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ABSTRACT

While censored (including interval censored) data may be easier or
less costly to collect than complete data, they contain less information
and are harder to analyze. Existing methodology is inadequate for
analyzing such data from highly fractionated experiments. We propose
an iterative method which provides a simple and flexible way to consider
many models simultaneously. The method’s simplicity makes it easy to
implement with existing software, results in computational savings, and
promotes experimenter involvement. We demonstrate the procedure by
reanalyzing data from two real experiments. A simulation study also
demonstrates its superiority over some existing methods including
Taguchi’s minute accumulating analysis.

Key Words: quality improvement, interval censored data, minute accumulating
analysis



1. Introduction

In industrial experiments, data are often censored. For example, the ever increas-
ing reliability of today’s products often makes it necessary to limit the duration of a
lifetesting experiment. Also, it may not be possible to use a monitoring device to
record a unit’s failure time so that periodic inspection is required until the unit fails or
the experiment ends. These two common types of censored data are known as right

censored and interval censored data, respectively.

While less costly to collect, censored data contain less information than complete
data and are harder to analyze. This is especially so for the highly fractionated fac-
torial experiments commonly used in industry to study a large number of factors in a
small number of runs. In this context, existing methodology is inadequate for analyz-
ing censored data to 1) determine the important factors that affect a quality charac-
teristic of a product or process and 2) to choose levels of these factors that lead to
improvement. As described in Section 2, standard methodology for censored data is
computationally complicated and often infeasible to use. Alternative methods such as a
quick and dirty method, the Hahn-Morgan-Schmee (1981) procedure, and Taguchi’s
(1987) minute accumulating analysis have more serious deficiencies which are presented

in this section.

In Section 3, we propose an iterative procedure which overcomes these drawbacks.
The procedure is motivated by the fact that complete normal data are easy to analyze.
This suggests imputing the censored data and treating them as complete after a suit-
able transformation of the data to achieve near normality. Standard methods can then
be used informally to select a tentative model based on the pseudo-complete data, i.e.,
the combined complete and imputed data. Next the current model is fitted and then
the censored data are imputed again. This cycle of fitting, imputation and model
selection continues until the selected model stops changing. Because of the explora-
tory nature of this procedure, several models may be identified. Diagnostic checking
and a formal analysis of the final model(s) can then be done to assess their adequacy.
While the model selection step lacks a rigorous theoretical justification and therefore

should be used with caution, nevertheless, it simply and quickly identifies useful



models. For the examples presented in this article, the final models chosen were con-
firmed by a more 'rigorous’ analysis in this assessment phase. Section 3 discusses

these points in more detail.

In Sections 4 and 5, we use the proposed procedure to reanalyze data from two
real experiments, the right censored router bit life data of Phadke (1986) and the inter-
val censored heat exchanger life data of Specht (1986). In Section 6, a simulation
study demonstrates the proposed method’s superiority over some existing procedures.
Section 7 concludes with a discussion of the advantages and disadvantages of the pro-

posed procedure.

2. Some Existing Methods

We review some existing methods for handling censored data and note some of

their limitations.

2.1. Fitting Comprehensive Models and Their Submodels

One obvious approach for identifying the important factors and factor effects is to
speci fy a model and fit it by maximum likelihood estimation (MLE). Then the stan-
dard errors of the estimates can be used to judge the effects’ importance. Note that
while unequal variances induced by censoring are accounted for, there are several prob-
lems with this approach. First, the MLEs may not exist. An important example is
when all the observations at a factor’s high level are right censored and are uncensored
at its low level. While the effect of such a factor is large and provides a great oppor-
tunity for quality improvement, its MLE does not exist. Hamada and Tse (1989)
showed that the nonexistence problem is prevalent for saturated and nearly saturated
models with heavy censoring. (A more detailed discussion is given in Section 7.)
Second, the computational cost can be quite high because of many possible models to
be fitted. Typically for industrial experiments, the number of potentially important
factor effects can be much larger than the number of runs and therefore, rules out the
use of a comprehensive model. Even if smaller models are entertained, the number of
such models can still be very large. For example, in the router bit life experiment of

Section 4, there are nine factors and ( g ) = 36 two-factor interactions of interest. If



only models with nine main effects and three two-factor interactions were entertained,

then ( 336 ) = 7140 separate MLE calculations would be required.

There are two methods which can potentially reduce the amount of computation.
Krall, Uthoff and Harley (1975) proposed a forward selection procedure using the max-
imum likelihood criterion. While the problem with the existence of MLEs is lessened,
the method still requires much more computation than that proposed in this article. If
the forward selection procedure is generalized to a stepwise selection procedure, the
amount of computation increases substantially. Lawless and Singhal (1980) proposed
an efficient algorithm for finding good fitting submodels of a full model using the max-
imum likelihood criterion. This method encounters computational difficulties in the

industrial context since the MLESs for the full model usually do not exist.

2.2. A Quick and Dirty Method

A quick and dirty (QD) method used in practice treats the censoring times as
actual failure times and then analyzes them by standard methods for complete data.
See Phadke (1986) for an example. Although simple, ignoring the censoring informa-
tion can lead to wrong decisions. This occurs because the unobserved failure and cen-
soring times may differ greatly depending on the particular factor level combination.

The simulation study in Section 6 shows that this method can perform quite badly.

2.3. Taguchi’s Minute Accumulating Analysis Method

Taguchi’s (1987) minute accumulating analysis (MAA) is a method for interval
censored data. MAA can also be used to analyze data with right censoring since the
last group corresponds to right censored data and the uncensored data can be viewed
as interval censored data with small intervals. For each observation, MAA generates a
series of binary data in the following way: a "one" is assigned to all groups preceding
the group in which the unit failed; the remaining groups are assigned a "zero". Thus, a
time factor is created whose levels correspond to these groups. Then MAA performs
an ANOVA on this generated binary data, treating them as if they came from a split-
plot experiment (Taguchi 1987); the main-plot factors are those factors studied in the

experiment and the sub-plot factor is the created time factor.



Fung (1986) has questioned MAA’s validity by focusing on the generated depen-
dent binary data and their corresponding huge number of degrees of freedom in the
ANOVA table. Here, we focus on the main-plot analysis which, except for the last
group, is approximately an ANOVA on the lifetime data. Viewed in this way, MAA
like the QD method treats censoring times as actual failure times, and thus has the
same deficiencies. Note that the incorrect choice of the degrees of freedom in MAA
does not affect the relative importance of the factorial effects. On the other hand,
treating the censoring times as actual failure times has more serious consequences. In
particular, the relative importance of the effects can be reversed as shown in Section 6.

See Hamada (1989b) for a detailed study of MAA’s properties.

2.4. The Hahn-Morgan-Schmee Method

The Hahn-Morgan-Schmee (1981) (HMS) method is an iterative model selection
method based on an iterative least squares procedure described in Schmee and Hahn
(1979). The HMS method consists of a two-step loop: imputation followed by model
selection. Initially, censoring times are treated as actual failure times and a model is
chosen using regression based on least squares estimates (LSEs). That is, HMS’ initial
model is the same as that chosen by the QD method. In successive steps, the censoring
times are replaced by conditional expectations based on the current chosen model’s
LSEs. The imputed lifetimes are then treated as actual failure times and the next
model is chosen using regression. The procedure stops when the model chosen and the
estimates of the effects in the model stop changing. Although simple to implement,
the HMS method can perform poorly as shown in Section 6 since the final model can be
unduly influenced by the initial model choice. Other problems with this method are

also discussed there.

Next we propose a procedure that overcomes the drawbacks of methods which
directly use the censoring information like those in Section 2.1 and yet retains the sim-

plicity and flexibility of those in Sections 2.2-2.4.



3. The Proposed Procedure

Because industrial experiments often deal with positive valued quantities, e.g.,
failure times, we consider only such responses here. A convenient way to model posi-
tive responses is to use a power transformation to transform them to near normality.
Then, the convenient properties of normally distributed responses can be exploited.

We take this approach because of its flexibility and stmplicity.

Assume that the response y after some transformation, h(y), follows a linear model

with normal error:
h(y) = u + € with € ~ N(0,0?). (2.1)

Censored data can be represented by the interval (a, b). For left censored data at b,

= —oo. Similarly for right censored data at a, b = oo.

The objective is to find pg = X8, where B is the vector of important factor effects
and X is the corresponding matrix of explanatory variables. These include main
effects, interactions, linear and quadratic effects (for quantitative factors) and con-

trasts between groups of levels (for qualitative factors).

The primary difficulty with the standard methods for censored data presented in
Section 2.1 is that one cannot start by specifying a comprehensive model or even a
smaller saturated or nearly saturated model. However, by transforming and imputing
to obtain "complete normal” data, the wealth of standard techniques for complete nor-
mal data is then available to select (rather than specify) a model. This is the basis of
the model selection phase of the proposed procedure which involves a cycle of fitting,
imputation, and model selection. The remaining two phases assess the model(s) chosen

and recommend levels for the important factors.

The proposed procedure consists of the following:

A. Model Selection Phase
1. Initial Model Specification
2. Model Fitting

3. Imputation



4. Model Selection

Repeat steps 2 through 4 until model selection termination.
B. Model Assessment Phase
Repeat A and B until adequate model(s) are found.

C. Factor Level Recommendation
Details for the procedure are provided next.

(A1) Initial Model Specification. The experimenter chooses p = XyB8, (Model 0)

which includes main effects and interactions thought to be potentially important.

For highly fractionated designs, one may be restricted to a main effects model.
(A2) Model Fitting. Fit the current model, p = X;B; (Model i), using the maximum

likelihood criterion. The contribution of a censored observation (a, b) to the likeli-
hood is ®(zy,)-P(z,), where z, = (h(w) - p)/ o and h is the transformation in
(2.1). The contribution of a complete observation y is ¢(zy)|0h(y)/dy|, where
&(z) and $(z) are the standard normal probability density function and cumulative
distribution function (cdf), respectively. The maximum likelihood estimates can
be calculated by easily available procedures such as the EM algorithm (Aitken
1981), the conjugate directions algorithm (Powell 1964), or the Newton-Raphson
method.

(A3) Imputation. Impute the censored data by their conditional expectation:
E(h(y)ly €(a, b)) = xiB; + 0 ($(za) ~ #(21)) / (P(26) - B (2a)) , (2.2)

where z,, = (h(y) — x;8;)/ 0. Since we are interested in identifying location effects,
we use the conditional expectation as a typical value. We refer to the combined

complete and imputed data as pseudo-complete data.

(A4) Model Selection. Informally apply a standard technique to the pseudo-complete
data from (A3) to select a model. Stop when the current model selected is the

same as the previous model, i.e., X;8; = X;_;8,_:-



(B) Model Assessment. Verify the final model chosen by performing a formal
analysis. Judge it by simplicity, structural adequacy, and scientific meaningful-

ness. Analyze the residuals to assess the distributional adequacy.

(C) Factor Level Recommendation. To select factor levels which lead to improved
lifetime, use the predicted responses from the final model selected. After calculat-
ing the predicted responses for all combinations of factor levels, choose the combi-

nation with the best predicted response.

The proposed method has some similarities to the HMS method, the overlap being
steps A3 and A4. A crucial difference is step A2 where the MLEs are obtained for the
initial model specified in step Al and are updated for the current model selected in
step A4. Unlike the HMS method, the proposed procedure directly incorporates the

censoring information in the fitting step.

Next we elaborate on the selection of models based on the pseudo-complete data.
Typically, one model is chosen at each iteration. If several models were equally plausi-
ble, the procedure could be applied separately to each of them. The beauty of using
pseudo-complete data is that many models are simultaneously entertained so that each
possible model does not have to be evaluated individually as required by the formal
MLE procedures of Section 2.1. Since the problem of model selection amounts to
choosing the cutoff between the significant and insignificant effects, there is a hierar-
chy of models; that is, if there are several plausible models, they are nested within each
other. To carry out the above, one approach is to choose the largest model. If some of
the parameter estimates are negligible in the subsequent fitting step, then the current
model is effectively reduced to a smaller one. These two aspects, the hierarchy and

simultaneous consideration of models account for the procedure’s simplicity.

For 2P fractional factorial designs, we can only entertain interactions that are
not aliased with main effects. The relative size of suitably standardized effects can
suggest which effects are important. Alternatively, half-normal probability plots
(Daniel 1959) can be used informally to identify the important main effects and

interactions. Besides the interactions which the experimenter thinks may be



important, knowledge of the properties of the design can lead to the consideration of

additional interactions. This we call design exploitation and demonstrate it in Example
1.

For 3%P fractional factorial, mixed level, and Plackett-Burman designs, there is
partial aliasing between main effects and two factor interactions. These designs may
initially allow consideration of only main effects. However if only a few factors are
important, then some two-factor interactions may be entertained as well. That is, the
same pseudo-complete data could be used to consider models containing these interac-
tions by informally using procedures like stepwise or subset selection regression. This

strategy is used in Example 2.

A word of caution in using the standard methods in step A4 is necessary since it is
not theoretically justifiable. The usual assumptions of uncorrelated effects with equal
variances underlying normal probability plotting do not hold because of the censoring
and imputation. However, one can still rank and informally select effects based on the
relative magnitudes of the standardized effects. Although a "standard" method works
as well as the formal MLE method in the two examples and performs satisfactorily in

the simulation study, the user should be aware of this potential pitfall.

Regarding model assessment, comparison of the final model MLEs with their
respective standard errors provides a quick check of model adequacy. Note that the
standard errors are easily calculated after the MLEs are obtained. This quick check
confirmed the final models chosen by the proposed procedure in the examples. Distri-
butional and structural adequacy might also be assessed by a normal probability plot of
residuals and a plot of residuals versus predicted values, respectively. These tech-
niques are discussed in Lawless (1982), but have apparently not been studied for cen-
sored data in the industrial context. Even if a few observations are censored, the stan-
dard methods of analyzing only the residuals from the uncensored observations may
still not apply, since the censored data were used to obtain the estimates. More seri-
ous questions arise regarding assessment with interval censored observations. For dis-
tributional assessment, the cdf of the error distribution can be estimated using the

Turnbull (1976) algorithm and compared with the normal cdf. For such few data as in



Example 2, this and perhaps any method appear to be useful for detecting only gross
departures from normality. For a crude assessment of structural model adequacy, we
plotted the predicted value for each experimental run to see if it fell within the

corresponding observed interval.

Regarding transformation, the power transformation (Box and Cox 1964) h(y) =
™), where y*®) = (y" —1)/X for X# 0 and logy for X\ =0, provides a convenient
family of transformations and is simple to implement. Here we do not handle transfor-
mation in a formal way, but suggest trying several values of A and applying the pro-
posed procedure. Also, subject matter expertise should guide the choice of an
appropriate transformation. Note that the other methods in Section 2 except for

Taguchi’s MAA can incorporate transformation.

Confirmatory experiments are an important aspect of experimental strategy.
These are performed to evaluate whether the experimental objectives have been accom-
plished. They may also be designed to discriminate between several choices of factor
level combinations. Because the proposed procedure may suggest several models, addi-
tional runs may be required to choose between them. See Box, Hunter, and Hunter
(1978) and Wu, Mao and Ma (1990) for strategies on performing subsequent experi-

ments.

In the next two sections, we demonstrate the proposed procedure by reanalyzing

data from two real experiments.

4. Example 1: Router Bit Life Data

Phadke (1986) reported on an experiment to improve router bit life for a routing
process that cuts 8x4 inch printed wiring boards from an 18x24 inch panel. When the
router bit becomes dull, it produces boards with rough edges which requires an extra
cleaning process. Also, frequently changing the router bits is expensive. Failure is
determined by evidence of an excessive amount of dust, where router bit life is meas-
ured in (x100) inches of cut in the x-y plane. A 32 run design was used to study the

nine factors given in Table 1. The design and data appear in Table 2.



Table 1: Factors and Number of Levels
for the Router Bit Experiment

Label Factor Number of
Levels

[\

Suction

X-Y Feed
In-Feed

Bit Type
Spindle Position
Suction Foot
Stacking Height
Slot Depth
Speed

oD OHEHTOQW»
CR NN IO

The experiment was stopped after 17(x100) inches. Eight of the 32 router bits had
not failed when the experiment was stopped so that the corresponding data are censor-
ing times. Actually, the router bits were inspected every 100 inches giving interval
censored data. For purposes of demonstration, however, we ignore this and use the
midpoints of the intervals as actual failure times. The experimenters were interested
in the relative importance of the nine main effects and four two-factor interactions, BI,
CI, GI, and BG. The experimental objective was to select factor levels which improve

router bit life.

We illustrate the proposed method for the commonly used lognormal regression
model. Thus, the data are modeled using (2.1) with h(y) = y® = logy. We also
analyzed this data for A\ = -1, -.5, .5, and 1. Only details for the log transformation
are reported here since it gave a simple model with a comparable large likelihood. The

right censored observations are imputed using equation (2.2) which reduces to:
E(logy |y > R) = xB + 0¢(2)/(1-%(2)) , (4.1)
where z = (logR - xB) /o and R = 17.
Since the 32 run design was used to accommodate nine main effects and four two-

factor interactions, we take this to be the initial model in step Al. Thus, the initial
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model (Model 0) contains 17 effects, an intercept and a scale parameter.

We fit the initial model using maximum likelihood estimation (step A2) and use
(4.1) to impute the censored data (step A3). Using this pseudo-complete data, we com-
pute in Table 3 the least squares estimates (LSEs) of the effects for Model 0 using
regression from which we tentatively identify which effects are important (step A4).
Some explanation is required for the two qualitative factors D and E. Each is
represented as three effects whose corresponding contrasts are orthogonal to those for
the remaining effects. Based on the design structure as discussed below, D’s three
effects are aliased with (AG, BH, CF) and E’s with (AH, BF, CG). A priori, factor E
was not thought to be important so that if an effect is significant, it is attributed to
the corresponding interaction. On the other hand, a significant D effect is interpreted

as a difference between the router bit types.
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Table 2: Design and Data for Router Bit Experiment

factor
run |[A B C D E F G H I DATA
1 |1 1 1 1 1 1 1 1 1 3.5
211 1 1 2 2 2 2 1 1 0.5
31 1 1 3 4 1 2 2 1 0.5
4 /1 1 1 4 3 2 1 2 1 17"
511 2 2 3 1 2 2 1 1 0.5
6|1 2 2 4 2 1 1 1 1 2.5
711 2 2 1 4 2 1 2 1 0.5
8|1 2 2 2 3 1 2 2 1 0.5
9 l2 1 2 4 1 1 2 2 1 17"
02 1 2 3 2 2 1 2 1 2.5
1112 1 2 2 4 1 1 1 1 0.5
122 1 2 1 3 2 2 1 1 3.5
1312 2 1 2 1 2 1 2 1 0.5
412 2 1 1 2 1 2 2 1 2.5
1512 2 1 4 4 2 2 1 1 0.5
6|2 2 1 3 3 1 1 1 1 3.5
17 /1 1 1 1 1 1 1 1 2 17"
8 (1 1 1 2 2 2 2 1 2 0.5
9 |1 1 1 3 4 1 2 2 9 0.5
20 |1 1 1 4 3 2 1 2 2 17"
21 |1 2 2 3 1 2 2 1 2 0.5
2 |1 2 2 4 2 1 1 1 2 17"
22 |1 2 2 1 4 2 1 2 2 145
24 |1 2 2 2 3 1 2 2 2 0.5
25 |2 1 2 4 1 1 2 2 2 17"
2% |2 1 2 3 2 2 1 2 2 3.5
27 |2 1 2 2 4 1 1 1 2 17"
28 |2 1 2 1 3 2 2 1 2 3.5
20 |2 2 1 2 1 2 1 2 2 0.5
30 /2 2 1 1 2 1 2 2 2 3.5
31 |2 2 1 4 4 2 2 1 2 0.5
32 12 2 1 3 3 1 1 1 2 17

* right censored observation

From Table 3, D, G, I, GI, B, F, BF and CG appear relatively important.
Interestingly, BFF and CG were not considered in the original analysis because the

design’s structure was not taken into account. That is, knowing the design’s structure
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allows us to entertain additional effects. Here, using what we call design exploitation,

we can in fact consider eight additional effects.

The design’s structure can be seen by associating the effects in the 32 run design
with the 31 effects in a 2° full factorial design. Let 1-5 denote the generating columns.

Then the factor effects in the initial model correspond to:

A=2,B=3, C=-23, D=(234, -25, 345), E=(4, 5, —45), F =35,

G=-2345, H=-24, =1, BG =245, Bl=-13, CI =123, and GI =12345.

From this we deduce that D is aliased with (AG, BH, CF) and E with (AH, BF, CG) as
claimed above. Also AB, AC, BC, FG, FH, and GH are completely aliased with main
effects because C=-BA and H=-FG. Moreover, we can also entertain the remaining
two-factor interactions among the seven two-level factors, AF, CH, Al, FI, and HI.
Table 4 displays the estimates of these five additional effects (using the same Model 0
pseudo-complete data) which is quite revealing. It suggests that we should also con-
sider AF. Therefore the next tentative model (Model 1) contains G, D, I, GI, B, F, AF,
CG and BF. An informal reading of the half-normal plot of the 31 effects in Figure 1
supports the same model. (An asterisk is plotted for the 19 smallest effects and D1
and D2 denote two of D’s three effects.)

Table 3: LSEs from Model 0 Pseudo-Complete
Router Bit Data

A 113 | E1(AH) -.079 | I 537
B -.484 | E2(BF)  .329 | BG  .053
C 142 | E3(CG) -.395 | BI  -.039
D1(AG) .868 | F -472 | CI  -.156
D2(BH) -.379 | G 724 | GI 508
D3(CF) -.023 | H .023
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Table 4: Additional LSEs from Model O

Pseudo-Complete Router Bit Data

AF
Al
CI

415
115
-.156

FI
HI

244
215

*** Figure 1 about here

Next Model 1 is fit (step A2) using the original data whose MLEs appear in Table
5. For the model, we use the indicator variables for levels 2-4 denoted by D(2), D(3)
and D(4) (i.e., the relative effects to level 1) since they directly provide information for

comparing the different levels of D.

Table 5: MLEs for Model 1 Based on
the Original Router Bit Data

o B2 | G =77
intercept 148 | 1 .56
B -.56 | AF .51
D(2) -1.70 | BF .39
D(3) -93 | CG -.50
D(4) 98 | GI .53
F .39

D(x) is an indicator variable for level x.

We then impute the censored data using these MLEs (step A3). Based on the
resulting pseudo-complete data, we compute the LSEs using regression (step A4) which
indicate that the model selection phase can be stopped (see Table 6). A half-normal
plot in Figure 2 suggests the same. Note the better separation between the significant
and insignificant effects in Figure 2 as compared with Figure 1. A quick comparison of
the MLEs with their corresponding standard errors confirms Model 1. Also, residual

plots not shown here reveal nothing unusual.
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Table 6: LSEs from Model 1 Pseudo-Complete
Router Bit Data

A 114 | H 102 | CG  -.522
B -.608 | I 568 | CH -.054
C 078 | AF 516 | CI  -.078
D1(AG) .931 | AH -.042 | FI = .213
D2(BH) -.418 | AI  .130 | GI  .544
D3(CF) -.060 | BF  .304 | HI  .189
F -.457 | BG  -.008

G 745 | BI  .032

*** Figure 2 about here

For recommended factor levels, there are 256 combinations of factors A, B, C, D,
F, G, and I. By calculating the predicted response, u = XB, using 3 from Table 5, the

combination A,B,C,DJF;GI, gives the maximum predicted lifetime. Since the starting
combination is A,B;CDJF3G,l,, the recommendation is to change F and G. Note that

the same recommendation is obtained using the main effect and interaction mean plots
in Figure 3. These plots are produced by first imputing the censored data once more
using the final model. Then, for a factor with no interaction such as D, the means at
each level using the pseudo-complete data are plotted. For factors with interaction
effects, the means for each combination of the factors involved in the interaction are
plotted. Finally, choose the level whose mean is best, e.g., the one with the longest

lifetime.

*** Figure 3 about here

In the original analysis, Phadke (1986) used the quick and dirty method (see Sec-
tion 2). Here it appears that it gave similar results for the initial model of 9 main

effects and 4 two-factor interactions. However, we entertained 8 additional two-factor

15



interactions of which three appear to be important, AF, BF and CG. Thus factors A
and C are important through their interaction with other factors which affects the
choice of factors levels. Because the recommended levels for A and C were the same as
the starting ones, there is no difference in our recommendations and those of Phadke
(1986). However, if cost had been a supplementary criterion and the alternative levels

were cheaper, the QD approach could have chosen the wrong levels for A and C.

5. Example 2: Heat Exchanger Life Data

Specht (1986) reports on an experiment using a 12 run Plackett-Burman design to
study how 10 factors (A-H, J, K) affect a heat exchanger’s reliability. A unit fails
when it develops a tube wall crack with lifetime measured in (x100) cycles. Each run
was checked after cycles 42, 56.5, 71, 82, 93.5, 105, and 116 and stopped after 128
cycles; the design and interval censored data appear in Table 7. Note that the same
final model was identified no matter what transformation was used for X in (-1, 1). We

present the results for the reciprocal transformation (A = -1) since it gave the largest
likelihood.

Table 7: Design and Data for Heat Exchanger Experiment

factor
run [ F B A C D E G H J K DATA
1 1 1 1 1 1 1 1 1 1 1 (93.5, 105)
2 1 1 1 1 1 2 2 2 2 2 (42,56.5)
3 1 1 2 2 2 1 1 2 2 2 (128,
4 1 2 1 2 2 2 2 1 1 2 (56.5,71)
5 1 2 2 1 2 1 2 1 2 1 (56.5, 71)
6 |1 2 2 2 1 2 1 2 1 1 (042
7 2 1 2 2 1 2 2 1 2 1 (56.5, 71)
8 2 1 2 1 2 2 1 1 1 2 (42, 56.5)
9 2 1 1 2 2 1 2 2 1 1 (82, 93.5)
10|l2 2 2 1 1 1 2 2 1 2 (82 935)
11 2 2 1 2 1 1 1 1 2 2 (82, 93.5)
122 2 1 1 2 2 1 2 2 1 (42 56.5)
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The initial model (Model 0) is the main effects model with the 10 factors (step
Al). The MLEs are obtained (step A2) and the interval censored data are then
imputed using (2.2) (step A3). Next, the resulting pseudo-complete data are first
analyzed to determine the important main effects (step A4). By calculating the con-
trasts for the 10 main effects and the one error effect (denoted by e in the figures), we
can identify the important effects. From Figure 4, which shows the relative size of the

effects, only factor E appears to be important.

*** Figure 4 about here

Assuming that no other main effect is important, we can entertain potentially
important interactions between factor E and the other nine factors using the same
pseudo-complete data from the initial model. From Figure 5, the size of these interac-
tions relative to E suggests that EG and EH are important as well. Therefore, the next
model (Model 1) contains E, EG, and EH. Fitting this model to the original interval
censored data (step A2) yields the MLEs given in Table 8.

*** Figure 5 about here

Table 8: MLEs for Model 1 Based on
the Original Heat Exchanger Data

o .000102
intercept .984675
E -.004252
EG .002305
EH -.001927

Using the pseudo-complete data from Model 1 (step A3), we repeat the same calcula-
tions as for Model 0. The graphical displays of the effects in Figures 6 and 7 confirm
that only the factor E main effect and interactions EG and EH are important (step

A4). Also, note the increased separation between the significant and insignificant
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effects in Figure 7 as compared with Figure 5. Thus, we terminate the model selection

phase.

*** Figures 6 and 7 about here

Table 9 presents the alias structure of the 11 contrasts in terms of the 10 main
effects, EG, and EH. If only main effect E and interactions EG and EH are important,
then these alias strings can be used to explain why contrasts e, B, K, and C are larger
than the remaining six contrasts in Figures 4 and 6; only these four contrasts have
coefficients of EG and EH with opposite signs. Based on EG = .002305 and EH =
-.001927 from Table 8, (EG+EH)/3 = 0.000126 and (EG-EH)/3 = 0.001410; the
difference is more than ten-fold. Moreover, we performed a more extensive search
using stepwise regression for all 10 main effects and 45 two-factor interactions on both
the Model 0 and Model 1 pseudo-complete data and still obtained this same model. A

quick comparison of the MLEs with their corresponding standard errors also confirmed
Model 1.

Table 9: Alias Structure for 12 Run Design
in the 10 Main Effects, EG, and EH

column alias string

1 F-1/3EG-1/3 EH

2 B-1/3EG +1/3 EH
3 A-1/3EG-1/3 EH

4 C+ 1/3EG-1/3 EH
5 D-1/3EG-1/3 EH

6 E

7 G-1/3EG-1/3 EH

8 H-1/3EG-1/3EH

9 J+ 1/3 EG +1/3 EH
10 K+ 1/3 EG-1/3 EH
11 e-1/3EG +1/3 EH
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In Figure 8, we plot the predicted values versus the observed intervals for the 12
runs; almost all the predicted values fall within the observed intervals, suggesting that

the chosen model is reasonable.

*** Figure 8 about here

We consider next the recommendation of levels for factors E, G, and H. Since
maximizing lifetime is equivalent to maximizing yo‘), then it can be easily seen from

Table 8 that E;G,H, yields the largest predicted lifetime (146.18). This is supported by

the fact that run 3 in Table 7 is the only run with these same factor levels and indeed

has the longest lifetime.

In the original analysis using Taguchi’s minute accumulating analysis, only the
main effect E was detected. The flexibility of our method makes it possible to easily
entertain potentially important interactions which minute accumulating analysis can-
not. It led to finding two important interactions, EG and EH. Note that EH-EG =
-.004232 and E = -.004252 are nearly the same, so that an incorrect choice of G and H

levels could vitiate the effect of the recommended level of E.

6. A Simulation Study

In this section, we study the performance of the quick and dirty (QD) and Hahn-
Morgan-Schmee (HMS) methods described in Section 2 with that of the proposed
method (HW). Recall from Section 2 that the main-plot analysis of Taguchi’s MAA is
approximately equivalent to the QD method and therefore was not included in the
study. For a specified model, we used simulation to compare (i) how well each method
identifies the correct model and (ii) how well it preserves the order of factor impor-

tance.

The simulation was performed for a 16 run fractional factorial experiment in six
factors (A-F) defined by 5=123 and 6=234. A lognormal regression model was used
with log y = xB+ o¢, € is N(0, 1), and xB consists of five real effects (A, B, C, D, AB)
with 8=(5, 2, 4, 1, -3); the remaining 10 effects are 0. A censoring time of 2 on the log
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scale was used and 500 simulations were performed for ¢ = .5 and 1.

To compare the performance of the three methods, we needed to adopt a formal
rule for model selection. For convenience, we used the half-normal plot although it
lacks theoretical justification for censored data (see Section 3). As this is a graphical
method which requires visual judgement to identify points above the line through the
insignificant effects, we used a more formal version for the study by specifying the fol-
lowing cutoff rule based on R%. First, we assumed that the eight smallest effects were
insignificant and fit a line through them noting its R? value. Then we added the
remaining seven points one at a time, fitting a line each time, and looked for an R?
drop of 0.1 or more (from the last fitted line). At the first such drop, the currently
added effect and the remaining larger effects were identified as significant. If no R?
drop of 0.1 or more was found, the cutoff was taken to be where the largest drop
occurred. Another rule based on prediction was tried but the details are omitted since
both rules gave similar results. In order to calibrate the results, we included the
results based on no censoring which are denoted by U (for uncensored) in Table 10.
That is, the actual failure times observed (before any censoring) at each of the 16 runs

were analyzed.

An initial model with six main effects was specified for the HW method, whose
results are denoted by HW in Table 10. A variation of the HW method starts with the
same model as the HMS method. That is, treat censoring times as actual lifetimes and
use the half-normal plot to choose the initial model. Other steps in the HW method
remain unchanged. These results denoted by HW* help us understand the factors that

contribute to HW’s superior performance.

Results for the simulation are given for 0 = .5 and 1. For each method, the first
row presents the number of cases (out of 500) for which the k largest effects (k = 1 to
5) on the final plot are correctly ordered according to the true model. The second row

gives the number of these cases for which all k effects were declared significant.
A summary of Table 10 follows:

(1) The results for the U method show that the R? rule performs quite well. For larger

o, smaller effects are missed as expected.
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(2)

(3)

The methods can be ranked in the following order: HW > HW* >> HMS > QD.
The poorer results for these methods (compared with the U method) reflect both

the loss of information from censoring as well as deficiences in these methods.

The results for the QD method show that it seriously reverses the order of factor
importance and demonstrates the danger of ignoring the censoring information.

Also, the QD method detected spurious effects often (results not reported here).

Two factors explain the HMS method’s poor performance. First, it starts with the
model chosen by the QD method, but this is not its only deficiency, since the
HW* variation started with the same model and did much better. The main
difference between HMS and HW* is that HW* (and HW) directly uses the censor-
ing information to calculate the MLEs for the current model (in the fitting step
A2). Because estimates of wrong effects in the current model tend to be small,
the influence of these wrong effects in the next round of imputation is thereby
reduced. On the other hand, HMS fails to use the censoring information directly
so that its final model is influenced too much by the initial model. The relative
disadvantage of the HMS method is lessened for larger o because larger variation
brings about more uncertainty in the imputation and therefore reduces the influ-

ence of the initial model.

The results of HW* and HW show that choice of initial model can make a differ-
ence. This suggests starting with several different models and checking to see if

the same final model is chosen.

Since the main-plot analysis of MAA is approximately equivalent to the QD
method, these results suggest that MAA can also perform poorly.
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Table 10: Simulation Results for Method Comparison
Number of Cases with the k Largest Effects
Correctly Ordered and Detected Using R? Rule

o | method k
1 2 3 4 5
) U 500 500 500 500 500

500 500 500 500 498
QD 500 1 1 1 0
500 1 1 1 0
HMS | 490 12 12 12 0
490 12 12 12 0
HW* | 500 390 390 390 340
500 390 390 390 123
HW | 500 497 485 485 485
500 497 485 485 479

1. U 499 499 499 499 487
499 499 499 493 349
QD 500 45 43 38 0
500 45 43 38 0
HMS 492 104 102 100 5
492 104 102 100 1
HW* 481 375 368 364 289
481 375 368 363 85
HW 487 449 370 361 306
487 449 370 361 227

7. Discussion

The idea of exploiting the simplicity of complete data to solve an incomplete data
problem is not new. See for example the EM algorithm (Dempster, Laird and Rubin
1977 and its references), the Schmee-Hahn (1979) algorithm and the data augmentation
algorithm (Tanner and Wong 1987a, 1987b). However, in these papers estimation for a
specified model rather than model selection was the goal. The proposed procedure
obtains pseudo-complete normal data via transformation and imputation and infor-
mally analyzes them to identify the important factor effects. Indeed, the procedure

has the attractive feature of simplicity which results in computational savings (the
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examples required at most two iterations) and encourages experimenter involvement in
the model selection process. Moreover, it is flexible because it entertains many models
simultaneously. The procedure also exploits the knowledge of the design structure
which leads to consideration of additional effects not originally considered by the
experimenter. Finally, the procedure can be used in combination with more sophisti-
cated methods, which provides a quick yet comprehensive analysis strategy for cen-
sored data. We will discuss this shortly, but first we mention some criticisms of using

the procedure by itself.

We have already pointed out that the use of standard methods on the pseudo-
complete data lacks theoretical justification. Namely, the imputation step ignores the
variability of the censored data, which might lead to incorrect choices of important
effects. Multiple imputations of the censored data using random or systematic sam-
pling could be tried. If these imputed values all lead to the same final model, the effect
of variability of the censored data on the selected model is negligible. Since it is diffi-
cult to study these issues theoretically, we resorted to simulation to study the empiri-
cal performance of the proposed procedure in selecting appropriate models. As sum-
marized in Section 6, it performed quite well. Furthermore, the model assessment step

of the procedure provides another built-in check on the validity of the selected models.

A limitation of the method is its reliance on the existence of the MLEs; it cannot
start if the MLEs for the initial (often main-effects) model do not exist. The method
can still be used if an initial model whose MLEs do exist can be found. If existence
problems are encountered at the beginning for a main-effects model, the data may con-
tain too little information due to very heavy censoring. However, this problem is
minimized by our strategy of building the model up rather than starting with a
comprehensive model. For the two examples presented here as well as for another real
example not reported, we did not encounter these problems. Note that the HMS
method is not immune from this problem since the iterative least squares estimates will

diverge when the MLEs do not exist.

How does one tell if he has encountered an estimability problem? Hamada and

Tse (1989) conclude that because of the complicated structure in industrial
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experiments, it is generally difficult to tell whether the MLEs exist just by inspecting
the pattern of the runs with all censored observations. However, the existence of the
MLEs can be checked by a standard linear programming algorithm. Alternatively, an
estimability problem may be indicated by the behavior of the iterations of the algo-
rithm which finds the MLEs. Some things to look for are (i) some of the estimates are
large and continue to increase in successive iterations, (ii) many iterations are required
since the likelihood surface is flat in the neighborhood of the unbounded MLEs and (iii)
the information matrix, used in the Newton-Raphson procedure, is not positive defin-

ite.

Two approaches which either handle or avoid the estimability problem altogether
are being studied. A likelihood approach looks at likelihood ratio statistics for different
models. While this presents no theoretical problem, there are some computational
problems that need to be overcome. Also, the validity of chi-square approximation
when the MLEs do not exist for some components needs to be studied. A Bayesian
approach may be taken which eliminates the estimability problem since an appropriate
prior leads to finite posterior estimates. The relative importance of factor effects is

not expected to be very sensitive to the choice of prior.

The proposed procedure can also be viewed as a quick way to identify a good
starting model for more sophisticated procedures. Adding to or deleting effects from
the model as in a stepwise procedure ensures that other promising models are not
missed. The analysis can also be supplemented by using a Weibull or gamma model
which is especially attractive in reliability studies. Hence, the proposed procedure can

be used alone or viewed as a complement to these more sophisticated procedures.

We conclude this article by noting that the usefulness of the methods considered
here depends on the information contained in the data which is affected by the degree
of censoring (Hamada 1989a, 1990 and cited references). For very light censoring
where little if any information is lost, even the quick and dirty method works. For
more censoring, the quick and dirty method breaks down but the HMS method contin-
ues to work. For moderate censoring, the proposed method outperforms the HMS and

quick and dirty methods as demonstrated by the simulation. For very heavy censoring
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where there is little or no information in the data, no method is expected to work.

Current research is looking at characterizing this classification in more precise terms.
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Figure 1: Half-Normal Plot for Model O
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Figure 2: Half-Normal Plot for Model 1
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Figures 3: Marginal Mean Plots for Model 1
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Figure 4: Effect Plot for Model 0
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Figure 5: Additional Effect Plot for Model 0
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Figure 6: Effect Plot for Model 1
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predicted responses and observed intervals

Figure 8 Predicted Responses
for Model 1 Heat Exchanger Data
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