due to the new negative
slack variables). There are two solutions to this alternative problem: either the zero vector
is the only solution or the problem is unbounded from below. The MLEs exist for the
former case, but not for the latter case. This alternative problem can be handled directly
by a Phase 1-Phase 2 algorithm (Best and Ritter 1985).

If one is not convinced that a linear programming algorithm is needed to check for
estimability for the scenario of limited experimental duration, then one should be convinced
for the more general case of interval-censored data. To give an idea of the added complexity
when left-censored data can also be observed, for one replicate of a L,¢ design, there are now
316 configurations; for m replicates, there are (3!¢)™ configurations. However, these cases
can still be handled by the linear programming algorithm discussed above. In particular,

when there are left-censored data and provided that there is at least one exactly known
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observation, the following simple changes are needed in the alternative linear programming
problem. For ze < 0 associated with left-censored data, add a new positive slack variable to
make it an equality. The corresponding inequality for the new slack variable is —s < 0 and
to the objective function, add the negative of the slack variable. Note that the condition
for left-censored data means that one is searching for a hyperplane which puts all the
L runs on one side and all the R runs on the other. When none of the observations
are exactly known, the conditions are more complicated for the lognormal, Weibull, and

gamma regression models, but still can easily be put in this form. See Silvapulle and

Burridge (1986) for these conditions.

6 Summary and Discussion

This paper has demonstrated that potential estimability problems that one encounters
when fitting models to censored data from industrial experiments can be extensive. The
main conclusion is that it is difficult to tell just by looking at the data pattern whether the
estimates exist or not. We are convinced of this by some surprising cases where the MLEs
exist for large R sets but do not exist for small R sets. While the estimability problem
can be summarized by a few rules for the L, and Lg designs, for larger designs the number
of models and data configurations that need to be studied becomes prohibitive. This is
in spite of the use of several reduction rules that were given. Therefore, for a particular
data configuration we recommend using a linear programming algorithm to check if there
is an estimability problem. We proposed a simple alternative problem which can be solved
directly by standard software.

These results apply to the exponential regression model and to the normal, Weibull,
gamma, lognormal, and loggamma regression models provided there is at least one exactly
known run. These results also apply to the logistic regression model for analyzing binary

data. The estimability conditions are the same as that given in Section 2 (Silvapulle 1984).
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Since Os or 1s are observed for binary data, classify a run as L(R) if all the data are 0s(1s);
otherwise classify as EI. Note that all the results in Section 4 apply directly provided that
there are no L runs (runs with all 0s). This is a realistic situation in practice since one is
interested in finding conditions where 100% good parts are produced. That is, it is unlikely
for management to allow the process to be run at combinations yielding 100% bad parts.

The results also show that larger designs, while more costly, provide better protection
against estimability problems. What can be done when the MLEs do not exist? An inter-
esting question is how many additional runs are needed to guarantee the MLEs’ existence.
The results for the opposite sign pair suggest a simple strategy. If we perform one addi-
tional run so that there are a pair of EI runs with opposite signs, then the MLEs exist.
Thus, for one EI run, run the opposite combination until EI data are observed.

Finally, we discuss what to do when the MLEs do not exist or more generally how
to analyze censored data from industrial experiments by commenting on some recent and
ongoing work. Hamada and Wu (1988) propose an iterative scheme of model fitting,
imputation of censored observations, and model selection. While their procedure does
depend on the existence of MLEs, most estimability problems are avoided by building up
the model rather than starting with a comprehensive model. Another approach is using the
likelihood ratio based procedure of Lawless and Singhal (1978) which looks for factors with
significant likelihood drops. While the nonexistence of MLEs does not present a theoretical
impediment in this approach, it does cause a computational one. The original motivation
of their work was to provide a flexible methodology for analyzing medical data where
estimability problems are a rarity. Current work focuses on how to apply this approach to

the industrial setting.
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