COMPUTER EXPERIMENTS
FOR QUALITY CONTROL
BY PARAMETER DESIGN

William Welch, Tat-Kwan Yu
Sung Mo Kang and Jerome Sacks

IIQP Research Report
RR-89-06

April 1989



COMPUTER EXPERIMENTS FOR QUALITY
CONTROL BY PARAMETER DESIGN

William J. Welch, University of Waterloo
Tat-Kwan Yu, University of Illinois
Sung Mo Kang, University of Illinois

Jerome Sacks, University of Illinois

ABSTRACT

Taguchi’s off-line quality control methods for product and process
improvement emphasize experiments to design quality "into" products
and processes. These experiments search for values of engineering
parameters that define products insensitive to sources of variability
(noise). Typically, separate experimental designs are used for the
engineering parameters and the noise parameters. Data from the noise
design are collapsed to loss statistics, or signal-to-noise ratios, and these
statistics are modeled and used to predict good levels of the engineering
parameters. In addition to physical experiments, these ideas have been
applied to computer experiments where the observations are generated by
a computer model or simulation. In Very Large Scale Integrated (VLSI)
circuit design, the application of interest here, computer modeling is
invariably quicker and cheaper than physical experimentation.
Nevertheless, the cost simulation can still prohibit the large number of
experimental runs often required for a Taguchi experiment.

Our approach models quality characteristics generated by the com-
puter simulation as functions of both the engineering and noise parame-
ters. The single experimental design for both types of parameters typi-
cally requires far fewer runs. The model is used to predict the quality
characteristics, from which loss statistics can also be predicted and
optimized. In the VLSI applications described, we obtain effective pred-
iction of product performance with comparatively few observations.

This is a revised version of Technical Report #4, February 1988,
Department of Statistics, University of Illinois at Urbana-Champaign.



Introduction

Taguchi’s off-line quality control methods for product and process improvement
(Taguchi and Wu 1980, Taguchi 1986) have generated considerable industrial and
academic interest. They emphasise designing quality “into” products and pro-
cesses, s0 that they are insensitive to sources of variability or noise, rather than
achieving quality after the fact by on-line inspection (inspecting in quality). Pa-
rameter design, an important step in off-line quality control, is the search for levels
of engineering parameters that lead to a product or process robust to the noise
factors. These engineering parameters, such as nominal dimensions, are often
called control factors, because they can easily be changed or controlled (unlike
noise factors, which are typically expensive to control). Kackar (1985) gave a very
readable account of the main ideas; Kackar and Shoemaker (1986) and Phadke
(1986) provided several examples.

A key feature of these ideas is the separation of the control factors zcon and the
noise factors z, ;se- (Sometimes a control factor and a noise factor may relate to
the same variable: for instance, a nominal value and a deviation from nominal due
to manufacturing variablility.) For example, in the main application of this arti-
cle, a Very Large Scale Integrated (VLSI) circuit, the control factors are transistor
dimensions to be chosen. The noise factors correspond to manufacturing-process
variability, including variablity about the selected nominal dimensions. The ob-

jective of the experiment is to choose the transistor dimensions so that the circuit



performance is robust to the noise variation.

Approaches by Taguchi employ two experimental designs (or arrays): one for
the control factors and another for the noise factors. Observations on a quality
characteristic are taken for every combination of zcon in the control array and
Zpoise in the noise array. For given zcon in the control array, the “replicate”
observations generated by the noise array are reduced to a loss statistic (or a re-
lated signal-to-noise ratio), measuring the performance of the engineering design
defined by zcon. The loss statistic averages a measure of loss over the distribution
of the noise factors. In the main example below the target for the simulation out-
put Y (Zcon, Zppjse) i zero, and we use an expected squared-error loss, following
Taguchi,

L(zcon) = / Y2 (Zcon Zpoise)9(Znoise) 4 Tnoises (1)

where g(Z,qise) 8 the noise probability density function. The objective is to
find an engineering design zcon that minimizes this loss. Usually this is done
by modeling the observed losses, often including only the main effects of zcon,
and optimizing over zcon. Even if the engineer has carefully parameterized the
problem to reduce interaction effects on the underlying quality characteristic Y, it
is not clear why complicated loss statistics or signal-to-noise ratios should admit
such simple, main-effects models.

VLSI circuits may be simulated by computer models or codes, in which case

the simulation output is a deterministic function of all the factors, both control



and noise, if noise factors are included in the inputs. Many parameter-design
experiments in electrical engineering are of this type: for example, Phadke’s
(1986) differential operational amplifier experiment and even Taguchi’s Wheat-
stone bridge example (Taguchi and Wu 1980, Chapter 5.2). In VLSI-circuit design,
computer modeling is invariably quicker and cheaper than physical experimenta-
tion. Nonetheless, the cost of the simulation can still prohibit the large number
of experimental runs often required by Taguchi’s “crossed-array” plans. Simi-
larly, direct optimization of L(zcon) can require large numbers of evaluations of
Y (zcon, Zpejge) in order to evaluate L(zcon) at every zcon tried.

In contrast, our approach models a quality characteristic Y (zcon, Zpgise) €€n-
erated by the computer simulation as a function, typically polynomial, of both
Zcon and Z;,ice- The single experimental design for both types of parame-
ters typically requires far fewer runs than crossed arrays. The model provides
a computationally-cheap surrogate f’(zcon,znoise) for the simulator. The loss
statistic, for example (1), can in turn be predicted by replacing Y (zcon, Zpojise)
by the approximating f’(zcon,znoise). We then search for zcon minimizing the
predicted loss statistic. In the VLSI applications described, as well as requir-
ing comparatively few observations, we obtain more-effective prediction of prod-
uct performance than crossed-array experiments, probably because the underlying

quality characteristic Y admits a simpler model than the loss statistic, and is

therefore easier to predict accurately.



The next section defines our method in greater detail. Much of the remainder

of the article is concerned with application to the main VLSI example.

Optimizing Loss Statistics Via Modeling

the Underlying Response

The proposed method involves six steps.

1. Design an experiment to predict the response of interest as a function of the

control factors zcon and the noise factors z,ige:
Response = linear model + error,

or
Y=5 ﬂj f § (zcon, Zpoise) + error.

The f j’s are assumed-known functions of zcon and z,;se (for example, a
polynomial model), and the 8 f ’s are unknown constants to be estimated from
the data. The error term represents systematic departure from the assumed
model, because the computer response Y is deterministic. As noted in the
introduction, we do not use separate control and noise arrays; considerable
economy in the number of observations can result from designing a single

experiment for both types of factors.

2. Predict Y (zcon,Zpgijse) bY the least squares estimate f’(zcon,znoise) =

)Y ﬁ ] f i (Zcon, Znoise)-



3. For given zcon, predict a loss statistic L(Zcon) from the estimated response

function. For example, the prediction of the loss statistic (1) is

R 52
L(zcon) = / Y"(zcon, Znoise)9(Znoise) @ Znoise-

In the application below the density g(z,qise) is taken as uniform on a finite
set of noise levels representing typical and extreme processing conditions.

This is mainly for convenience.

We prefer to minimize expected loss, because it underlies the Taguchi philos-
ophy, rather than maximize a signal-to-noise ratio. Leon, Shoemaker, and
Kacker (1987) discussed the connections between these two optimization

problems.

4. Minimize i(zcon) as a function of zcon. In practice, the mathematical
optimization will be tempered by engineering and cost considerations. For
instance, VLSI designs with small values of zcon and hence chip area are

often of interest.

5. Conduct a confirmatory experiment to evaluate L(zcon) by fixing zcon at

the value(s) found in step 4 and varying z, 4;se according to g(zpgise)-

6. Iterate if necessary. For instance, if the optimization step suggests values
of zcon outside the design region which are technically and economically

feasible then the design region might be shifted.



Example: VLSI Clock Driver Design

Background

Clock drivers play a critical role in digital integrated circuits and systems. Figure 1
shows such a clock driver circuit. From the master clock CLKjy, the circuit
generates CLK and CLK, clocks with pulses of opposite polarity, to control data
flow. Usually it is important that CLK and CLK have the same transition times
(zero clock skew). However, due to process variability and other factors this is
often difficult to attain. Because each clock signal switches twice per machine
cycle, two clock skews S; and S can be measured (in units of nanoseconds), as
illustrated in Figure 2.

The main goal is to determine widths wy,...,wg for the transistors M;y,...,
Mg in Figure 1 that give the smallest clock skews in the presence of process
variability. To allow for quadratic effects, the experiment is carried out with each
width at three levels, denoted by -1, 0, and 1.

For this type of circuit, process variability is often characterized by extracting
three sets of process parameters associated with high (H), medium (M), and low
(L) current-driving capabilities in the transistors. The transistors are of two types,
P (M;, M3, and Mjy in Figure 1) and N (Mg, My, and Mg). A P-type transistor
is always paired with an N type (e.g., M; and Ms). Because the three P-type

transistors are manufactured simultaneously the process affects them in the same



way, and one noise factor is sufficient for the P-type transistors. Let PH, PM, and
PL denote high, medium, and low current-driving capabilities for the P-type tran-
sistors. Similarly, a second noise factor with levels NH, NM, and NL is sufficient
for the three N-type transistors. Following Shoji (1986) we experiment with the
five combinations PH-NH, PH-NL, PM-NM, PL-NH, and PL-NL to represent both
typical and extreme processing conditions. These noise combinations are coded
1,...,5 below.

We will consider loss statistics that combine the two skews. For fixed w =
(wq,...,wg), there are five pairs of skews corresponding to the five noise lev-
els. Denote these skews by Yj (w),...,Y1g(w). The target skew is zero, and the

logarithm of the average squared-error loss is

p 10,
Laq(w) = oglg 3. ¥P(w)] @)

The logarithmic transformation, being monotonic, does not affect the optimal w
but is relevant below when Lgq is modeled directly. A more-conservative perfor-

mance measure is the worst-case skew

Lwe(w) = max{|Y; (w)];...,[¥10(w)]]. (3)

Minimizing loss via modeling the clock skews

Several considerations determined the choice of model for the clock skews as func-

tions of the control and noise factors.



e Because curvature and interactions cannot be ruled out we adopt a second-

order polynomial model.

e There are only five combinations of the two noise factors, whereas a full
second-order model in two factors has six unknown constants. For simplicity,
therefore, we treat the noise combinations as a single qualitative factor at the
five levels 1,...,5. (As a referee pointed out, an alternative parameterization
is to have N and P effects, the N x P interaction, and a contrast between
the center point and the corner points. This would facilitate interpretation,

though predictions would be identical.)

o There are two chains of transistors in Figure 1: (Mjy,...,My) and (Mg, Mg).
This suggests that only the seven interactions wywq, wjws, wywy, wows,
wowy, wawy, and wgwg involving transistors in the same chain need be

considered.

e No similar reasoning leads to a reduction in the number of interactions be-
tween the widths and the noise factor, however. Although one might suspect,
for example, that there would be no interaction between the widths of the
P-type transistors and the component of the noise factor representing vari-
ability in the current-driving capabilities of the N-type transistors, this is not
the case. The two types of transistors are interconnected. These interactions

between control and noise factors allow the noise effects (and thus sensitiv-



ity to noise) to differ at the various control-factor configurations. Easterling
(1985) pointed out this connection between interactions and robustness to

noise.

Thus, we model each of the two skews as a function of the widths w and noise

level 5 by

Y(w,5) = Bg+Biwy+...+ Pgwg + ﬂnw% 4+ et ﬁsswg
+ Browiwg + f13wiwy + Brawiwy + Pozwowg + Bagwowy + B34wawy

+ Bsewswe + 5 + 61jw1 + e+ 66]"”6 + Z. (4)

The unknown constants ~4y,...,75 and 6;1,...,8g5 are the main effects for the
qualitative noise factor and the interaction effects between the control and noise
factors. Because observations derive from a deterministic circuit simulator there is
no random error, and Z represents systematic departure from the assumed linear
model. Not all of the unknown constants are identifiable, so we arbitrarily set
5 = 615 = -+ = g5 = 0. This leaves 48 unknown constants to be estimated.
We designed a 60-observation experiment to estimate the 48 unknown constants
in model (4). The number of runs is fairly arbitrary; clearly at least 48 are needed,
and we wanted a modest number of degrees of freedom to assess potential lack
of fit. The ACED package (Welch 1985) was used to obtain the design. This
package can construct experiments according to various optimality criteria. Here,

the observations are computer simulations not subject to random error. Thus,



the mean-squared-error criterion (Welch 1983) in ACED, which addresses bias
in prediction arising from model inadequacy, is appropriate. (This criterion also
includes the variance arising from random error; we weighted the bias component
to be dominant.) The use of a computer package like ACED also circumvents some
difficulties in designing this experiment: only some of the interactions need to be
estimated and the five-level noise space is not a regular factorial arrangement. The
experimental design and the resulting data are given in Table 1.

The two skews are separately modeled via (4). Least squares estimation of
the unknown constants allows us to predict the two skews at untried levels of the
control and noise factors. In the presence of systematic error rather than random
error, statistical testing is inappropriate. Nonetheless, the root mean squared
errors of the least squares analyses for the two skews are .03 and .08 (relative to
data ranges of about —3.9 to 0.2 and —2.2 to 3.8), suggesting that the models fit
well. For brevity the least squares estimates of the unknown constants are not

given. However, we note that
e The first-order effects for both the control and noise factors are all large.

e Many of the second-order (quadratic and interaction) effects are moderately

large.

e The contrast between high and low levels of the N-channel noise factor is

larger than that for P. It is often found that the N-channel variability is

10



more critical.

For fixed w, the two models are used to predict five pairs of skews corresponding
to the five noise levels. Denote these 10 predictions by ¥ (w),...,¥19(w). The
loss statistics (2) and (3) can then be estimated by

A 1 10 " 2
Esq(w) = logl s 3~ #7(w)
1=1
and

Ewe(w) = max{|?; (w)},..., [P 10(w)])-

The next step is to minimize either of these loss statistics with respect to w.
Discussion of this and the validation from confirmatory experiments is deferred to

a comparison with alternative experimental design and modeling strategies.

Modeling loss statistics directly

For comparison, we also conducted an experiment with separate control and noise
arrays, as has been advocated by Taguchi for optimizing through direct modeling
of a performance measure.

The choice of a model for a loss statistic L is problematic. Whereas the engineer
may have substantial background knowledge concerning the underlying response,
approximate models for complex loss functions are typically not so intuitive. In
this example, when modeling the skews there is an engineering basis for omitting

some control-factor interactions. However, this need not imply that the same
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interactions are negligible when modeling the loss statistics, which are nonlinear
functions of the skews. Indeed, these interactions turn out to have fairly large
effects. As a simple illustration, Y = z; + z9 has no interaction between two
factors z; and z9, but the loss Y2, for example, clearly does. A log transformation
is often suggested to reduce interaction effects in signal-to-noise ratios similar to
the squared-error loss (2) (see, for example, Kackar 1985). In the absence of
engineering intuition, however, we adopt a full second-order model in w for both

loss statistics (though hesitantly for the non-smooth Lywc):

6 6 6
Lw) =Bo+ 3 Bywi+ 3 X Byjwiwj + Z. (5)

=1 1=17=1

There are 28 unknown constants, and we designed a 40-run experiment for the
control factors, again using ACED. As when modeling the clock skews, the size
of the control array is somewhat arbitrary but allows lack of fit to be measured.
Crossing with the noise array of size five leads to a total of 200 runs. Part of the
experimental design and data are given in Table 2. For given w in the control array
the data generated across the noise array are collapsed to the loss statistics Lgq(w)
and Lwc(w) in (2) and (3). Fitting model (5) to these observed statistics provides
direct predictions of Lgq(w) and Lwc(w) at untried w’s, which can be optimized
with respect to w. The root mean squared errors for the Lgsq and Lwc fits are 0.1
and 0.25 relative to data ranges of —.5 to .8 and 1.0 to 3.9. Qualitatively, then,
the models do not appear to fit quite as well as those for the skews.

This experiment does not strictly follow the pattern of analysis in the examples

12



given by Taguchi (1986). That paradigm fits additive models to the loss statistics
(ignoring interactions) and would optimize the level of each transistor width sep-
arately. In this example, using the data from the 40 x 5-run experiment, such an
approach leads to extremely poor predictions (given below). Also, Taguchi’s Lyg
experimental design might be used for the control factors. The comparison we do

make is more consistent with our methods.

Results and comparisons

We now give results for:

(I) the 60-run experiment for the skew models (4), from which loss statistics are
predicted indirectly, and

(IT) the (40 x 5)-run, crossed-array experiment for modeling the loss statistics
directly via (5).

We also consider a hybrid strategy:

(III) the (40 x 5) experiment from strategy II but modeling the skews to predict
the loss statistics as in strategy I.

Table 3 gives results for the loss statistic Lsq. Listed there are the best-three
sets of transistor dimensions w over the 36 grid {-1,0, 1}6 as predicted by each
of the three strategies. The last column gives the true Lsq’s from confirmatory
experiments. Similarly, Table 4 presents the results for the loss statistic Lwc. Key

features of these results are:

13



e The confirmatory experiments indicate that strategy I predicts the skews

accurately enough to give predictions very close to the actual losses.

e Strategy I gives more reliable predictions and superior circuit designs
(smaller actual losses) than strategy II. These differences are of importance;
for example, a reduction of the worst-case skew from 1.07 ns to 0.53 ns is of

practical significance.

e Strategies I and III give virtually identical results. This shows that a well-

chosen, small experiment can be adequate.

e Comparing the results for all three strategies indicates the superiority of

modeling the skews rather than modeling the loss statistics directly.

¢ Fitting additive models (ignoring interactions) to the loss statistics from
the (40 X 5)-run, crossed-array experiment and optimizing the level of each
transistor width separately produces even worse predictions. For example,
the predicted best squared-error loss is —2.39, but the actual loss computed

from a confirmation experiment is —0.58.

e Strategy I gives the same best-three circuit designs for the two loss statis-
tics. There is some indication that even better performance might be ob-
tained by another experiment changing the ranges of the last four transistors
widths. This is borne out by the results of minimizing the predicted loss

statistics over the continuous region [—1, 1]6 rather than the discrete region

14



{-1,0, 1}6. Such optimization of the predictor of Lsq from strategy I leads
to w = {-.07,.10,-1,1,1,1}, so that the last four optimal widths are on the
boundary. The implication is that going beyond the boundary could lead to

further improvement.

Discussion

One reason why our proposed method gives reliable predictions with few observa-
tions here is that the skews admit simple models. Moreover, engineering under-
standing of the underlying response facilitates model identification. Another, more
general, advantage of modeling the underlying response rather than a loss statistic
is that collapsing the data to a loss statistic could hide important relationships in
the data.

Clearly, more empirical experience is required to determine the general use-
fulness of the proposed strategy. In another application, a sense-amplifier circuit,
the proposed method with 48 observations gives more accurate predictions of the
losses than modeling the loss statistics with a crossed-array experiment of 140
runs. Again, about two thirds of the observations are saved. In this example there
is little difference in the actual performances of the optimized circuit designs.

We used a computer-aided statistical design package to automatically gener-
ate the experimental plans. This kind of tool avoids many of the complications

often experienced when using catalogued experimental designs. For example, the
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user can concentrate on the model without worrying about matching the desired
interactions to the aliasing structure. We believe that the widespread adoption of
these tools and increased attention to modeling rather than combinatorics would
encourage the experimentation needed to improve quality. Similarly, model fit-
ting and the minimization of predictions over a grid are straightforward using, for
example, SAS.

These methods can be extended to physical experiments with random error.
In such experiments noise variability is due to unmodeled sources (measurement
error, omitted variables, etc.) as well as the noise variables being manipulated. If

| the unmodeled sources are unimportant or lead to a noise component with constant
variance there is little technical difficulty in extending our methods. Nonconstant
variance requires further study, however.

Returning to computer experiments with no random error, Sacks, Schiller and
Welch (1989) discussed several examples and treated the systematic departure from
a linear model as a realization of a stochastic process. This approach replaces least
squares prediction by flexible functions that interpolate the data points. Applying
these techniques to parameter-design problems is the subject of ongoing research

and will be reported elsewhere.
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TABLE 1. Experimental Design and Data for Modeling Clock Skews (Two
Skews Are Observed for Each Run)

Noise
Run Transistor Widths w Level Skews
1 -1 -1 -1 -1 -1 -1 3 -1.289 —0.307
2 -1 -1 -1 -1 -1 0 4 —0.636 —1.199
3 -1 -1 -1 -1 1 -1 1 -1.219  0.907
4 -1 -1 -1 1 -1 2 -1.151 1.678
5§ -1 -1 -1 1 1 3 —0.449 -—0.422
6 -1 -1 -1 1 1 5 -0.510 —0.343
7 -1 -1 0O -1 -1 -1 5 —2.758 0.157
8§ -1 -1 1 -1 -1 1 2 —2.414 -1.309
9 -1 -1 1 0 -1 1 5 —1.920 -1.633
10 -1 -1 1 1 -1 1 4 —0.809 -—1.546
11 -1 -1 1 1 0 0 1 —1.227 —0.496
12 -1 0O -1 -1 0 1 2 —1.412 0.041
13 -1 0 -1 1 0 1 4 —0.452 -0.628
14 -1 0 0O -1 -1 1 —-1.127 0.062
15 -1 0 -1 1 0 5 —3.860 2.011
16 -1 0 0 0 -1 4 —2.107 0.863
17 -1 1 -1 -1 -1 -1 2 —2.300 1.350
18 -1 1 -1 -1 -1 1 3 —-1.118 -—0.466
19 -1 1 -1 -1 5 —1.495 0.070
20 -1 1 -1 0o 1 1 —-0.512 —-0.236
21 -1 1 -1 1 -1 4 —1.184 1.592
22 -1 1 1 -1 -1 -1 1 —2.126 0479
23 -1 1 1 -1 1 1 4 —2.504 0.931
24 -1 1 1 O 1 -1 3 —2.769  2.567
25 -1 1 1 1 -1 5 —-3.315 3.759
26 -1 1 1 1 1 2 —-1.982 1.149
27 0 -1 -1 -1 0 -1 5 —1.927 0.365
28 0 -1 -1 1 1 4 —0.452 —-0.922
29 0 -1 O 1 -1 O 5 —0.855 —2.175
30 0 -1 1 -1 0 O 4 —1.768 —0.748



31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
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TABLE 1. Continued

1
1
0
1

-1

o

W N Gt B = O R N U1 W O WA U N T AW WN RO W O =W

-0.715
—0.510
—1.401
—1.576
—1.841
—1.704
—1.491
—0.852
—0.266
—0.067
—1.156
—1.096
—0.649
—0.958
—-2.049
—1.545
—0.928
—-1.197
—2.007
—0.889
—0.659
—1.166
—0.285

0.229
—2.269
—0.236
—1.642
—3.055
—3.522
—1.440

—-2.177
—0.283
—-0.715
—0.639

2.004

0.004

0.724
—1.439
—2.196
—-1.691
—0.583

0.053
—1.010
—-1.978
—0.687
—1.504
—2.081
—0.423
—0.161
—-0.391
—0.482
—0.121
—1.440
—1.841

0.539
—1.312
—0.343
—0.533

2.585
-0.175
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TABLE 2. Part of the Crossed-Array Experimental Design and Data for
Modeling Loss Statistics Directly (Two Skews Are Observed for Each Run)

Runs

Transistor Widths w

Skew at Noise Level

1 2 3 4 5
-5 -1 -1 -1 -1 0 1 -0.73 -1.12 -1.01 -0.83 -1.30
-0.76 -0.78 —0.76 —0.86 —0.78
6-10 -1 -1 -1 1 1 -1 -0.74 -115 -1.01 -0.88 -—1.43
0.60 1.68 1.16  0.72 1.97
11-15 -1 -1 0 0 -1 -1 -098 -1.85 -144 —1.03 —2.06
-0.46 0.01 -0.34 -0.57 -0.13
16-20 -1 -1 1 -1 0 -1 -2.11 -345 -2.85 -2.39 -391
0.39 1.22 0.79  0.47 1.43
21-25 -1 -1 1 1 1 1 -1.15 -144 -146 -1.39 -1.79
-0.29 -0.29 -0.19 -0.22 -0.09
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TABLE 3. Predicted Best Three Circuit Designs for the Squared-Error Loss

Statistic
Experiment Modeling Best w on 3% Cube Predicted Actual
60 runs skewsvia(4) O 0 -1 1 —.90 —-.90
1 1 -1 1 -.76 =77
-1 -1 -1 1 —.68 -.72
40 X 5 runs Lygvia (5) -1 1 -1 1 01 —-.38 -.50
-1 0 -1 1 01 -.31 —.61
-1 1 -1 1 -11 -.30 —.41
40 x 5runs skewsvia(4) O 0 -1 1 —.89 —-.90
1 1 -1 1 -.76 =77
-1 -1 -1 1 11 -—.69 —-.72
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TABLE 4. Predicted Best Three Circuit Designs for the Worst-Case Loss

Statistic
Ly.
Experiment Modeling Best w on 3% Cube Predicted Actual
60runs skewsvia(4) O O -1 1 1 1 .50 .53
-1 -1 -1 111 .56 .51
1 1 -1 111 .63 .66
40x5runs Lyvia(5) -1 0 -1 0 0 1 .93 1.07
-1 -1 0 1 1.05 1.17
-1 1 -1 0 0 1 1.06 1.36
40x 5runs skewsvia(4) O 0 -1 1 1 1 .50 .53
-1 -1 -1 111 .52 .51
1 1 -1111 63 .66
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Figure 2. Clock Signals and Skews
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