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ABSTRACT

In running a factorial experiment it may be desirable to use an orthogo-
nal array with different (mixed) numbers of factor levels. Because of the ortho-
gonality requirement, mixed orthogonal arrays may have a large run size. By
slightly sacrificing the orthogonality requirement, we can obtain nearly orthogo-
nal arrays with economic run size. Some general methods for constructing such
arrays are given. For 12, 18, 20, and 24 runs, a large number of orthogonal and
nearly orthogonal arrays with mixed levels are constructed and tabulated.
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1 Introduction

Two-level fractional factorial experiments are commonly used in scientific and engineering
investigations. They do not require a large run size, with the 8-run and 16-run experiments being
the most popular. Planning and analysis of these experiments are relatively easy. As a result they
are taught in any beginning course on experimental design. In some situations, however, certain
factors have more than two levels. It may be undesirable to reduce the factor levels to two if it
would result in severe loss in information. Examples include (i) a categorical factor with three
machine types or three suppliers and (ii) a continuous factor with three temperature settings. For
(i), if the three machine types all contribute to the current production, they should all be included
in the study for the purpose of comparison. For (ii), if the response depends on the temperature in
a nonmonotone fashion, choice of two temperature settings would not allow the curvilinear relation
to be studied. In these and other scenarios, factorial experiments with mixed numbers of factor
levels may be adopted. Orthogonal arrays and nearly orthogonal arrays with mixed levels (to be
defined later) provide a rich source of layouts for running such experiments. In this paper we give
a systematic construction of such arrays with small runs.

We use two examples to illustrate the previous points and motivate the use of such arrays.
Example 1. To reduce the geometric distortion of critical part characteristics of a rear axle gear,
it is suggested that the heat treatment process be studied and improved. Five factors are being
considered. Factor A has 3 levels corresponding to the three sources of the gear. Each of the
remaining factors (temperature and time in furnace, quench oil type and temperature) has two
levels. Because of cost and time considerations, 12 runs is the limit on run size. Find an array to

suit this purpose.



A natural first attempt is to use a fractional factorial design for 12 runs, which is obtained by
adding a 3-level column to three copies of the fractional factorial design with 4 runs and 3 factors
(see Table 1). As shown in Section 2, it is impossible to add another 2-level column to this design
and still retain the orthogonality among the columns. Two columns are orthogonal if each of their
level combinations appears equally often. An array is orthogonal (of strength two) if any pairs of

columns are orthogonal (Rao, 1947).

row column
1{0 0 0 O
210 0 1 1
310 1 0 1
410 1 1 0
511 0 0 O
611 0 1 1
711 1 0 1
811 1 1 0
912 0 0 O
1012 0 1 1
1112 1 0 1
1212 1 1 0

Table 1: The 12-run fractional factorial design L12(3-23).

Our construction method in Section 2 provides a satisfactory answer with a 12-run array with
one 3-level column and four 2-level columns (see columns A to E of Table 2.) It is not a fractional

factorial design constructed by a group-theoretic method.



row|A B C D E F F, G
110 0 0 0 O O O0 O
20 0 1 0 1 0 1 1
3]0 1.0 1 1 1 o0 1
410 1 1 1 0 1 1 0
51 0 0 1 1 1 1 0
6({1 0 1 1 0 1 0 1
711 1. 0 0 1 0 1 O
81 1 1 0 O 0 0 1
912 0 0 1 0 0 1 1

1012 0 1 0 1 1 0 O
1112 1 0 0 0 1 1 1
1212 1 1 1 1 0 O O

Table 2: Columns A to E form an Ljs(3-2*). Columns A to F, and G form an L),(3-2°) and
columns A to E, F3, and G form another Lf,(3-26).

An alternative is to use the following table,
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which is obtained from the 8-run fractional factorial design with one 4-level column and four 2-level
columns by replacing level 3 of the 4-level column by level 2. It saves four runs over the previous
arrays but has some disadvantages. The 3-level column is not balanced, i.e., one level receives
half of the runs while the other two levels share the remaining quarters. If the level with the best
performance happens to be assigned to one of the latter levels, the experiment may not provide
enough information on the best level. Furthermore, the six level combinations of the 3-level column
and any 2-level column appear with unbalanced frequencies 2:2:1:1:1:1. The imbalance may lead

to some difficulty similar to the above. On the other hand, since the frequencies are proportional,



the main effect for the 3-level factor and the main effect for any 2-level factor are uncorrelated
(Addelman, 1962).

Example 2. For the experiment in Example 1, it is suggested that two additional 2-level factors,
say, furnace cycle time and operating mode, be included in the study. Can a 12-run array suit this
purpose?

It is shown in Section 2 that it is impossible to find a 12-run orthogonal array with one 3-level
column and more than four 2-level columns. To retain orthogonality, one must increase the run size
to 24 to accommodate these two additional factors. A more economical alternative is to keep the
run size at 12 but to sacrifice the orthogonality requirement. Ideally we should find an array that
is as closely to orthogonal as possible. The method in Section 3 finds one such array (see columns
A to F and G of Table 2 or Table 5) that has the smallest number of pairs of nonorthogonal
columns, namely (D,F) and (E,G). For this array the 3-level column A is orthogonal to all the
2-level columns. Since the investigator is unwilling to reduce the levels of A to two (which would
make the whole exercise trivial), A is usually an important factor. This choice of nonorthogonality
seems appropriate.

If engineering knowledge suggests that among the six 2-level factors, three are likely to be
important, the previous array would not be suitable because only two 2-level columns B, and C
are orthogonal to the other columns. The method in Section 3 finds another array (see columns
A to E, F,, and G of Table 2 or the layout in Table 8) that has columns B, C, and D free from
nonorthogonality. This array, however, has three pairs of nonorthogonal columns among the factors
E, F,, and G.

In case that the nonorthogonality among the 2-level factors is more important than the orthog-

onality between the 3-level factor and any 2-level factor, a different type of nearly orthogonal array



is constructed for this purpose in Table 10 of Section 3.

Formally an orthogonal array of strength two, denoted by LN(.SII“- ..sFr), is an N x k matrix,
k = ki +-- -+ ky, having k; columns with s; levels, s; being unequal, such that for any two columns
all their level combinations appear equally often. If » > 1, the arrays are said to be mized or
to have mixed levels. Orthogonal arrays of strength d > 2 are not considered here because they
require a much larger number of runs and can often be obtained from taking a subset of columns of
orthogonal arrays of strength two. A nearly orthogonal array, denoted by Lﬁ\,(sllcl ...sF), is one in
which the orthogonality requirement is nearly satisfied. We use the generic term “nearly” without
a rigorous mathematical definition. In some cases we minimize the number of nonorthogonal pairs
of columns of certain types or the canonical correlations between two sets of effects. One may
use other measures of nonorthogonality to capture the importance the investigator puts on certain
types of nonorthogonality. If it is desirable to measure the overall correlations among the columns,
one may use the determinant (D) or the trace (A) criterion. This important issue is beyond the
scope of the paper.

In Section 2 we give a class of mixed orthogonal arrays of 12 runs. In Section 3 we construct two
types of nearly orthogonal arrays of 12 runs. Analogous constructions of 20-run arrays are given
in Section 4. By modifying a general method for constructing mixed orthogonal arrays (Wang and
Wau, 1989), we give in Section 5 three methods for constructing nearly orthogonal arrays. One of
the methods involves a new notion of nearly difference matrix. As an application, we construct

nearly orthogonal arrays of 18 and 24 runs in Section 6.



2 Construction of L5(3-2%) and L5(6-2%)

To construct L12(3-24) we use a method based on an intelligent search. It can also be used for
constructing other mixed orthogonal arrays with small runs.

First we use isomorphism of arrays to reduce the amount of search. Two arrays are isomorphic

if one can be obtained from the other through permutations of rows and columns and level changes.

Without loss of generality, we can fix the first two columns as

0 a
A=|1|, B=]al|,
2 a

where i is the 4x 1 vector of i’s, @ = [0 0 1 1]¢, and let the first component of any 2-level column

orthogonal to A and B be 0. It can be shown (see Appendix A) that, up to isomorphism,

b a
C=|b|, C;= a+1
b a+b+1

are the only two columns orthogonal to A and B. Here and for the rest of the paper,

0

7b= 1=

)
- R o
—

and a4+ b=[0110]is sum of a and b modulus 2.
Now consider the first case, i.e., A, B, and C are chosen for the first three columns. Any 2-level
column orthogonal to A, B, and C must be from one of the following sets:
51=A{lz 2 7'},
Sy = {[a, a + 1, 2]* and permutations} or
S3 = {[b, b+ 1, 2]* and permutations},
where z = a + b or a 4+ b+ 1. By fixing the first row at 0, there are 16 columns (see Table 3) that

are orthogonal to A, B, and C. Orthogonality among these columns can be represented by the

6



graph in Figure 1. Each column is represented by a node labelled from 1 to 16. If two columns
are orthogonal, their associated nodes are connected by an edge. Since there is no triangle in the

graph, the maximum number of additional 2-level columns is two.

column
Trow d] d2 d3 d4 d5 de d7 ds dg le
1- 4 a+b a+b a+b a+b a a a a a+b a+d

5- 8 a+b a+b a+b+41 a+b+1 a4+l a+1 a+b+1 a+bd a a+l
9-12 a+b a+b+1 a+bdb a+b+1|a+bdb+1l a+bd at+l a+41 a+1 a

column
row di1 dy2 di3 dy4 dis  die
1- 4 b b b b a+b a+d
5- 8 b+1 b+1 a+bd+1 a+b b b+1
9-12 || a+b+1 at+b b+1 b+1 b+1 b

Table 3: Candidate 2-level columns, first row being 0, which are orthogonal to A, B, C.

(11 QZ qa Q4
d di2 dis dis dis dis

Figure 1: Orthogonality among candidate columns in the first case.

Next we consider the second case, i.e., A, B, and C; are chosen for the first three columns. By a
similar argument, there are 12 columns (see Table 4) orthogonal to A, B, and Cy. The orthogonality
of these columns is represented by the graph in Figure 2. Again the maximum number of additional
2-level columns is two.

We conclude from both cases that the maximum number of 2-level columns in L12(3-2™) is 4.

From Figures 1 and 2, there appears to be more than one L;2(3-2%)’s. However, it can be shown



column
row T1 T2 T3 T4 Ts5 Te T7 T8 T9 Ti0 T11 T12
1- 4| a+d a+bd b b a+b at+b a+bd a+bd b b b b
5— 8 b b+1 a+b+1 a+b|a+b+1l a+bdb+1l a+d a+bd b b+1 b b
9-12 || b+1 b b+1 b+1 b b+1 b+1 b|b+1 b b b+1

Table 4: Candidate 2-level columns, first row being 0, which are orthogonal to A, B, and Co.

r2
[ ]

§] I2 I3 la

I's le r7 Is o ro I

Figure 2: Orthogonality among candidate columns in the second case.

(Wang 1989) that there is a unique L12(3-2%) up to isomorphism, whose layout is given in Table 2.

For the L12(3-2%) in Table 1, its third column is one of d; to dy in Figure 1 for the first case
and 7y, in Figure 2 for the second case. Since these nodes are isolated from the others, it is not
possible to add any 2-level column without sacrificing the orthogonality.

In an L;2(6-2™), the maximum m is 2. To see this, let the 6-level column be
A=[012345012345].

Then for a 2-level column orthogonal to A, its last six runs must be the mirror image of the first six
runs. That is, it must have the form [v,v + 1], where v is a 1x6 vector. Without loss of generality,
denote the first 2-level column by B = [vy, vy + 1]f, where v; = [0000 0 0. Let C = [vg, v, + 1]
and C, = [v3,v3 + 1]' be two columns orthogonal to A and B. From orthogonality, v; + v1 = 0

for i = 2,3. Therefore each v; must have three 0’s and three 1’s. But then it is impossible that v,




is orthogonal to v3. Therefore, the maximum m in L15(6-2™) is 2. By an obvious extension, the

maximum m in Lgk((2k)-2™) for odd k is 2.

3 Two Types of Nearly Orthogonal Arrays L,(3-2™) with m <9

Since the maximum number of 2-level columns in L;13(3-2™) is 4, to increase m beyond 4 we
have to sacrifice the orthogonality among some columns. By adding columns to L15(3-2%), the
resulting array is nearly orthogonal. Two types of arrays are considered, depending on the nature
of nonorthogonality.

To construct the first type of arrays, we add to L12(3-2*) some 2-level columns orthogonal to
the 3-level column such that the number of nonorthogonal pairs of 2-level columns is minimized,
and subject to this condition, the nonorthogonal pairs have the smallest correlation. Such arrays
are referred as type I. The graphs in Figures 1 and 2 provide a convenient tool for choosing such
columns. Note that the correlation between the main effects (replace levels 0 and 1 by —1 and 1
for the main effects) of any two nonorthogonal columns is 1/3 or —1/3.

In addition to the six degrees of freedom for the main effects in L15(3-2*), there are five more
degrees of freedom for investigating five additional 2-level factors. For instance, to investigate ¢ (L
5) more 2-level factors in addition to those in L15(3-2%), we choose ¢ more columns other than ds
and dig from the columns given in Table 3. (Note that ds and di¢ are the columns D and F in
L12(3-2%).) To minimize the number of nonorthogonal pairs, we need only to choose from the graph
in Figure 1 a subgraph that has g + 2 vertices, including ds and djs, and the maximum number of
edges. In summary, the layout of nearly orthogonal arrays L7,(3-2™) of type I for m <9 is given in

Table 5.



Minimizing the number of nonorthogonal pairs should not be the sole criterion. Otherwise we
could construct L},(3-24+%), z < 4, by repeating columns B, C, D, and E as the last four columns.
The resulting arrays have z nonorthogonal pairs, each of which has correlation 1. For z = 1 and
2, these arrays are inferior to those in Table 5 because the correlations of the nonorthogonal pairs
are larger. Although these arrays for £ = 3 and 4 have fewer nonorthogonal pairs than those in
Table 5, they are much less useful because the nonorthogonal columns are totally confounded.

In an unpublished manuscript “Little Pieces of Mixed Factorials”, Tukey (1959) constructed
among many other things a nearly orthogonal array L{,(3-2%). For the purpose of comparison, we
permute the rows and columns of Tukey’s original array so that its first three columns coincide with
A, B, and C. The resulting array (TK array henceforth) is given in Table 6. Taguchi (1959; 1987,
p. 318) gives a nearly orthogonal array L/,(3-2°) by “partially supplementing” an Lg(2”). This
nearly orthogonal array (TG array henceforth), after column permutations, is given in Table 7.
Note that the correlation between the main effects of any two nonorthogonal columns in both the
'TK and TG arrays is also £1/3.

The L}5(3-2%) array (WW1 array henceforth) given in Table 5 has several advantages over the
TK and TG arrays. First it has only two nonorthogonal pairs whereas each of the TK and TG
arrays has three nonorthogonal pairs. Second, its the 2-level columns B and C can be used as
a blocking variable since they are orthogonal to all the other columns. This is impossible for the
latter arrays. Furthermore, in the TK array or the TG array, the maximum number of orthogonal
2-level columns is 3, not 4.

We can construct another L),(3-28) of type I by adding the columns dy4 and dy5 to columns A
to E in Table 5. We refer to this array as WW2 array and give its layout in Table 8. Although

WW?2 has 3 nonorthogonal pairs with correlation +1/3, one more than those of WW1, it has three

10



column

A B C D E F G H I J
row ds dis d¢ dis dg dyy dy
1-4)1 0 a b a a+b a a+b a b a || # of non-
5-8l1 a b a+l b+1 | a+1 b a+b a+b a+b+1 || orthogonal
9-12| 2 a b a+b+1 b|l a+db b+1 a+1 b41 a+1 pairs

5 ° ° 1
6 . ‘—\_ 2
[ ] [ ]
7 ° ° 4
°
z °

8 . 7

. ®

. °

[ ] [ ]
9 . ° 11

Table 5: 12-run 3-2™ arrays of type 1. The array is orthogonal for m <4, otherwise
it is nearly orthogonal. To get an L},(3-2), for example, use columns A to G. There are only two
nonorthogonal pairs in this array as indicated by paired bullets.

2-level columns free from nonorthogonality. In the latter sense, WW2 is the best. Overall WW2 is
better than the TK array and TG arrays since the latter arrays have no 2-level columns free from
nonorthogonality.

We next consider the second type of arrays in which all 2-level columns are orthogonal to each

other and some 2-level columns are nonorthogonal to the 3-level column. They are referred as type

column

A B C D E F G

row ds ds
1-4)1 0 a b a+b a b a+b
5-8 1 a b a+b a+1 b+1 a+bd+1
9-121 2 a b a+b+1 a+1 b+1 a+b

[ ] [ ]
[ ] [ ]
. .

Table 6: Tukey’s L;,(3-2°). Each nonorthogonal pair is indicated by paired bullets.

11



column
A B C D E F G
row d; dy
1-4 0 a b a+bd a b a+b
5-8 1 a b a+b a+1 b+1 a+d+1
9-121 2 a b a+b a+l1 b+1 a+db+1

[ ] [ ]

[} [ ]

|- .

Table 7: Taguchi’s L},(3-2%). Each nonorthogonal pair is indicated by paired bullets.

column
A B C D FE F, G
row ds die dis  dis

b a a+b b a+d
5-8 1 a b a+1 b+1 a+d b
b a+b+1 b b+1 b+1

Table 8: WW2 array. Each nonorthogonal pair is indicated by paired bullets.

II.

Since there are at most four 2-level columns in L12(3-24), any 2-level column orthogonal to the
columns B, C, D, and E in Lq2(3-2*) cannot be orthogonal to A. Let
go=[0000]*, ¢ =[0111}F, go=[0100]%, g3=[0010]*, g4=[000 1]".
Then it can be shown that only 13 columns with the first component at level 0 (see Table 9) are
orthogonal to B, C, D, and E. The orthogonality among these columns is indicated by the graph
in Figure 3. There are two sets of 7 columns orthogonal to B, C, D, and E. Each of the two sets
can be expanded by adding A, B, C, D, and E. Since these two expanded sets are isomorphic (see
Appendix B), we consider the first set only.

To obtain a nearly orthogonal array, we can add to the L;2(3-2*) up to five columns chosen

12



column
row hl h2 h3 h4 h5 h6 h7
1-4 92 g3 b a+bd 94 go a1
5-8 || a+b g1 g2+1 g3+l ga+1 a+bdb+1 9o
9-12 | go+1 a+l g1+1 g3 a+b go+1 g4+l
column
row hg hg  hio hin  hi2 hi3
1-4 90 92 b 94 g3 atb
5-8 || a+b a+db+l g4+l go+1 g3+l 5
9-12 || go+1 g2+1 g3 a+l a+bd g1+1

Table 9: Candidate columns nonorthogonal to A. Each column is orthogonal to B, C, D, and E
but nonorthogonal to A.

Figure 3: Orthogonality among candidate columns nonorthogonal to A.
from hy to h7 in Table 9. Let

@ =[-1 -1 -1 -1 0 0 0 0111 1}

a@q = [1 1 1 1 -2 -2 -2 -2 1111
denote the linear and quadratic effects of A. Calculating the canonical correlations between [a;, a,]
and the vectors formed by h;’s reveals that [hy,- -, h;] gives the smallest first canonical correlations
among all possible choices of ¢ columns from h;’s for ¢ = 1,...,5. This holds for all possible level
changes of A. Note that the canonical correlation measures the linear association between two sets
of vectors. Among the sets of vectors consisting of the same number of h;’s, the one with a smaller
canonical correlation with [a;, a,] is considered to be better. We use this criterion to obtain some

nearly orthogonal arrays of type II in Table 10.

13



column
A B C D E F G H I J
row d5 d16 h1 h2 h3 h4 h5
1-4 0 a b a a+b g2 gs b a+b Ja
5-8 1 a b a+1l b+1 a+b g1 g2+1 g3+1 gat+1
9-12} 2 a b a+bd+1 bllg2+1 a+l g1+1 gs a+b
1st canonical correlation 0.41
1st canonical correlation 0.50
6 || 2nd canonical correlation 0.29
0.50
z| 7 0.50
0.65
8 0.50
0.71
9 0.58

Table 10: 12-run 3-2™ arrays of type II. The array is orthogonal for m <4, otherwise
it is nearly orthogonal. To get an L/,(3-25), for example, use columns 4 to G.
There are only two nonorthogonal pairs in this array ((4,F) and (4,G)).

4 Construction of Ly(5-2%), Ly (5-2°) and Ly (5-2'°)

The technique in the previous sections can be extended to the construction of 20-run arrays.
Using arguments similar to those in Section 2, we can show that there are only three noniso-

morphic L2o(5-2%)%s. These arrays are [A, B, Ci], i = 1,2,3, where

14



0 a b a a

1 a b a+1 a
A=|2 |, B=|a |, C1=|b|, Co=| atb+l |, C3= a+1

3 a b at+b+1 a+1

4 a b at+b+1 a+b+1

Consider the first case where the columns A, B, and C; are fixed. Using the method in Section 2
and exhaustive computer search, we can show that at most six mutually orthogonal columns can
be added to A, B, and C;. Hence, the maximum number of m in Ly(5-2™) is 8 and can indeed be
attained by the array in Table 11. The other two cases of fixing the first three columns also lead

to the same conclusion.

column
run | A B i D E F G H I
1-4 0 a b a+b b b a atb a+b
5-8 1 a b a atb+1 b+1 b a+1l a+b+1
9-12 2 a b a+1 a a+b+1 b+1 a+bd+1 b+1
13-16 || 3 a b b a+1 a a+bdb+1 a+d+1 at+b
17-20[| 4 @ b b+1 b+1 a+1 a+1 a b

Table 11: An Lgo(5-28).

To add more 2-level columns to L2o(5-28), we have to sacrifice the orthogonality requirement.
For simplicity we only consider the case for adding 1 or 2 columns to L20(5-2%). (The method
for adding more columns is similar.) Four such arrays, denoted by WW3 to WW®6, are shown in
Table 12. Note that ¢1, g2, and g3 in Table 12 are orthogonal to A, B, Cy, D, and E.

For adding one column, WW3 is better than WW4 in terms of the number of 2-level columns
free from nonorthogonality but is worse than WW4 in terms of the largest correlation. Similarly,
WWS5 is better (worse) than WW6 according to the first (second) criterion. Note that these arrays

are of type L.

15



array | column(s) correlation with
name added F G H I
WW3 Q1 0.6 0 -0.2 0
WW4 a0 02 0 —02 02
WW5 Q1 0.6 0 -0.2 0

0 02 0 —02 0.2
WW6é 2 0.2 0 -0.2 0.2

g 0 02 02 —02

Table 12: Comparisons of 20-run nearly orthogonal arrays, where ¢, = [b,b+1,a+b,a,a+1],
g2 = [b,a+b,b+1,a+b,a+b+1]%, and g3 = [a,a+b,a+b+1,a+1,a+b]".

5 A General Construction Method

Wang and Wu (1989) gave a general method for constructing mixed-level orthogonal arrays.
By modifying their method, we can obtain three classes of nearly orthogonal arrays.
First we review the method. Let G be an additive group of g elements denoted by {0,1,...,9—
1}. A Agxr matrix with elements from G, denoted by D) .4, is called a difference matriz if among
the differences of the corresponding elements of any two columns, each element of G occurs exactly
A times.
For two matrices A = [a;;] of order nX 7 and B of order m x s both with entries from G, define

their Kronecker sum to be the mn X rs matrix
A* B = [B*"]i<i<n,1<j<r) (1)

where B = B + kJ is obtained from adding k, over G, to the elements of B and J is the mX s
matrix of ones.

Let Ly = L,4(¢9°) and Ly = Lyg(g7 - - - ;) be two orthogonal arrays, D = Djgr;y be a difference
matrix, and 0,, be the ug X 1 vector of zeros. Then Li*D is a Apg? x rs matrix and O, % Lo is a

Apg? X (r1+ -+ -+ 7 ) matrix consisting of g copies of Ly as its rows. Wang and Wu (1989) show

16



that the matrix

[Ly*D, 0,4%Ls) (2)

is an Ly,,2(9"°-q1" -+ - qu)-
By replacing L; or L, in (2) by a nearly orthogonal array, or the difference matrix D by a nearly
difference matrix (to be defined below), we obtain the following three classes of nearly orthogonal

arrays.

(A) By replacing L, by a nearly orthogonal array L5 = L\ (¢7" -+ g7), weobtain [L1* D, 0,9% L5)
which is an L) , 2(¢"°-¢i* - - - ¢ ). Note that the nonorthogonality of the constructed array is
inherited from L% and hence the number of nonorthogonal pairs and the correlation structure
of the former array are the same as those of the latter. Several such arrays will be given in

detail in Section 6.

(B) A nearly difference matriz, D;,T;g, is an mXr matrix with entries from the group G such that,
among the differences of the entries of any two columns, the elements of G occur as evenly
as possible. In general if the difference matrix in (2) does not exist, we will replace it by a
nearly difference matrix. More precisely, if there exist a nearly difference matrix D;, ,.,, and

orthogonal arrays L,,(g°) and L,(gy*- - -¢), then the matrix

[Lﬂy(gs)*D;z,r;g’ 0ug*Ln(gr*- a1 (3)

is a nearly orthogonal array L, (9"°-¢7"- - -q7).

There are two kinds of nearly difference matrices according to the divisibility of » by g.

1. n is not divisible by g. By definition, no D, ,,, exists for r > 1. So we should find

17



D}, .5 T > 1, such that each element of G occurs |n/g] or [n/g| + 1 times among the
component-wise differences of any two columns. Here |z| is the integral part of z. For

instance, in

/ —
D3,3;2 -

o O O
[ )
O = O

0 and 1 occur once or twice among the differences of the entries of any two columns.

The difference matrices in Appendix C are of this kind.

2. n is divisible by g. It can be shown (Beth, Jungnickel and Lenz, 1986, p. 365) that no

D, r., exists for 7 > 2 if g = 2 mod 4. So we should use D, .., for r > 2 if g = 2 mod 4.

n,Ti9

For instance,

000111
001011
Dig, = 001100
i 010010
010101
(01100 0]

The arrays constructed from (3) with run size < 24 are listed in Table 13.

If w in (3) is taken to be 1, the number of nonorthogonal pairs in the array constructed
from (3) equals the number of pairs in D’ for which the elements of G do not occur equally

often among the component-wise differences. For instance, in the array

[0 0 0 07
0111
010 2
1(9.93) —
Lg(3-2°) 1110
100 1
10 1 2
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nearly orthogonal

array Ly(9) Dy, Ln(gr'---gp
6(3-2°) Ly(2) Disy Ls(3)
L(5-2°) L2(2) Digp Ls(5)
12(4‘34) L3(3) D«I;,4;3 L4(4)
L}5(3*-2%) L3(3) Di,us La(2%)
12(6-2°) Ly(2) Dggy Le(6)
L15(3-2%) Ly(2%) Dis, L3(3)
Li5(5-3%) L3(3) Diss Ls(5)
18(9-2%) Ly(2) Dggp  Lo(9)
18(3%-2%) Ly(2) Dagy  Lo(3%)
L(5-2"%) Ly(2°) Dgg, Ls(5)
24(8-3%) L3(3) Dggs Ls(8)
; 54(3%-27) L3(3) Dggz Ls(2")
24(4-3%-2%) L3(3) Dggs Ls(4-2%)
Lhy(3-2%Y) Lg(2") Dis, L3(3)
L4(6-2'%) L4(2%) Dgg, Le(6)

Table 13: Nearly orthogonal arrays constructed by equation (3), run size < 24.

(see Table 13), the three pairs of its 2-level columns are nonorthogonal because the corre-
sponding Dj ., has three pairs of columns for which the component-wise differences do not

take the elements of G equally often.

The case of p > 1 has a similar structure of nonorthogonality. Let L,4(g°) = [e1,...,¢s].
It can be shown (Appendix D) that if b and b, are any two columns of D’ in (3), ¢;*b; and
cj*by are orthogonal for ¢ # j. The only nonorthogonal pairs are ¢;*b; and ¢;*bz, i =1,...,s
for those pairs of b; and by among whose component-wise differences the elements of G' do
not occur equally often. Therefore, the number of nonorthogonal pairs equals s times the
number of pairs of columns in D’ for which the elements of G do not occur equally frequently

among their differences.

(C) In (2), L1*D is an orthogonal array L) ,,2(g"*). If L, is replaced by a nearly orthogonal array

!, what will become of Li{*D? In some situations we can use this method to construct
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nearly orthogonal arrays with good properties. Suppose D, .. is a difference matrix with
the column of zeros as its first column,which is always possible because adding a constant to

any row of a difference matrix is still a difference matrix. Then the matrix obtained from

[0,---,(g - 2)]t*Dug,r;g (4)

is an LLg(g_l)(g"l-(g —1)). In (4), the (g — 1)-level column is orthogonal to the g-level
columns while the g-level columns are not orthogonal among each other. Unlike methods (A)
and (B), the right hand portion 0% L, in (2) should be added to the array in (4) with caution.
It is known that r < pug for any difference matrix D, ,,, (Beth, Jungnickel and Lenz, 1986).
If r = pg in D,y 1.y, then the array constructed from (4) is saturated since all the degrees of

freedom are used up, i.e.,

(g —1)(g-1)+(g-2)=pg(g-1)-1 (5)

Therefore, no additional column can be added. For r < ug, we should choose Ly such that
the total degrees of freedom of its main effects < (ug — 7)(g — 1). The (g — 1)-level column
is orthogonal to any added column. A g-level column constructed by (4) is orthogonal to
an added column provided that the corresponding columns in D and L, respectively, are
orthogonal. Arrays with run size < 36 obtained by this method are listed in Table 14. The

layouts of the difference matrices used in constructing these arrays are given in Appendix C.

The nonorthogonality structure of the constructed array depends on the choice of D in (4)

and the choice of L. Three examples are given to illustrate this point.

1. The array
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nearly orthogonal

array Dug,r,_g L,,g(q;‘ tC qy'ﬁ"
L',(3°-2) Dg¢gs NA
L3,(3%-2) Dess  Le(3-2)
Ly, (31-2) Diz12s NA
[L(43-2)  Dizes Liz(4-3)
L34(3°-2°) Dizes  Ln2(3-2%)
L%, (47-3) Dggs NA
L}, (48-3-2%) Dgea  Lg(4-23)
Lyg(4'1-3) Diz124 NA
L6(41°-3%) Diyz104  L12(4-3)

Table 14: Nearly orthogonal arrays constructed by (4), run size < 36.

L15(3°-2) = [(0,1)"* De 6;3] =

[ NeNolNolNole)
N = O N =O

is quite good because it is saturated (see (5)) and for any two 3-level columns, six level
combinations appear once and three others appear twice. Here all the level combinations

appear at least once because, for each component-wise difference in Dg g3, there are two

distinct pairs associated with it.

2. The array

Lg(3%-2) = [(0,1)*x D3 53] =

is poor because among the level combinations of the 3-level columns three do not appear.
This is due to the fact that for each component-wise difference in D3 3.3, there is only

one pair associated with it. In general we recommend choosing D in (4) so that in
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the constructed array every level combination appears at least once. All the arrays in

Table 14 meet this requirement.

3. By deleting the last two columns of Dgg;3, we obtain a Dg4;3. The array

L15(3%-2%) = [(0,1)'*Dg 4;3, 02%Le(3-2)] =

- O N = O
O = =N O
N =N O
O =N O NO
O N

SO OO OO
O NN = =O
OO =
o NN O -
NN O =
O = O O =
O NON N

L. B

is good since each level combination of any nonorthogonal pair appears at least once.
Note that the 2-level column in the added portion (the last column) is also orthogonal
to the first 3-level column (the second column) since the 2-level column in Lg(3-2) is
orthogonal to the second column in D. The arrays L},(4-3%-2), L},(3%-25), L},(4%-3-23),

and L}(41°-32) in Table 14 are obtained in a similar manner.

6 Construction of Lig(3"-2™) with m < 3 and Lj(3-2™) with

m < 21

The L4(3-23) given in Table 13 can also be used to construct the following array
18(37-2°) = [L3(3)* Do g3, 03+ Lg(3-2°)].

In the constructed array, only the 2-level columns are not orthogonal among each other. The
level combinations between any two 2-level columns appear with the frequencies 3:6:6:3 or
6:3:3:6. Can the imbalance in the frequencies be further improved to be 4:5:5:4 or 5:4:4:57

It is shown in the Appendix E that this is impossible. More precisely, for any L{4(3™-2%)

22



in which the only nonorthogonal pairs are among the 2-level columns and the frequencies of

their level combinations are 4:5:5:4 or 5:4:4:5, the maximum 7 is four.

The method for determing the maximum for m in L;12(3 - 2™) and L2o(5 - 2™) can be applied

to an analogous problem for Ly4(3 - 2™). According to Wang and Wu (1989), we can construct

Hyy  L19(3-2%)
Ly4(3-2'%) = ,
Hi2+1 L12(3-2%)
where H;, is the Hadamard matrix of order 12. It is shown in Appendix F that this construc-

tion is best in the sense that the maximum m in any L24(3-2™) is 16. To go beyond this, we

can construct

Hyp  Ljp(3-249)
2(3-21%49) = (6)

Hiz+1 Lip(3-2%%9)
by using Method A of Section 5, where L,(3-2%79), 1 < ¢ < 5 are given in Section 3. For
the array in (6), nonorthogonal pairs occur on the right hand part which are inherited from
1,(3-24+9). For example, if the WW1 array is used for L},(3-2**?), we obtain from (6) an

1,4(3-218) which has only two nonorthogonal pairs of 2-level columns.

From Section 3, after row and column permutations and level changes, we can obtain the

following Hadamard matrix
H12=[0a B’ Ca D’ Ea hl, h2,---,h7]. (7)

Using (6) and (7) we obtain an L%,(3-2'6*9). Denote the columns of the constructed array
by

ai,...,012,00,013, .- -,016,017; - - - C16+¢> (8)
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where aq is the 3-level column. Then we have
a1+ ai41 = aiy12, 1<1 <444,

ie., for 1 <1 < 4+ g, aiy12 is the interaction of a; and a;;1. To see this, consider a; and a,
for instance. Their interaction is given by
04+ B B

1+(B+1) B
which is identical to a;3. As an application, if we use (7) for the Hy, in (6), then by replacing

the following three columns

0 B B

1 B+1 B
by a 4-level column according to the rule (0,0,0)—0, (0,1,1)—1, (1,0,1) > 2, and (1,1,0) —

3, we obtain an L},(4-3-213+9). The 4-level column is orthogonal to the other columns.
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Appendices

A Nonisomorphic L;3(3-2%)’s

There are two nonisomorphic L;2(3-22)%. To see this, let A be the 3-level column and B,
and C be the 2-level columns. Denote by = and y the frequencies of the level combinations
(0,0,0), and (1,0,0) for (A, B,C), respectively. Then 3 — (z + y) is the frequency of (2,0,0)

since the frequency of the level combination (0,0) for (B,C) is 3. So we have

The integer solutions to the inequalities above are (1,1), (2,0), (2,1), (1,0), (1,2), (0,1), and
(0,2). The solution (1,1) gives one array and all the other solutions give another array. These

two arrays are displayed in Figure 4, from which their nonisomorphism is apparent.

0 1 2 01 2
+ + :
_ .,...- !..- / B ] ....'.-' ...".,.' / B
A A

Figure 4: Two nonisomorphic L12(3-22)’s.

B Isomorphism of Sets

We prove the claim in Section 3 that the two sets,

C1: [A’ B’ C’ D’ E? hla h27 h3, h4a h57 h67 h7]
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C2: [A, B, C, D, E, hy, hg, hg, h1g, h11, h12, h13],

are isomorphic.

Denote by R;; (and resp. Cj;) the permutation of rows (and resp. columns) ¢ and j. For
2 <1 <12, let ¢ be the operation of exchanging the levels 0 and 1 of the i-th column. Let
A;..; be the operation of exchanging the levels 7 and j of the 3-level column A. By applying
to C1 the following operations sequentially: Ca3, C4s, R19, R210, R3,11, Raa2, R14, Rsgs,

R9,12, 7, 6, 5, 4, 3, 2, Ang, we obtain C2.
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C Some Nearly Difference Matrices and Difference Matrices

D.IS,S;B
0 0 0 0 O
0 0 1 2 2
01 2 21
02 2 10
0 2101

5,5:2
0 00 0O
0 01 11
010 11

/

4,4;3
0 00O
01 2 0

0 211

01100
01110

010 2

9,8:2
000 0 O0OO0OTPO
0100 1101

/

D’8,8;3
000 0O0OO0OTPO

01201201

0 0101011

0 210210 2

0 00 111 2 2

01100110

0 0010111

012120 20
021102 21

0 00 22 211

01011010

0 0111100
01110001

0000 0 OTO0OUO

0122011 2

Deg g3 (Masuyama 1957)

0 00 00O

01201 2
0 2110 2

0021 21

0 20 2 11

0112 20
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D3,8;4 (here 01 + 10 = 11)
00 00 00 00 00 00 00 00
00 01 10 00 01 11 11 10
00 10 00 01 11 11 10 01
00 00 01 11 11 10 01 10
00 01 11 11 10 01 10 00
00 11 11 10 01 10 00 O1
00 11 10 01 10 00 01 11
00 10 01 10 00 01 11 11

D12,12;3 (Seiden 1954)
0 000OO OOO0OO0OO0OTUOTUO
000 21022 2111
001 2 2 2110120
0 02121021 210
01212 010 2 1 0 2
01 2 011212020
010 2 1 2 0112 0 2
01110 2 2 2 00 1 2
0 2110001 2 2 21
0212 21201001
022 012100 211
0200011 211 2 2

0 By By B3

BT K, Ko Ko
Di212.4 = )

B K, K, K

BT K, K, K

where 0 is a 3 x 3 matrix of 00’s, Ko = K = [c1,¢2,¢3], K1 = [e2,¢3,¢1], K2 = [c3,¢1,¢2],

B; = [ci,ciyci], for i = 1,2,3, and

B N

01 10 11

[e1,e2,e3] = | 10 11 01

11 01 10
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D Orthogonality in (3)

We discuss the orthogonality in (3) according to p =1 and p > 1.

1. p=1.
Let D}, .., = [b1,...,b,]. Then Ly(g)*b; — Ly(g)*b; = 0g%(b; — b;). It follows then that
if the elements of G do not occur equally often among the differences of b; and b;, then
they also do not occur equally often among the differences of L,(g)*b; and Ly(g)*b;,
which are not orthogonal. On the other hand L,(g)*b; and Ly(g)*b; are orthogonal for
any b; and b; whose differences appear equally often among the elements of G (Bose and
Bush, 1952).

The orthogonality between Lg(g)D}, .., and 0Ly (q}*- - -gjm) can be proved by show-

39

ing that Ly(g)*b; and 0g*a are orthogonal, where a is a g;-level column in L,(q7*- - -gp).

Note that
b; a
b;+1 a
[Lg(g)*bi, Og*a] = . .
b; + (g—l) a

Let fi 1., be the frequency of the level combination (k,!) for the two columns occurring
in [b; +v,a] for k =0,...,9-1,1=0,...,¢;—1,and v = 0,...,9—1. Then the frequency

of the level combination (k,!) of these two columns is

g-1 g-1 g-1
E Jrgpw = z Sr—vg0 = Z fw,i;0 = frequency of level [ in @ = constant.
v=0 v=0 w=0

Therefore, these two columns are orthogonal.

2. p>1.

Let L,4(g°) = [c1,...,¢s]. Then the orthogonality in L = [¢;*D; 0ug*Ln(qi*- - -qm))

n,r;9°?
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is analogous as the previous case. To see this, note that L can be written as [L,(g)*

!

!
D un,rig

. 0gxL,p] by permuting its rows, where D

(and resp. Lyy) is a matrix consist-

nrg (and resp. Ly(qi'---gp»).) It remains to show the orthogonality

ing of u copies of D,
in A = [c;*bg, c;xby] for k,l =1,...,r, and ¢ < j. Since ¢; and c; are orthogonal, A
can be rewritten as [Ly(g)*bf, 0,b}'] by permuting its rows, where b} (and resp. b}

is a column consisting of pu copies of by (and resp. b;.) Therefore, the columns in A are

orthogonal.

E A result on Li4(2™-3")
Let A and B be the columns with 4:5:5:4 as the frequencies of level combinations, i.e.,

A = [000000000111111111],

B = [000011111111100000},

and C be a 3-level column orthogonal to A and B. Let z (and resp. y) be the numbers of the
level combinations (0,0,0) (and resp. (0,0,1)) for (4, B,C). Then 4 — (z + y) is the number
of the level combination (0,0,2) for (A, B,C). Since each level combination (0,t) for B and
C, 1 =0,1,2 appears exactly 3 times, we have 0 < z<3, 0<y<3, 0<4-(z+y)<3.
There are 12 integer solutions to the inequalities above. By using computer search, the
maximum number of mutually orthogonal 3-level columns corresponding to these solutions
is four. Therefore, the maximum n in Li4(3"-22) is four. Indeed the array L!g(3*-2%) in
Table 13 attains the maximum and the frequencies of level combinations in any two 2-level

columns are 4:5:5:4 or 5:4:4:5.
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F The maximum m in L},(3-2™) is 16

We follows the method for L12(3-2™) in Section 2. Fix the 3-level column as

0
A=|1],
2

where i is the 8 X 1 vector of i’s. Then any 2-level column orthogonal to A must have the
form

where each X; is an 8 x 1 vector from the basic vectors as follows: ¢, c+1, d, d+1, e, e+1,

ct+d, c+d+1, ct+e, ct+e+1, d+e,d+e+1, c+d+e, c+d+e+1. Here
c=[00001111]%, d=[00110011]%, e=[0101010 1}".

We will fix the first three 2-level columns. Corresponding to level ¢ of the 3-level column,
the 8 runs of the 2-level columns can take one of the following five noisomorphic choices:
{z,y,2}, {z,y,z+y}, {z,y,2+y+1}, {z,z,y}, and {z,2+1,y}, where x and y can take any
of the basic vectors. Therefore, by a complete enumeration, we can show that there are eight

nonisomorphic ways of fixing the first three 2-level columns: [B,C,D;], 7 =1,...,8, where

c d e c c
B = Cc ,C= d ,D1= € ,D2= c+1 ,D3= c+1 )
c d e c+d e
c+d c+d+1 e e e
Dy=| c+d |, Ds = c+d ,Dg=| c+d |, D7 =| c+d+1 |, Dg= e
c+d c+d c+d c+d c+d

By using essentially the same method as in Section 2, we can show that the maximum number
of 2-level columns that can be added in any of the eight cases is not greater than 13. Therefore,

the maximum m in any Lo4(3-2™) is 16.
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