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Abstract

Taguchi’s parameter design technique has proven effective for improving the robustness of product and
process designs, but in some applications his method for introducing noise leads to unnecessarily
expensive experiments. In fact, the expense comes from estimation of a large number of interactions.

Taguchi’s "product array"” experimental setup consists of a control array (i.e., inner array) completely
crossed with a noise array (i.e., outer array). This dictates estimation of many control-by-noise factor
interactions, and often higher order interactions as well.

In this paper, we abandon the "product array” formulation and instead use a single array for both control
factors and noise factors, an idea also proposed by Welch et al.(1989). This "combined array" approach
includes Taguchi’s product arrays as a special case, but does not dictate that all control factor-by-noise
factor interactions be estimated. Instead, some of these degrees of freedom can be re-directed, allowing
far greater flexibility for estimating effects which may be important for physical reasons. At the same
time, the experiment size is often dramatically reduced.

Using a combined array instead of a product array requires a different data analysis approach for robust
design problems, however. This new approach is based on modeling the response, Y, then using this
model to infer the control factor levels that minimize the objective function. An informal procedure for
doing this is illustrated here. A more formal procedure is given by Welch et al. (1989) in the context of
computer experiments.



1. INTRODUCTION
1.1 Robust Parameter Design

Robust parameter design is an approach to reducing performance variation in products and processes.
Products and their manufacturing processes are influenced both by factors that are controlled by
designers and by difficult-to-control factors such as environmental conditions, raw material properties,
and aging. The idea of robust parameter design is to select the levels of the easy-to-control factors
(called "control factors" or "design parameters”) to minimize the effects of the hard-to-control factors

(called "noise factors").

Robust parameter design ideas were brought to the attention of statisticians by Japanese quality expert,
Dr. Genichi Taguchi (see Taguchi,1986). Taguchi formulates the robust parameter design problem as

follows:

Choose the levels of the control factors, 6 to minimize the expected loss caused by the noise factors, €.

That is,

mg‘n R®) = E. L(Y,1) ,
where Y is the product or process response and 7 is the target for that response. L (Y,7) is a measure of

the loss caused when Y deviates from T, and is usually approximated by (Y—1)?.

In practice expected loss might be replaced as an objective function by the variance of Y or coefficient
of variation of Y (Taguchi’s "signal-to-noise ratio"), or by some other appropriate measure. Taguchi
and Phadke (1984) and Leon, Shoemaker, and Kacker (1987) discuss reasons why performance measures
other than expected loss might be used. For example, Leon et al. show that if an adjustment control
factor exists, either the variance or coefficient of variation may be a more useful optimization criterion
than the average squared error loss. In this paper we will not address the problem of choosing an
appropriate performance measure. R will refer to the performance measure chosen for the given

problem.



1.2 Taguchi’s Experimental Set-up: The Product Array

Experiments are often needed to solve the robust parameter design problem because the functional

relationship between R and the control factors is not known. Taguchi recommends a two-part

experimentation strategy, as illustrated in Figure 1.1. The control factors are varied according to a

"control array", which is an orthogonal array. For each row in the control array, the noise factors are

varied according to a "noise array”, also an orthogonal array. Each noise array provides an estimate of

the optimization criterion, R. The control factor levels that minimize R are chosen by analyzing the

control factor main effects and, sometimes, two-factor interactions.

Since the noise array is run for every row in the control array, we call this set-up a product array and

write it as CAXNA, where "CA" refers to the control array and "NA" refers to the noise array.

Taguchi’s product array approach has three major disadvantages:

1.

It can require a very large number of runs because the noise array is repeated for every row in the

control array.

In some situations the noise array is really just a plan for taking systematic multiple measurements
of the response to approximate the effects of a number of noise factors, and is relatively

inexpensive. In other situations, however, the noise array may actually represent separate process

runs. For example, in a study to improve a wave soldering process, the noise factors might

concern the type of circuit board being soldered: whether the board was single or double sided,
whether it was multiwire or not, and whether it was multilayer or not. The objective might be to
find a soldering process that worked well for all types of boards, and if that were not possible, to
identify optimum process settings for each type of board. In this case, each type of board would
have to be run separately through the process, and the 3-factor, 4-run noise array would quadruple

the number of runs in the experiment.

The product array approach focuses on modeling R, which is often a nonlinear, many-to-one
transformation of the response, Y. Even when Y follows a linear model in the control and noise

factors, it is unlikely that R can be modeled well by a low order linear model, even if data



transformation is employed.

3. The product array experiment uses a large number of its degrees of freedom to estimate
interactions between control factors and noise factors (see Section 2). Because of the structure of
the product array, there is no flexibility to use some of these degrees of freedom to estimate other

effects, such as control factor-by-control factor interactions.
1.3 Overview

In this paper we explore an alternative experimental setup for robust parameter design. This setup,
which combines the control factors and noise factors in a single array, does not share the three
disadvantages of the product array approach. Th; "combined array” approach focuses on modeling the
response Y rather than R, so it is easier to postulate and fit a model. This approach includes the product
array approach as a special case since the CAXNA setup can be written as one very large array including
both control and noise factors. But the combined array approach does not force the estimation of all
control factor-by-noise factor interactions, so the experiment size is usually greatly reduced and there is

more flexibility for estimating other interactions that might be important.

In Section 2 we characterize the model implied by the product array approach, and see that it includes
(i) the control factor main effects and those control factor-by-control factor interactions estimable in the
control array, (ii) the noise factor main effects and those noise factor-by-noise factor interactions
estirhable in the noise array, and (iii) all the generalized interactions between the effects in (i) and the

effects in (ii).

In Section 3 we introduce the combined array approach and illustrate through several examples the

flexibility for effects estimation and economy of runs that this approach brings.

In Section 4 we show how combined arrays can be used to solve the robust design problem. This will
involve modeling the response, Y, rather than the objective function, R, and using the response model to
identify control factor levels that should improve R. We will also discuss related work by Hamami,

Hooper, and Nazaret (1987) and Welch, Yu, Kang, and Sacks (1989).



In Section 5 we use the silicon wafer epitaxial growth process example of Kackar and Shoemaker {1986)

to compare the performance of three alternative strategies:

. modeling the objective function, R, directly from the data using a product array design (i.e., similar

to Taguchi’s approach),

. modeling the response using a product array design (to study the benefits of modeling the response

and not the objective function),

. and modeling the response using a smaller combined array design ( to see if a smaller model and

experiment can work as well).

2. The Model Implied by the Product Array Approach

Product array designs used by Taguchi for Robust Parameter Design have a special structure that dictates
estimation of certain effects, regardless of whether these effects are likely to be present for physical
reasons. In this section, we give a general characterization of the capacity of product array designs for
estimating main effects and interactions in a model for the response Y. The general characterization is

first motivated by an example.

(In Sections 2 and 3 we use capital letters A, B, C, - - - to denote control factors and small letters
a, b, c, - -+ to denote noise factors. To abuse the notation we also use them to denote their main
effects.)

Example 1. Suppose the control array (CA) is a 4-run fractional factorial design with three 2-level
factors given by A, B, C(=AB), and the noise array (NA) is a similar design given by a, b, c(=ab).
Then the product array corresponding to CA and NA, denoted by CAxNA, has 16 runs; 6 factors,
A, B, C, a, b, c; and the following defining relations:

I=ABC=abc=ABCabc.
It is a 1/4 -fraction of the 2% full factorial design.



From the defining relations above, we can see that if all the 2-factor and higher-order interactions
between the control factors and between the noise factors (which we call CxC interactions and NxN
interactions respectively) are negligible, the six main effects are estimable. In addition, all nine 2-factor
interactions between control factors and noise factors (which we call CxN interactions) are estimable if
the 3rd- and higher-order interactions are negligible. So nine degrees of freedom in the product array CA

x NA are used to estimate the nine CxN interactions.

The capacity in CA x NA for estimating the CxN interactions, as. demonstrated in Example 1, is a
special case of the following general result. Let d; and d; be two orthogonal arrays with n and m runs

performed at x,,,...,x, and z;,...,2y, respectively. The product array of d; and d,, denoted by

d; xd, has nm runs performed at (x,,z,), p=1,...,n, ¢=1,...,m.

Assume that the expected response E(y) at x can be described by the linear model

k
E()=o,+ 2 filx), @1

i=l

where o;,i=0, . . . ,k, depend on the level of z at which y is observed. Similarly, we assume that E(y)

at z can be described by

1
E (y)=Bo+zg Jj (E)B] ’ (22)

j=1
where B;,j=0, . . . ,/, depend on the level of x at which y is observed.

Given (2.1) and (2.2), it is reasonable to assume that the expected response E(y) at (x,z) can be

adequately described by the linear model
k 1 k1
E (y)=vo+21ﬁ(ac)vio+2g,~(g)vo;+2 X fix)gi(2)ij» 23)
i=] Jj=1 i=lj=1 .

where Y fi(x,) = X 8(z,) =0, for all i, j, ¥, are the factorial effects (i.e., main effects, two-factor
p=l1 q=1 "

interactions, etc.) of x, v, are the factorial effects of z, and ¥j; are their generalized interactions (John,

1971). Note that, if ¥, and ¥,; are both main effects, v;; is a 2-factor interaction, and if ¥;, is a main



effect and vy,; a 2-factor interaction, ¥;; is a 3-factor interaction, etc. In general, Y,#0; and Y,;#B;.

However, if y in (2.1) is interpreted as an average over zy, . . . ,Zn, then ¥,=a;, and likewise v,;=B; if y

in (2.2) is interpreted as an average over xj, . . . ,X,.

If d; and d, are chosen so that the factorial effects a; and B; in (2.1) and (2.2), respectively, are
estimable, then the factorial effects ;,, ¥,;, and 7;; in (2.3) are estimable for d,xd, since the matrix of
coefficients for (2.3) is the Kronecker product of the corresponding matrices for (2.1) and (2.2). Hence

the estimation capacity of d;xd, can be summarized as follows.

Lemma. Assume (2.1), (2.2) and (2.3) hold. Suppose orthogonal arrays are used for d; and d, with
04, ...,0u being the estimable factorial effects for d; and B,,...,B; being the estimable factorial
effects for d,. Then in the product array dyxd,, Y, Y,; and their generalized interactions

Yij» i=1, ...,k j=1,.. .l are estimable.

In the applications of this Lemma, we do not distinguish between the effects 7, for the product array
d;xd; and the effects a; for the control array, d;, and so forth. For simplicity, we use the same notation

for both.

Example 1 is a special case of the Lemma. In the CA, the main effects A, B, C are estimable. In the
NA, the main effects a, b, ¢ are estimable. In CAxNA, A, B, C, a, b, ¢ and their interactions

Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb and Cc are estimable.

One can see clearly from the Lemma the deficiencies of Taguchi’s product array approach to robust
parameter design. The additional (n-1)(m-1) degrees of freedom in CA x NA are used for estimating
CxN and higher order interactions. There is no flexibility for using them to estimate CxC interactions
which may be important, or for estimating quadratic effects of control or noise factors. Furthermore, in
most practical situations it might be sensible to assume apriori that higher order interactions and certain
CxN interactions are negligible. It seems wasteful in these situations to have a large run size just to

ensure that all the CxN interactions are esﬁmable. ,



To rectify these deficiencies of the product array approach, an alternative approach will be proposed in

the next section.

3. A More Economical and Flexible Approach: The Combined Array

We can avoid the inflexibility and often reduce the expense inherent in the product array approach by
combining control factors and noise factors in a single array. The idea of using a single matrix for both
types of factors is also considered by Welch et al.(1989). In the combined array approach, the
experimenter constructs a single array to estimate those effects considered most likely to be important
apriori. In particular, the experimenter now has the flexibility to rank-order all possible interaction
effects according to their likely importance, and construct a plan that can estimate those at the top of the

list. As we will see, the combined array approach often also leads to a smaller experiment.

Note that the product array approach is a special case of the combined array approach since the product

array can be viewed as a single, albeit large, array for the combined set of control and noise factors.

The combined array approach does not share the two deficiencies of the product array approach pointed
out at the end of Section 2. It allows great flexibility in the estimation of important effects, and the run
size can be much smaller than that of the product array. This economy in run size results from avoiding

estimation of unimportant effects.

Flexibility will be illustrated in Examples 2 and 3 below. Both economy and flexibility will be
illustrated in Examples 4 and 5. In all the examples interactions among three and more factors are

assumed negligible.
The factors and run size in Examples 2 and 3 are the same as in Example 1.

Example 2. Use as the combined array a 16-run fractional factorial design with the defining relations,
I = ABCa = abc = ABCbc. From the relation ABCa=I, we have

AB = Ca, AC = Ba, BC = Aa,
that is, the three CxC interactions are estimable if the three CxN interactions Aa, Ba and Ca are

negligible, and vice versa. In comparison with Example 1, this combined array experiment provides



more flexibility for estimating the CxC interactions since some of the CxN interactions are likely to be
unimportant. On the other hand the three CxN interactions, Aa, Ba and Ca, are estimable if the CxC

interactions are negligible. As in Example 1 the other six CxN interactions are estimable.

Although this combined array has the same size as the product array in Example 1, the main effects of
the control factors A, B, C are estimable here without the stringent assumption needed in Example 1

that 2-factor interactions are negligible.

Example 3. The combined array is a 16-run fractional factorial design with the defining relations,
I = ABCa = BCbc = Aabc. The 2-factor interactions are aliased with each other as shown below:
AB = Ca, AC = Ba, BC = Aa = bc,

Bb = Ce, Bc = Cb, Ab = ac, Ac = ab. 3.1)

The main effects A, B, C are estimable. At most seven out of nine CxN interactions are estimable if
their aliases in (3.1) are negligible. Two advantages are that the noise effects a, b, ¢ are estimable and
that the NxN interactions are estimable if their aliases in (3.1) are negligible. The last property is not

particularly attractive since NxN are usually less important than CxN or CxC for robust design purposes.

The estimation capacities for the product array of Example 1 and the two combined arrays of Examples
2 and 3 are summarized and compared in Table 3.1. If we want to estimate some CxC and CxN

interactions, plans 2 and 3 are preferred.

TABLE 3.1 ABOUT HERE

In the product array approach, some degrees of freedom may be used for estimating high order
interactions induced by multiplication of CxC and NxN interactions. Examples 4 and 5 illustrate how
the combined array approach reduces the number of runs by avoiding estimation of high order

interactions that are unlikely to be important.

Example 4. Suppose there are four 2-level control factors, A, B, C, and D, and two 2-level noise
factors, a and b. Assume the CxC interactions AB, AC and AD are potentially important and we wish to
estimate them. If we use the product array approach, we first construct a control array that estimates all

main effects, A, B, C, and D and the three important interactions, AB, AC and AD. We then construct a
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noise array that estimates two main effects, a and b and the interaction ab. Figure 1.1 shows the
product array of the corresponding 8-run control array and 4-run noise array. The defining relation of
this plan is 7 = ABCD. According to the Lemma in Section 2, the resulting 32-run product array allows
us to estimate six main effectss A, B, C,D,a and b, twelve 2-factor interactions:
AB, AC, AD, ab, Aa, Ba, Ca, Db, Ab, Bb, Cb, and Db, ten 3-factor interactions and three 4-fact6r

interactions.

Since the 3-factor and 4-factor interactions are not likely to be important, it is more efficient to plan a
single experiment that estimates only the six main effects and the twelve 2-factor interactions. Since a
16-run fractional factorial design is too small for the number of effects to be estimated, we can use a D-
optimal design algorithm to find the combined array. Three such designs of size 20, 22 and 24 have
been generated from an optimal design algorithm,v DETMAX (Mitchell, 1977), used in the software
system RS/DISCOVER. Only the 22-run design is shown in Table 3.2. The determinants of the X'X
matrices for these three designs are respectively 9.4x10%2, 44.7x10%, and 177.8x10%, which increase
roughly by a constant multiple. These figures suggest that the gain in D-efficiency from each additional
run is roughly constant, so choice among these designs is a compromise between efficiency and run size.
All three designs are approximately two-thirds the size of the product array, but allow estimation of all

those potentially important effects estimable from the product array experiment.

TABLES 3.2 ABOUT HERE

In practice, engineering knowledge may allow us to go further in eliminating the need to estimate
superfluous effects. Even quite limited knowledge of underlying physical mechanisms may imply that
certain interactions can be ruled out. For example, if we believe that the noise factor a may interact
only with the control factors A and B, and the noise factor b may interact only with the control factors C
and D, then in addition to the three control-by-control interactions, AB, AC and AD, only four control-
by-noise interactions, Aa, Ba, Cb, and Db, need to be estimated. Using the combined array approach,
we can construct a 16-run fractional factorial plan to estimate the six main effects and the seven 2-factor

interactions. One such plan is given by the defining relations, / = ABCD = ABab = CDab.
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In an experiment plan that involves 3-level factors, the first order effects are the linear terms of the main
effects. The second order effects include both the quadratic terms of the main effects and the linear-by-
linear terms of the 2-factor interaction effects. In some situations we are willing to assume that effects
higher than second order are unlikely to be important. The product array approach, however, always
results in a plan that estimates many third or higher order effects. The following example illustrates tﬁe

savings in run size that is possible by using a combined array.

Example 5. Suppose there are two 3-level control factors, A and B and two 3-level noise factors, a and
b. Assume we wish to estimate the linear-by-linear term of the 2-factor interaction, A;B;, but do not
believe that higher order interactions are likely to be large. Using the product array approach, we first
construct a 32 full factorial plan for the control array that can estimate the main effects,
AL, By, Ag, and By, and the interaction effect, ALB}_. We again choose a 32 full factorial plan for the
noise array that estimates the two main effects a and b and their interaction. According to the Lemma,
the resulting 81-run product array allows us to estimate a total of eighty effects, including four first
order effects: A, Br, a; and by, ten second order effects: Ag, Bg, ag, by, ALBr, Arar, Arbr,

Biap, Br by, and ap by, and sixty-six third or higher order effects.

Since only the fourteen first and second order terms are likely to be important, it is more efficient to use‘
the combined array approach to plan a smaller experiment that can estimate these effects. A standard
central composite design of 25 runs, approximately one third of the size of the product array, will allow
us to estimate these fourteen effects, in addition to some other second order effects (see Box and Draper,
1987). Another alternative is to use an optimal design algorithm to generate even smaller plans which

estimate only the fourteen desired effects.

- 4. A Response Model Procedure for Analyzing Combined Array Experiments

The examples in Section 3 illustrate the greater flexibility for effects estimation and greater economy in

run size that is possible using the combined array approach. But how does this approach help solve the
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robust parameter design problem defined in Section 1?

The combined array approach implies a totally different procedure for robust parameter design than the
one used with product array experiments. This procedure, called the "Response Model Procedure” has

five steps:
1. Specify a preliminary model relating the response Y to the control factors 6 and noise factors &.

2. Find an experiment plan that allows this model to be estimated. This plan will be a combined

array, containing both control factors and noise factors.

3. Conduct the experiment. From the observed data y, select an appropriate model relating y to

control and noise factors.
4. Use the model from Step 3 to identify improved control factor settings.

5. Conduct a confirmation experiment to compare the performances of the settings from Step 4 and

the original setting. If necessary, iterate Steps 1 through 4.

In specifying the model in Step 1, use any available knowledge of the problem under investigation. This

knowledge might allow some control-by-noise interactions and curvature effects to be estimated.

Model selection in Step 3 can be facilitated by the use of such techniques as half-normal plots,
ANOVA, stepwise regression, Cp and PRESS statistics, data transformation, or regression diagnostics.
These techniques should be augmented by examination of interaction plots, especially CxN interactions,
since these interactions offer the potential for reducing variation. However, the size of a CxN
interaction alone is not necessarily a measure of the potential for improving robustness. The two
scenarios illustrated in Figure 4.1 demonstrate that a modest interaction may be more useful in robust

design than a large, significant interaction. This point is illustrated in the real example in Section 5.

In Step 4 the improved settings can be identified by informal interpretation of the model parameters
using main effects and interaction plots. This method, illustrated in the example of Section 5, is
particularly suitable if R is a measure of variability. It is simple, graphical and often provides insight

into physical mechanisms which allow the responsé variation to be reduced.
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A more formal version of this procedure proposed by Welch et al.(1989) may be required if different
plots point to conflicting control factor settings or if the fitted response model is too complex. The
formal procedure can be generically described as follows:

Approximate the expected loss R(®) = EL(Y, 1) | 8) by using the estimated model for Y obtained in
Step 3 and taking the expectation of L(Y, t) with respect to the distribution of the noise factors e
Denote the resulting function R(8). Then take 8" that minimizes R(6) to be the improved control factor
setting. The expectation of L can be approximated either by simulations from the joint distribution of

the noise factors or by using a noise array to obtain a rough estimate.

The model building and optimization processes in Steps 1 through 4 may be iterated to attain a better
value of 0*. This may mean using techniques sucﬁ as fold-over designs and central composite designs
to refine the model of Step 3, perhaps adding higher order terms. Or it may mean moving in the
direction of largest improvement of R(6) and conducting another experiment in a new region of the

control factor space.

In the context of computer experimentation, the ideas of modeling the response and estimating the
objective function by simulating from the response model were proposed by Hamami, Hooper and

Nazaret(1987) and formally laid out in Welch et al.(1989).

Taguchi’s approach, on the other hand, differs dramatically from the "Response Model Procedure”
outlined above. Rather than first modeling Y, Taguchi models loss directly, using a noise array to obtain
an estimate of average loss for each combination of control factor values. The resulting experiment plan

is a product array. The corresponding "Loss Model Procedure” is:
1. Specify a preliminary model relating R to the control factors .

2. Find a control array that allows the model in Step 1 to be estimated. Find a noise array for the

approximation of R. The resulting plan is a product of the two arrays.

3. Conduct the experiment, compute the approximated values, ﬁ, and based on them select an
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appropriate model relating R to the control factors 9.
Find 6" to minimize 13, where R is the estimate of R obtained from the model in Step 3.

Conduct a confirmation experiment to compare the performances of the settings from Step 4 and

the original setting.

Each approach has its advantages and disadvantages:

L

Ease of modeling:

Postulating a model for Y in Step 1 of the Response Model Procedure should be easier than |
postulating a model for R in Step 1 of the Loss Model Procedure. The experimenter is more
likely to have intuition or knowledge about the relationship between the factors and Y than about
the relationship between the factors and R. In addition, even if ¥ can be described by a fairly
simple regression model, the same is not true for R since R is obtained from Y through a
nonlinear and many-to-one transformation. Therefore it would be quite unusual to find a
transformation h (for example, from the power family) for which h(R) can be described by a
simple regression model in the control factors. A similar point has been made in Phadke and

Taguchi(1988) and Welch et al.(1989).

. Additional information revealed by control-by-noise interactions:

In the Response Model Procedure, CxN interactions plots can suggest which control factors can be
used to dampen the effects of noise factors, and may also provide insight into physical
mechanisms which allow the response variation to be reduced. On the other hand, the Loss Model
Approach masks these relationships by aggregating over all the noise factors. This will be

illustrated in Section 5.
Consequences of model misspecification:

In general, the Response Model Procedure depends more critically than the Loss Model Approach

on how well the model fits. Since control factor levels are determined from the fitted model,
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misspecification of the model could lead to control factor levels that are far from optimal. The
confirmation experiment provides some insurance against this scenario, but model diagnosis

methods clearly should play a big role in the Response Model Procedure.

Regardless of the modeling procedure, a product array provides some built-in insurance againgt
modeling difficulties. If either the response model or loss model is inadequate and does not lead
to improved control factor levels, estimates of R obtained directly from the data are available if a
product array was used. If all else fails, the control factor levels which gave the best value of R

in the control array can be adopted, if they are better than the initial control factor levels.

5. Example: Improvement of Epitaxial Growth Process

This example illustrates the potential advantages of the response model approach, both in terms of
information obtained from modeling and in terms of the economics of the experiment. The example is
based on a real experiment reported by Kacker and Shoemaker (1986). Because the raw data is no
longer available, however, pseudo-data has been imputed from the actual marginal averages, as

explained below.

The example concerns growth of uniform layers of silicon on top of silicon wafers. It is one of the
earliest steps in integrated circuit fabrication. Of primary importance is that the layers be of uniform

thickness. Kacker and Shoemaker describe the process in more detail.

There are eight control factors of interest as shown in Table 5.1. Deposition time is customarily used to
adjust the average thickness to the target thickness, which may be different for different types of
integrated circuits. Because deposition time was used in this way, variance was used as the objective
function rather than mean squared error (see Leon, Shoemaker, and Kackar (1987) for an explanation of

why variance might be used as an objective function when an adjustment parameter exists).

TABLE 5.1 ABOUT HERE
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During the growth process, the wafers are mounted on the sides of a fixture called a susceptor. This
susceptor has seven sides, each with a top and bottom position, so that a total of 14 wafers are processed
at one time. We will consider two noise factors: location of the wafer on the susceptor (top or bottom),
and facet (1-6) (there were actually 7 facets, but data from one of them is missing). To simplify the
analysis, we will consider only four of the facets, numbers 1, 2, 4, and 6. Omission of the remainiﬁg

facets doesn’t qualitatively change the results of the analysis.

The imputed data were obtained from

Yiik = ¥ij. + Vik = Vi. + S 5.1)
where y is the thickness of the epitaxial layer, i corresponds to a particular combination of control factor
levels, j is the index for location, k is the index for facet, 8, is normally distributed with mean 0 and

standard deviation .1, and

_ 18 - 12 _ 1 28
Yij, = gz Yig » Yik = EZ Yijg > Yi. = "1‘2‘2 E Yijk
k=1 j=1 j=1 k=1

This amounts to assuming that location and facet are independent in their effects on the epitaxial
thickness response. Tables 5.2 and 5.3 shows marginal means corresponding to the 16 control factor

combinations in the experiment.

TABLES 5.2 and 5.3 ABOUT HERE

We Qill compare the results obtained using

1. Loss Model Procedure with Product Array

2. Response Model Procedure with Product Array

3. Response Model Procedure with a Combined Array that is a fraction of the Product Array.
5.1 Loss Model Procedure with Product Array

Following Taguchi’s product array formulation and the original experiment as reported by Kacker and
Shoemaker, we use as the control array a 16-run fractional factorial design with the following

generators: D=ABC, F=ABE, G=ACE, H=BCE. ‘We use an 8-run full factorial noise array, crossing
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the 4-level facet noise factor with the 2-level location noise factor.

Figure 5.1 shows the half-normal plot of the estimable effects of the control factors on log Var(y). The
only obviously significant variance effect is the control factor H, nozzle position. Although the effect of
the control factor A (rotation method) is not clearly significant, the level of this factor might still be
changed in an effort to reduce Var(Y), since the change doesn’t involve any additional manufacturing

cost.
Based on this analysis the following control factors would be changed from their initial settings:

Factor Initial Setting  New Setting

A Rotation Method Oscillating Continuous
H  Nozzle Position 4 6

Since these are the same conclusions as in the original study, we know that these changes gave a 37%

reduction in the epitaxial thickness standard deviation.
5.2 Response Model Procedure with Product Array

The response model implied by the product array used above allow estimation of all control and noise

main effects, and all control-by-noise interactions.

We represent the facet noise factor, which has 4 levels, by three orthogonal contrasts,

Ml = F1+F2—(F4+F6)
M2 = F1+F4—(F2+F6)
M3 = F1+F6—(F2+F4)

A half-normal plot of the estimable response effects is given in Figure 5.2.

As expected, deposition time has a large effect on thickness, but so does location. Of special interest
are the control-by-noise interactions because they can indicaté potential for achieving a robust control
factor combination. The large HL (location-by-nozzle position ) interaction may indicate nozzle
position’s potential for reducing sensitivity to location. The interaction plot in Figure 5.3 bears this out.
Clearly, nozzle position 6 gives far less thickness variability between top and bottom locations than does

nozzle position 2.

Despite the fact that none of the facet-by-éonlrol interaction effects seem significant, the interaction plots
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in Figures 5.4(i) through 5.4(v) show some opportunities for improving cross-facet uniformity.
Judicious selection of levels for factors A and F could reduce logVar (Y) since in each case one of the
control factor levels gives a much flatter line than the other. On the other hand, the facet-by-C and
facet-by-H interactions have large mean squares, but do not have obvious potential for improving

robustness.

Based on this analysis, the settings of control factors H, A, and F might be changed to increase

uniformity in epitaxial thickness:

Factor Initial Setting  New Setting

A Rotation Method Oscillating Continuous
F  HCI Etch Temp 1200 1215
H  Nozzle Position 4 6

As noted earlier, factor D is used to adjust the average thickness to target, and indeed it has a very large
main effect for thickness. Using D to adjust the mean in this way will, however, have some effect on

the thickness variability.

The response model approach has given us several important pieces of information that we could not
obtain from the loss model approach. First, it was revealed that nozzle position (H) affects variability
because it reduces cross-location variation; it does not seem to have any potential for reducing cross-
facet variation. Second, the large (but not significant) rotation method effect observed in the Loss
Model Approach is apparently present because continuous rotation of the susceptor gives better
uniformity across facets than oscillation of the susceptor. Finally, the interaction plots also showed that
a longer deposition time and the higher HCI etch temperature give greater thickness uniformity. All of
these observations give the experimenter greater understanding of the physical mechanisms behind the

epitaxial growth process than would have been realized with the loss model approach.

The results are qualitatively the same if the standard deviation used in equation (5.1) is increased to 0.2.

However, the significant effects change substantially if it is increased to 0.5.
5.3 Response Model Procedure with a Fractionated Combined Array

If the response model approach is being used, there is no reason to run a product array. Instead, the
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design matrix containing both noise and control factors can be fractionated.

Table 5.4 shows several ways in which the product array for the epitaxial growth experiment could have
been fractionated. In comparison with the 128-run product array (Design #1), Design #2 requires only
64 runs and still allows estimation of most control-by-noise interactions. However, it confounds E with
LM,, L with EM,, and M, with EL. Design #3, on the other hand, allows estimation of all control and
noise factor main effects, plus 12 of the control-by-control intcractions, 19 control-by-noise interactions,

and 2 out of the 3 possible noise-by-noise interactions, all in 64 runs.

TABLE 54 ABOUT HERE

Noting that Design #2 is a subset of the product: array design, we have analyzed the data that would
correspond to this 64-wafer experiment. This analysis leads to qualitatively the same results as
presented in Section 5.2 for the product array design. Because of the confounding mentioned above,
however, we cannot tell that the large L=EM effect is actually due to a large location effect, and not to
an EM, interaction. If engineering knowledge could not clear up this ambiguity, additional runs would
be needed to de-alias these effects (see Box, Hunter, and Hunter (1978), page 413 for a way to do this

economically).

The fractionated combined array designs suggested for this example in Table 5.4 do not substantially
reduce the cost of the experiment. This is because they all still require that 16 different processing
conditions be run, just as in the product array design. For each processing condition, the noise factors
location and facet are fairly inexpensive to study by simply measuring epitaxial thickness of wafers
processed at different locations and facets. On the other hand, fractionating the combined array in this
example does reduce material and measurement costs, if dummy (scrap) wafers can be placed in the

unneeded positions on the susceptor.

However, the options for fractionating the combined array do illustrate that significant run and cost

savings could be possibie in applications in which noise is truly expensive to study.
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6. Discussion

The most obvious benefit of the combined array approach to robust parameter design is a dramatic

reduction in the number of runs over the product array approach.

In addition, the combined array approach gives the experimenter flexibility to use degrees of freedom to
estimate the effects most likely to be important. These might include control factor-by-control factor
interactions and curvature effects in some control factors, in addition to certain control factor-by-noise
factor interactions. In contrast, the product array approach requires that a large number of degrees of
freedom be used to estimate all possible control factor-by-noise factor interactions, and often control
factor-by-control factor-by-noise factor interactions, even though many of these effects could be ruled

out apriori using even limited knowledge of underlyi_ng physical mechanisms.

The third major advantage of the combined array approach is its focus on modeling Y, as described in
Section 4. This is usually a simpler job than modeling R. To make the modeling job as easy as
possible, we should try to choose a response Y that has an additive relationship with the control and
noise factors. Phadke and Taguchi (1987) encourage use of knowledge about underlying physical
mechanisms to choose an appropriate response, but data transformations such as those used by Box and

Cox (1964) could also be used to good effect.

Another advantage of modeling Y is additional information about specific CxN interactions that may
allow reduction of response variability induced by noise factors. This was illustrated in Section 5,
where different control factors were revealed to have a dampening effect on each of the two noise

factors.

As described in Section 4, a potential drawback of the combined array approach is its dependence on the
fitted model for Y. For this reason, the confirmation experiment and model diagnostics play an
especially important role in combined array experiments. Model selection and checking techniques such
as stepwise regression and normal probability plots of residuals can be used. (see Daniel (1976) and

Box, Hunter and Hunter (1978))

The combined array/response model approach is perhaps not as simple conceptually as the product
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array/loss model approach. As demonstrated in Section 5, analysis of response models requires not only

identification of large factor effects, but also detailed examination of interaction plots.

Sometimes use of the combined array does not lead to much financial savings because noise can be
relatively easily and inexpensively introduced through replication. For example, noise was actually
relatively cheap to study in the epitaxial growth example of Section 5. However, in many other
situations (the wave soldering process mentioned in Section 1, for example) introducing certain noise

factors does multiply the cost of the experiment and the combined array is very valuable.

The situations considered in this paper involve control and noise factors whose values can be fixed at
various levels in an experiment. If some control or noise factors are random (for example, if control
factors drift from their nominal levels and are tl;us sources of noise themselves), the response model
may be a mixed- or random-effects model. These cases would require different estimation and analysis

techniques than those presented here.
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Examples C CxC CxN N NxN

1 + - 99 ++ + -
2 ++ + 6/9 ++ &3/9 + + -
3 ++ + 7/9 + ++ +

(i) C and N denote respectively the main effects of control
factors and of noise factors.
(ii) ++ :estimable if 3- and higher-order interactions are negligible.
+ : estimable if other 2-factor interactions are negligible.
- : not estimable.
(iii) 6/9 + + : 6 out of 9 effects are + +.

Table 3.1. Comparison of estimation capacities for the plans in Examples 1-3

Run | A B C D a b
1 1 1 1 1 -1
1 -1 -1 1 1 1
1 -1 -1 -1 -1 -1
1 1 -1 1 -1 -1
1 1 1 1 -1 1
1 -1 1 1 1 1

-1 1 1 -1 -1 1
1 -1 1 1 -1 -1
1 -1 1 -1 1 -1

-1 -1 1 -1 -1 1
1 1 -1 -1 1 1

-1 -1 1 1 1

-1 1 -1 -1 1 -1
-1 1 1 1 -1 -1
1 -1 -1 1 -1 1
-1 1 41 1 1 1
-1 -1 -1 1 -1 -1
1 1 1 -1 4 1
-1 -1 1 1 1 -1
-1 1 1 -1 1 1
-1 1 -1 -1 -1 1
-1 -1 1 1 -1 1

DD = 2 e e e e e
CVOVWONAUNPEUWNPRPROOVLOINAWVHAEWN -

S

Table 3.2: 22-run D-optimal design



Factor Initial Setting Experimental Settings
CONTROL FACTORS
A Rotation Method Oscillating Continuous  Oscillating
B  Wafer Code - 668G4 678D4
C  Deposition Temperature 1215 1210 1220
D  Deposition Time Low High Low
E  Arsenic Flow Rate 57% 55% 59%
F  HCI Etch Temperature 1200 1180 1215
G HCI Flow Rate 12% 10% 14%
H Nozzle Position 4 2 6
NOISE FACTORS
L  Location Top Bottom
M  Facet 1 2

Table 5.1: Control and Noise Factors and Their Settings

Run | Facet1 Facet2 Facet4 FacetS5 Facet6 Facet?7
1 14812 14774 147772 14794 14860 14.914
2 14886 14810 14868 14876 14958 14.932
3 13996 13988 14.044 14.028 14.108 14.060
4 13.860 13876 13932 13846 13.896 13.870
5 14.182 14172 14.126 14274 14.154 14.082
6 13.768 13,778 13870 13.896 13932 13.914
7 14722 14736 14774 14778 14682 14.850
8 14758 14784 15054 15058 14938 14.936
9 14324 14092 13536 13.588 13964 14.328

10 13970 14448 14326 13970 13.738 13.738
11 14.184 14402 15544 15424 15.036 14.470
12 13918 14.044 14926 14962 14504 14.136
13 14648 14350 14682 15034 15384 15.170
14 15272 14656 14258 14718 15.198  15.490
15 13614 13202 13.704 14264 14432 14.228
16 13.866 14.130 14256 14.000 13.640 13.592

Table 5.2: Marginal means for Facet.




Run | Top Location Bottom Location
1 15.352 14.290
2 14.993 14.783
3 14.059 14.016
4 14.307 13.453
5 14.191 14.139
6 14.341 13.379
7 15.363 14.151
8 15.300 14.543
9 14.652 13.291
10 14.013 14.050
11 14914 14.773
12 14.885 13.945
13 15.000 14.756
14 15.511 14.353
15 14.529 13.286
16 13.987 13.841
Table 5.3: Marginal means for Location.
Design Generators Number of Estimable Effects
(Assuming no 3-factor interactions)
C N CxC CxN  NxN
#1 D=ABC
128 Wafers =ABE All 8 All 4 0 All32 All3
Product G=ACE
Array H=BCE
#2 Above
64 Wafers and 7 2 0 28 0
’ M 1=EL
#3 F=ABE
64 Wafers G=ACEL All 8 All 4 12 19 2
H=ACDE
M 1 =BCE
M,=ABCDL

Table 5.4: Three alternative combined array

designs for the epitaxial growth example
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Cy : D,
control control
factor factor
C, : D,
—»> >
e (noise factor) f (noise factor)

(@) (b)

Figure 4.1: Two hypothetical C x N interaction plots. In (a), Cx e is Iarge' but
does not give an opportunity to improve robustness. In (b) D =D,
gives better robustness to noise factor f than D =D;.
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Response (Thickness) Effects

Figure 5.2: Half Normal Plot of Response Model Effects
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Figure 5.3

. Interaction Plot for Nozzle Position (H)
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Figure 5.4 (i) :Interaction Plot for Rotation Method (A)
(Mean Square =.132)
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Figure 5.4(ii) :Interaction Plot for Deposition Temp (C)
(Mean Square = .446)
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Figure 5.4(iii):Interaction Plot for Deposition Time (D)

(Mean Square = .213)
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Figure 5.4 @) :Interaction Plot for HCL Etch Temp (F)
(Mean Square = .150)
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Figure 5.4 (V):Interaction Plot for Nozzle Position (H)
(Mean Square = .295)
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