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ABSTRACT

This article discusses methods whereby reports of warranty claims can
be used to estimate the expected number of warranty repairs per unit in service
as a function of the time in service. These estimates are adjusted for delays or
lags corresponding to the time from the warranty repair until it is entered into
the data base used for analysis. Forecasts of the number and cost of warranty
repairs on the collection of all units in service are also developed along with stan-
dard errors for these forecasts. The methods are based on a log linear Poisson
model for numbers of warranty claims. Both the case of a known distribution of
reporting lag and simultaneous estimation of that distribution are considered.
The use of residuals for model checking, extensions to allow for extra Poisson
variation, and the estimation of warranty costs are also considered.
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1. Introduction

With products under warranty, manufacturers often collect detailed claims data. In
this article, we discuss use of these data for the prediction of future warranty claims and
the making of comparisons of claim rates and costs for different product lines, different
components of a product, units manufactured at different times, and so on. One practical
problefn which often arises and which we address is the presence of reporting delays between
the time a claim occurs and the time that it is entered into the data base used for prediction
and analysis.

For convenience, we consider the product to be automobiles. The methods we present,
however, are widely applicable and also have use in the analysis of repair data in organizations
which operate fleets of a particular type of unit.

The basic statistical model we consider is as follows: Suppose that cars enter service (are
sold) on days z : 0 < z < 7* and that once a car is in service, the number of repairs ¢
days later (at age t) is assumed to be Poisson (), (t = 0,1,..., independently). In most
appfica.tions )¢ is small and can be interpreted as the probability of a repair at age t. Let f;
be the probability that the repair claim enters the data base used for analysis (is ‘reported’)
I days after it takes place (I = 0,1,...). Suppose that N, cars are put into service on day
z and let n.y be the number of repairs at age ¢t and with a report lag I, for cars put into

service on day z. The distribution of nzy is
gy ~ Poisson(pze) (1.1)

where gz = N ) fi. It is convenient also to define Ay = Tt _, A, the expected number of

u=0
repairs for a car up to and including age £.

Individual cars almost certainly have varying repair rates, but the counts n.y obtained
from the superposition of the repair processes of many cars should be close to Poisson when

repair rates are small. Extensions that allow for extra-Poisson variation are discussed in

Section 4. The parameter ), in (1.1) can be interpreted as the marginal or average rate of



repair at age t. Note that ), is assumed to be independent of when the car was manufactured
or put into service and f; is assumed independent of when the repair occurred. These
assumptions can be checked and modified if necessary; we return to this point in Sections 4
and 7.

Our primary objective is the prediction of the (eventual) average number of repairs at age
t, or up to age ¢, for cars put into service over the period 0,1,...,7. These are respectively

T 0o
z=0 El =0 Nztl

mt) = =

t=0,1,... (1.2)

and
t

M(t) = z_:om(u). (1.3)
Note that these are simple measures of qua.li:; and that the total number of repairs to age
t relates directly to cost. We suppose that data are available over the time period 0 to T'.
Thus, all claims reported by day T are included so that the counts n_y for z,¢,! such that
0 <z+4+t+1<T are observed. Estimation of m(t) and M(t) is then a prediction problem;
we predict those n.y’s in (1.1) and (1.2) that are not yet observed. Figure 1 portrays the
situation when there are no reporting lags (i.e. fo = 1), and Figure 2 the general situation.

The prediction problem for warranty repairs is considered in Section 2. Section 3 in-
troduces alterations for grouped data. Section 4 outlines methods of model checking and
more refined statistical analysis of the claims data. Section 5 deals with the prediction and
analysis of warranty cia.im costs, as opposed to the number of claims. Section 6 contains
examples and Section 7 concludes the paper with a discussion of additional problems.

The methods presented here are similar in spirit, although different in detail, than meth-
ods used for other problems where reporting lags are important. For examples involving the
reporting of AIDS cases see Kalbfleisch and Lawless (1989abc) and for examples in insur-
ance, Kaminsky (1987). Simple Poisson and mixed Poisson models have been used often in

reliability problems (e.g. Ascher and Feingold, 1978, Lawless, 1987, Nelson, 1988) but the

use of more complex Poisson models, as in the present context, is new.



2. Estimating Repair Rates and the Number of Warranty Claims

2.1 Reporting Lag Probabilities Known

To begin, suppose that the probabilities f; are known and let F; = fo+...+ fi. Throughout
it is also supposed that N, the number of cars entering service on day z, is known for
z = 0,...,min(r,T) where T is the current date. The data comprise the frequencies n,,

where z +t+ 1 < T and = < 7, and give rise to the likelihood

L= [T e M (N A f)™™" [rau! . (2.1)
z+t+1<T

e<r

The maximum likelihood estimates obtained from (2.1) are

M=ns/Rroe t=0,..,T (2.2)
where
Nt = E E Nl (23)
e+I<T-t

z<7
is the total number of repairs which have been observed on cars of age ¢ days, and

min(r,T—t)

RT—t = Z NzFT—t—z (2-4)

2=0
is an adjusted count of the number at risk at day t. Note that N., the number of cars
entering service on day z, is adjusted by a multiplicati\fe factor which is the probability
that, for a car in this group, a repair at age ¢t would be reported by time T
The corresponding estimates of m(t) and M(t) are
¢

m(t) =X, M@)=Y A=A (2.5)

u=0



and to obtain prediction limits, we consider the variation in m(t) — m(t) or M(t) — M(t).
Let N = Y} g N, be the total number of cars entering service by day 7. We presume that N

is known. It then follows easily that
E{m(t) —m(t)} =0
and, in the Appendix, it is shown that

var{m(t) — m(t)} = (N_N_Tzf—?) A (2.6)

It follows immediately that E{M(t) — M(t)} = 0 and
. ! (N—-Rr_,
var{M(t) - M(t)} = Y (———L) Au- (2.7)
u=0
Variance estimates are obtained by replacing A, with d.in (2.7) and a normal approximation
provides approximate confidence intervals for M(t). For large samples, this approximation

is very accurate; in small sample problems, more accurate approximations could be derived.

REMARKS:

1. If there is no reporting lag or if it is ignored, then estimates are given by the formulas
above with all of the Fi’s (I = 0,1,...) equal to one. In this case, Rr_, is the total
number of cars in service that have an age of at least ¢ at time T'. If the reporting
lag is ignored when there is a delay in reporting, the estimates of A, (see (2.2)) are
biased downwards, as are predictions of claims. This is particularly serious for early

predictions; see Section 6.

2. Note from (2.4) that if T—t > 7 and F;=1for I > T —t—7 then N = Rr_; and, by
(2.6), var{m(t) — m(t)} = 0. In this case, m(t) = ri(t) is fully known.

3. If T < 7 then to estimate the variances (2.6) or (2.7) we have to estimate Nr41+...+ Ny,
i.e. we need to know the number of cars entering service up to day 7. To avoid this,
one can always select 7 < T, i.e. estimate eventual claims only for cars having entered

service by the current date.



. Estimation of the eventual number of claims m(t) or M () is a finite-sample prediction
problem for Poisson random variables. In the numerator of (1.2), the n.y’s with z +
t+1 < T are observed by the current time T and the remaining n,’s are future values

to be predicted.

. Confidence levels associated with prediction intervals refer to repeated occurrences of
the entire process. As a consequence, sequences of predictions which are made as new
data are reported are not independent. This is a well known problem with multiple

prediction statements but does not materially affect their usefulness.

. We have assumed that there is no reporting lag associated with the N_’s. If there are
small reporting lags then a simple adjustment is to scale up the N, values reported
close to the current date T using estimates of the lag probabilities. Another approach
is to eliminate from the set of repairs considered any that are on cars not yet reported
as in service. If this is done, and the delay in reporting cars entering service is not

related to the failure rates, then estimation of 3 would still be valid.

. If the warranty involves both a mileage and age limit, A, will be an underestimate of
the true repair rate at age t. This is because some of the cars will have exceeded the
mileage limit; they are still counted in the denominator of J; but cannot contribute to
the numerator. The bias will be small for small £ but increase as ¢ increases. It should
be noted, however, that ) is a valid estimate of the probability of a warranty claim at
age t and so predictions of eventual warranty claims are still valid. Similarly, random
events that result in the temporary or permanent withdrawal of cars from service do

not affect the validity of warranty claim estimates.

. The formula (2.2) for )¢ adjusts for the reporting lag by discounting the number at
risk for an age ¢ repair using the known distribution of lags as in (2.4). It might be
argued that the need for adjustment when reporting lags are present arises not from

an error in the nominal number at risk rr_; = E’:‘;_’:,(T'T_t) N_, but rather from an



under-reporting in the number of repairs at age t. In communicating the adjustment

to nonstatisticians, therefore, there may be advantage to rewriting the estimate as
Ae =g [rr_s (2.8)

where 7., is the estimated number of age t repairs (both reported and unreported)

that have occurred prior to time T'. It is clear that

N L/
= . 2.9
X2 Rr—s n.t. ( )

The estimate (2.8) could be obtained directly by use of an E-M algorithm as discussed
in Dempster et al. (1977). At the E step we calculate

E {2 Nott|nat, z +t+1 < T A§°)} =na+ Y, NOf (2.10)

=0 I=T—2—t+1

and, at the M step, the updated estimates are obtained as

min(r,T-t)
Aﬁ"={n.,.+ > N,A£°’(1—Fr-=-:)}/rr—t- (2.11)

=0

It is easily seen that }, is a fixed point of (2.11) and (2.10) converges to (2.9).

2.2 Concurrent Estimation of the Reporting Lag Distribution

It is possible to estimate simultaneously the reporting lag distribution {f;}. For this

purpose, we maximize (2.1) jointly with respect to {)\;} and {f;}. The likelihood equations

are

Ologl _mne oo N f=o (2.12)
aAt At e+I1<T~-t
e<r
OlgL _mi _ s~ N3 =0 (2.13)
3fl f’ z4t<T-1

<7



where n, is as defined earlier, and n..; is the number of observed lags of duration [ days.

From the form of the likelihood (2.1) it is clear that {);} and {fi} can be estimated only up
to a constant of proportionality c since {c\;}, {¢” fi} have the same likelihood as {).}, {fi}.
Kalbfleisch and Lawless (1989a) discuss this point in a similar problem arising in a different
context. To obtain a unique solution to (2.12) and (2.13) we assume that Fr = Y1 fi = 1.
In most applications, T is large enough that this is a reasonable assumption; if T' were not
large, an alternative approach would be to assume that Fr were known.

It is straightforward to solve (2.12) and (2.13) subject to the constraint Fr = 1 using
a fixed point algorithm or a Newton Raphson procedure. However, simpler methods are
available to estimate the reporting lag distribution. Let h; = fi/F; = Pr{L = I|L < I}
where L represents the reporting lag. Then h; is estimated by

h=n.a/ Y nl, (2.14)
I'+e<T—1

where nj; = :‘_‘;_‘},("T-l) Nz ,—z, is the number of observed repairs on day s with lag I. The

denominator of (2.14) is thus the number of repairs that occur on or before day T' — I with
a reporting lag of ! days or less. The estimate of f; then is

T
fi=h J] @ —h;), 1=0,..,T. (2.15)

j=l+1

The estimates (2.14) and (2.15) arise as maximum likelihood estimates under a likelihood
formed by using data on the truncated distributions of reporting lags. Thus, a repa.ir on day
s with report on day s + I contributes the term f;/Fr_, to the likelihood. Such likelihoods
have been extensively studied by several authors. See for example Woodroffe (1985), Keiding
and Gill (1987), Lagakos et al. (1988) and Kalbfleisch and Lawless (1989ac).

Estimates of the reporting lag can also be restricted to use only a part of the data. In
certain instances, for example, one may wish to use only the most recent data in estimating f;.
Restricting the sums for the numerator and denominator of (2.14) to include only frequencies

ngy with z+t > T'—a would restrict the estimates of f; to depend only on the repairs observed



within the most recent a days. It is also possible to develop tests for trends in the reporting
lag distribution or to adjust, for example, for seasonal effects. These refinements are not
considered further here, but see Kalbfleisch and Lawless (1989c).

Variance estimation of f; can be accomplished using a variant on Greenwood’s formula
for the life table or Kaplan-Meier estimate; see Lagakos et al. (1988) for details. Variance
estimates in (2.6) and (2.7) could be adjusted for uncertainty in the estimation of f;. For
practical purposes, however, the variation in M(t) — M(t) can be estimated using (2.7) with
fi replaced by 7. This is a slight underestimate since it does not account for uncertainty in

the estimation of f;.

3. Grouped Data

Sometimes the data are grouped so that only the numbers of repairs for cars with age
t lying in various intervals are observed. For example, we may know the total number of
claims for cars aged 0-30 days, 31-60 days, etc. For the following discussion we again assume
that the reporting lags distribution {f;} is known.

Consider some age interval ¢ = a to b inclusive and consider estimation of M(a,b) =

T2 . ), the average number of repairs per car for the age interval. Using (2.2), we estimate

this by

zbj,‘\, = Eb: ot T(3.1)
t=a t=a Rr_.

However, if we observe only Y0__ n ;. then (3.1) has to be approximated. A simple approach

is to estimate M(a,b) by

- b t
M(a,b) = %ﬁ : (3.2)

where R(a,b) is an estimate of the car-days in service for cars aged a to b. Reasonable

estimates are

R(a,b) = %(RT_.. +Rr_y) (3.3)



or

- 1 b
R(a,b) = m;RT_w (34.)
To motivate (3.3) and (3.4), note that by (2.3) and (1.1),
y Tbea MR-t
E{M(a,b)} = =t=2———, 35
{0, = B (5.5)

If ), is constant for t = a to t = b, then M(a,b) = (b — a + 1)), and (3.2) is an unbiased
estimate if R(a,b) is given by (3.4); it is also the maximum likelihood estimate under (1.1).
If Rr_. is linear over £ = a to b then (3.4) reduces to (3.3).

If the intervals (a,b) are not too long then ), can usually be taken to be constant over
the interval as a reasonable approximation, and this leads to (3.4). Note, however, that
although the data on the numbers of repairs are allowed to be grouped, daily counts N of
the number of cars are needed to compute the Rr_,’s. If the counts of cars entering service
are also grouped, for example monthly, a further adjustment can be made. Suppose that
N(a,b) = X2_, N, is known but not the individual N,’s. If we assume the N,’s are constant

over (a,b) then the contribution to Rr_; (see (2.4)) from cars entering service in (a,bd) is

Zb: N.Fr_._s = N(a,b)F(a,b) (3.6)

where F(a,b) = (X8_, Fr-.-:)/(b—a+1). In practice, time periods of the same length, say
k days, would usually be used to report both number of repairs and new cars entering service,
and T would also be a multiple of k. If there are no reporting lags, simple expressions can
be given for M(a,b). .

Variance estimates for M(t) — M(t) and prediction limits for M(t) may be obtained by
using (2.7) with ), estimated by the average J; for the time interval in which u lies and, if
the N’s are also grouped, by assuming in the calculation-of Rr_, values in (2.7) that N, is
constant over time intervals. An example is given in Section 6.

If the fi’s are estimated concurrently with the ),’s, matters are more complicated although

methods based on the Poisson model could be developed.
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4. Model Checks and Some Extensions

The models employed here are Poisson log linear models and checks on fit can be made

in familiar ways. Pearson residuals

Tetl = (Mot — faet)/ ﬂ'i{lz’ (4.1)

where fizy = NoA.fi when the fi’s are known, and fin = N,);f; when they are estimated,
may be used to check on (1.1). Provided expected frequencies jfi.y are not too small, the
Pearson statistic P = ¥, 3, 372, is approximately x? with degrees of freedom equal to
the number of distinct counts n,,; minus the number of parameters estimated; the number
of distinct counts is readily found to be 3[(T'+ 1)(T +2)(T +3) — zr(zr + 1)(zr + 2)], where
z7 = max(0,T — 7).

Systematic departures from the fitted model will often be detectable by scrutinizing the
residuals (4.1) or related residuals obtained by grouping the data. The assumed independence

of )\; from z can be examined using the residuals based on n,; = Zf_'__}"’ Nz,

Tt = (nzt. - ﬁzt)/ﬁ;:{z (42)

For example, cumulative sums over t of the residuals (4.2) for fixed z, or of related residuals
based on intervals of = values, can be used to detect variations in the A;’s according to the
time at which the cars entered service. It would also be useful to compare observed and
expected counts for groups based on monthly intervals for each of z and ¢.

Formal tests of various aspects of the mean specification pzy in (1.1) can be déveloped;
the most straightforward approach is to use likelihood ratio tests based on (2.1). We leave
a more thorough discussion of this and related problems to a future article. We remark also
that in applications where counts are small, it is preferable to use deviance or Anscombe
residuals rather than Pearson residuals. See Pierce and Schafer (1986) or McCullagh and
Nelder (1989) for these residuals and further discussion.

Residuals (4.1) can also be used to assess the assumptions that the n.y’s are independent

Poisson variates with E(n.y) = var(ngu) = pzu. In particular, plots of r.y versus fi.u

11



and normal probability plots of r.y provide graphical methods for detecting overdispersion,
where var(ngy) > pou. We discuss analyses in which extra Poisson variation is allowed.

It is well known that provided the mean specification is correct, the Poisson analyses
above give consistent estimates of the unknown parameters (in this case, the claim rates ),)
when there is extra Poisson variation, but the variance estimates under the Poisson are too
small. Unobservable heterogeneity is one way in which extra Poisson variation can arise, and
since one car can give rise to several claims, this would also give rise to correlated counts.
Suppose, for example, that the ith car placed in service at time z has repair rate a;)\,
where the a;’s are taken to be independent random variables with E(o;) = 1, var(a;) = §;
note that ), retains its interpretation as the average age t repair rate. It is supposed that,
conditional on a;, the number of repairs for this car at age ¢ and with reporting lag [ is
nu; ~ Poisson(a;): fi) where ¢ = 1,..., N,. The a;’s incorporate heterogeneity from various
sources including variation in environment, manufacturing, user characteristics and so on;
this is a standard method of incorporating extra Poisson variation (e.g. Lawless, 1987). Note

that n,y = 3 ngy;. Straightforward calculation shows that

E(nzu) = NzAgf[ (43)
var(ngu) = NoAfi(1 + 6 fi) (4.4)
cov(n,u, nz:k) = Nz‘SAJAtflfk (45)

and cov(ng, ny.k) = 0 for ¢ # y and all ¢,1, s and k. For simplicity, we consider the case in
which the fi’s are known.

Estimation of the \,’s can be accomplished by using generalized estimating equations
(or quasi-likelihood equations) for the A’s that utilize (4.4) and (4.5). An alternative and
only slightly less efficient approach utilizes the Poisson estimates already derived, but adjusts
variance estimation using the structure in (4.4) and (4.5). Technically, the Poisson estimating

equations (2.12) are still unbiased for zero in the mixture model and the estimates A =

12



ns./Rr_. are consistent. But using (4.4) and (4.5) we find that

min(T-t,T—s,7)

co'v(n,t,, n.c.) = 6A0At E NzFT-t—zFT—o—z 8 # t (46)
=0
min(T-t,7)
'var(n,t,) = Ag z NzFT_z(l + 6AtFT._,). (47)
=0

It follows that 'var(:\t) > ); and the X,’s are correlated.

The parameter § can be estimated from an auxiliary moment equation such as
(nztl F'ztl)
=d 4.8
2202 (U el [) (48)
where d = L[(T + 1)(T + 2)(T + 3) — zr(=r41)(zr + 2)] is the number of distinct terms in

the triple sum, as noted earlier in this section, fizq = N,/\t fi, and the denominators in the

left hand side of (4.8) are based on (4.4).

Estimates of var(},) are obtained by inserting estimates ), and § in (4.7). The problem
of obtaining variance estimates for M(t) — M(t), in order to get prediction limits for M(t),
is rather more involved because of the correlations among n.y’s that have the same z value.

The Appendix develops the exact variance of M(t) — M (2).

5. Costs of Warranty Claims

In many instances, the total cost of warranty claims is of interest. We assume here that
claim costs are indexed by ¢ = 1,2,...,m and r(c) is the cost of a claim in the cth group.
The amount of grouping desirable will depend on the particular application, but note that
actual dollar amounts could be used. )

To investigate estimation of the costs, suppose that ,\5" is the expected number of
claims of cost 7(c) for a car at age ¢t and, in an obvious notation, suppose that ngz ~

Poisson(N,/\?) fi), independently for z,t,! > 0. Note that this assumes that the reporting
lag distribution is independent of the cost of the claim, but that the distribution of claim

13



costs can be age dependent. It would be possible to allow f; to be dependent on cost, but
we shall look at this simple model.

Under the assumption that the f;’s are known, the maximum likelihood estimate of Aﬁ"

1s
N9 =nQ/Rr_, (5.1)
where Rr_; is given by (2.4). Let m(*)(t) and M()(¢) be the natural extensions of (1.2) and
(1.3) representing the average numbers of claims of cost 7(c) at age ¢t and up to age ¢ for
cars put in service over the period 0,1, ...,7. Clearly, m(°)(t) and M (°)(t) are estimated with

m()(t) and M()(t) analogous to (2.5) with variance estimates obtained from (2.7). The

average cost of all claims up to age ¢ for cars put in servicein 0,1,...,7 is

m

K(t) =Y r(c)M)(¢)

c=1

and it is easily seen that

var(K(t) — K(t)) = i r2(c)var(MO(t) — MO(t))

=1
where var(M()(t) — M()(t)) is obtained from (2.7).

Separate estimation of rates as in (5.1) would also be relevant if ¢ were to index the
type rather than the cost of the repair. Results in this section can be extended to allow
simultaneous estimation of {fi} or to accommodate extra Poisson variation, but these topics

are not pursued here. -

6. Examples

We begin with an example which illustrates what happens when reporting lags are ig-
nored.
In the situation described in Section 2, failure to incorporate reporting lags would lead

to estimates
3 N,

At = min(T—t,‘r)N . (6.1)

z=0

14



If, however, reporting lags are actually present as described in Section 2.1 then E(n,) =
M Rr_:, where Rr_; is given by (2.4). Thus estimates of A are biased:

Rr_,

E(it) B AT_tAg, AT_t = min(T—t.7 . (62)
Ez:O(T " )NB

Estimates of A, and M(t) are subsequently also biased.

As an illustrative but realistic example, we consider a situation where units are introduced
over a one year period and estimates of repair rates up to two years are desired. With time
measured in days we have 7 = 364 and t = 0,1,...,729. Consider a situation where the
N.’s are equal and where the true rates are A\, = .002 (¢t = 0,1,...,364) and )\, = .001
(t = 365,...,729). Suppose finally that reporting lags are distributed over 0 to 59 days with
probabilities fi = 1/30 for I = 20,...,39 days and f; = 1/120 for Il = 0,...,19 and 40,...,59
days.

Figure 3 shows expected values for estimates A, = T!,_ A, based on (6.1), for data that
accrue for each of T = 3,6,12 and 24 months. The uppermost curve shows the true values
of A, for t going from 0 to 729 days. As the other curves indicate, when the reporting lag is
ignored the cumulative claim rate tends to be underestimated. The underestimation is severe
when T is smaller, especially for values of ¢ close to T. In other words, failure to adjust for
the reporting lag leads to severe underestimation of cumulative repair rates, especially from
data for the first six to nine months or so after units first begin to enter service.

Incorporation of ref:orting lag probabilities corrects the problem just seen. For‘ illustra-
tion we consider a second artificial example that is, however, broadly realistic at least for
automobiles. We generated data for the situation described above, with N, = 100 cars in-
troduced into service on days z = 0, 1, ...,364. With the f;’s assumed known, estimates of A,
were computed, based on the data available up to various times T'. The first three columns
of Table 1 show some numerical results for T = 364 days (12 months). Figure 4 portrays
the estimates A, = M(t) and 95% confidence limits for M(t) of the form M(t) +1.96V(¢)!/2,
where V(t) is the variance estimate obtained when the Au’s are inserted into (2.7).

If the n . ’s are grouped, we have to use (3.2). The last five columns of Table 1 show some

15



calculations for the case where the n;’s are grouped into totals corresponding to 30 or 31
day age intervals. The estimates A, obtained from the grouped data are very close to those
from the ungrouped data (A,).

The results given here assume knowledge of the reporting lag probabilities. If these are
estimated from the data at hand, the estimates of A; change very little. A more serious
point in practice is that the reporting lag distribution may not be stationary, and we hope
in a future communication to be able to illustrate these and other problems for some real

automobile warranty data, using the methods discussed in Section 4.

Table 1. Estimation of A,’s at T' = 364 Days

t Ry_, A, (a,d) R(a, b Ytn. M(a, b) A2

0 33,550 .0024

30 30,550 .0643 0-30 32,050 2064 .0644 .0644
60 27,550 .1239 31-60 29,000 1726 .0595  .1239
90 24,550 .1850 61-90 26,000 1586 .0610  .1849
121 21,450 .2468 91-121 22,950 1416 .0617  .2466
151 18,450 .3036 122-151 19,900 1132 .0569  .3035
181 15,450 .3661 152-181 16,900 1053 .0623  .3658
211 12,450 .4281 182-211 13,900 870 .0626  .4284
242 9450 .4882 212-242 10,850 648 .0597  .4881
272 6352 .5479 243-272 7,800 470 .0603  .5484
303 3250 .6099 273-303 4,750 294 .0619  .6103
333 635 .6836 304-333 1808.5 136 .0752  .6855
364 .83 .7498 334-364 169.73 10 .0589  .7444
1Based on (3.4) Z2A, based on the M(a,b)’s.
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7. Discussion

A number of extensions of these methods would merit further investigation:

1. The Poisson model could be extended in the usual way to allow for covariance analysis.
For the ith car put into service on day z, the mean number of repairs at age ¢t with

reporting lag ! can be modelled as

log peuii = log p&3) + 2.8

where z; is a vector of regression variables and 3 is a vector of regression parameters
specifying, for example, manufacturing characteristics or time of manufacture, model
line, etc. and, if available for all individuals, use or environmental factors that apply

when the car is put in service. Note that

log uy) = log fi +log Ae

so that failure rates are here allowed to depend on z;. The lack of dependence of
reporting lags on z and z; is important here and needs to be checked. In most instances,
when the covariates take only a relatively small set of values, stratification could be
used. Thus, if N{*) is the number of cars with covariate value z placed in service on
day z and { f,(')} is the corresponding distribution of reporting lags, a natural model
would be

log eu(z) = log{N{? {7} + log X + 2'B.

Standard software for Poisson regression (e.g. GLIM) could be used for analysis.

If z includes covariates that correspond to use characteristics, they will typically not
be observed for all cars put into service. Supplementary sampling will then be needed
to estimate regression coefficients. Kalbfleisch and Lawless (1988) discuss some of the

issues involved.
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2. In some instances, parametric models provide a useful alternative to the nonparametric
approach discussed in this paper. This is particularly true when the total number of

items in service is relatively small.

3. The use of mileage as well as time in service is an important area for further investi-
gation. It is to be expected that rates of failure at age ¢ will also depend on mileage
accumulated, and it would be useful to incorporate this in the analysis. As well, when
warranties depend on both age and mileage, the methods discussed here do not esti-
mate actual failure rates (see Remark 6 in Section 2.1). The use of models which relate
failure rates to mileage would be an important generalization. Here again, supplemen-
tary information on the mileages accumulated for the population of cars in service is

important to attack this problem.

4. The summary of warranty claims in terms of the age of the car is useful for reporting
to engineering or in assessing reliability problems. This is especially true in considering
various failure types. For accounting purposes, it is often more useful to summarize
warranty repairs or costs in terms of calendar time. In this, the aim of estimation is
the total cost incurred due to warranty claims up to some specified calendar time. This

problem can be approached with methods similar to those discussed above.

5. In some instances, multiple visits are required to remedy the same basic failure. A
possible model would allow failures to occur as a Poisson process and then a subsequent
process generating visits to correct the failure. If the warranty data set had information
that allowed one to identify multiple visits to address a single problem, models of this
sort could be used and analyzed.

Appendix
Mean and variance of m(t) — ri(t) and M(t) — M(t) when the fi's are known

From (1.2) and (2.3), one can write
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m(t)= N {n, + LY nea}l = ma(t) 4 ma(t)
z+1>T -1t
z<T

and, at time T, m,(t) is known whereas m,(t) must be estimated or predicted. Similarly,

C M(t) = Ma(t) + Ma(t) = 5 _o{mi(u) + m2(u)} where M;(t) is known. Now

m(t) = N'n,+ T  NAf}
z+I1>T -t
z<T

mq(t) + ma(t).

I

Thus var(m(t) — m(t)) = var(ma(t) — m2(t)) = var(mz(t)) + var(rha(t)) since my(t) and
1m2(t) are independent. Straightforward calculation shows that

var(ma(t)) = N2 y N fi = N72[N — Rr_,) ),
z+I1>T -t
z <171

and

var(my(t)) = N"3(N — Rr—:)*X¢/Rr—:.

This yields the result (2.6) and (2.7) follows since the terms m(u) — (u) are independent.
When there is extra Poisson variation, the estimation of variances is more complex. Note

however that

t
My(t)=N"1)" )ID): Naul
vw=0 g4+ [>T —u
z<T
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N t R t
M,(t) = N1 E PP AN fi=N"1 Z Au(N = Rr_,).
=0 g4+ 1>T —u u=0
z<rT

Here M,(t) and M,(t) are not independent. We note, however, that A = nu/Rr_, and
that

T t oo
Mz(t) - Mz(t) =N Z Z z Az lMzul
=0 u=0 [=0
where az = —(N — Rr—y)/Rr-wifz+u+1<Tand 1ifz+u+1>T. Now the formulae
in (4.4) and (4.5) can be brought to bear. Some algebra shows that
var(My(t) — My(t)) = N72 3" N.{§(A: — B.) + A, — D}

=0
min(T-t,z)
where B, = N Y .o {M\Fr-z—u/Rr-.} and

min(T—t,z) N _ R u
D.= Y [-(F ) PuFrew
T-u

u=0
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