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ABSTRACT

In designing experiments with censored and ordinal data, the infor-
mation provided by such data relative to complete data must be con-
sidered. In this paper, information from censored, grouped, ordinal and
binary data are evaluated for typical industrial experiments; a unified
framework allows these data types arising from various collection
schemes to be compared. Two examples are studied which have some
useful implications. The information measure, which requires simple cal-
culations and is thus easily programmed, provides one assessment of an
experimental design’s suitability. Using it to evaluate potential designs
is recommended and thereby arms the practitioner with a useful tool for
planning experiments with censored and ordinal data.

Key Words: asymptotic relative efficiency, binary data, fractional factorial design,
grouped data, maximum likelihood estimation.



Introduction

With the renewed interest in experiments to improve quality and productivity,
evaluation of different data collection schemes becomes a necessary part in the plan-
ning of such experiments. The types of data collected in these experiments reflect the
cost and time constraints which are imposed by today’s ever shrinking product cycles
and ever increasing reliability of today’s products. For example, because an
experiment’s duration must be limited, some units on test may not fail before the end
of the experiment, yielding censored data. Instead of monitoring units continuously,
periodic inspection may be done until they fail, yielding grouped data. When continu-
ous measurements are not easily obtained, ordinal data based on subjective assess-
ments such as "none", "slight", "moderate"”, and "extensive" are often collected; it is far
better to experiment immediately and obtain ordinal data which contain information to
improve the product than wait for a continuous measurement device to be built. Clas-
sifying the product as "good" or "bad" provides an even simpler and faster way to col-
lect data which is known as binary data. All these data types are examples of incom-

plete data as opposed to complete data whose values are known exactly.

While easier or less expensive to obtain, incomplete data do have costs. Gould
and Lawless (1988) and Hamada (1989) studied information loss for parameter estima-
tion in the general regression setting for censored and grouped data relative to com-
plete data. Tse and Wu (1984) studied the advantages of ordinal data over binary data
for a specific situation. Also, there is the problem of the non-existence of estimates
(Hamada and Tse [1989]) and increased difficulty in analyzing these data (Hamada and
Wu [1990, 1991]). In this paper, we focus on the information loss in typical industrial
experiments. Here, we are concerned with ensuring that the experiments provide ade-
quate information. Censored, grouped, ordinal and binary data are studied for the first
time in a unified framework so that these data types can be compared. Two special
cases of grouping, rounding and rounding-censoring, are also considered; the former
arises from equally spaced inspection and the latter when equally spaced inspection is

combined with censoring.



In this paper, we consider the information loss for the maximum likelihood estima-
tor (MLE) of the vector of factorial effects. For simplicity, we use the exponential
regression model, a special case of the popular Weibull regression model used in relia-
bility studies. While the exponential model has been criticized because of its lack of
robustness, nevertheless, it has been used successfully to model real data sets (Davis
[1952]). Moreover, our focus is a relative comparison between the data types arising

from various collection schemes.

We begin by defining asymptotic relative efficiency between two different data
collection schemes as a measure of information. A review as well as new results for cen-
sored, grouped, ordinal and binary data are given for the general regression situation.
Details for ordinal data appear in the Appendix. Assuming a latent model for ordinal
and binary data provides a unified framework for studying the different data types. In
this way, ordinal data can be viewed as grouped data, except that the group boun-

daries are unknown and thus have to be estimated.

Next, we consider information loss for some simple full and fractional factorial
designs, those typically used in industrial experiments. For censoring and grouping,
the structure in such designs results in some simpler expressions that reveal an impor-
tant property of the information measure. For more complex designs, the formulas
remain complicated but are no harder to evaluate so that the different collection

schemes can still be compared.

Using these results, we study a few informative examples. First, we consider data
from a real experiment. Then, a more complicated experiment is investigated. Finally,
we conclude with a discussion of the paper’s implications for planning such experi-
ments. The information measure, which requires simple calculations and is thus easily
programmed, provides one assessment of an experimental design’s suitability. Using it
to evaluate potential designs is recommended and thereby arms the practitioner with a

useful tool for planning experiments with censored and ordinal data.
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Information for the Exponential Regression Model

In this paper, we consider the exponential regression model. Suppose there are m

distinct x;, where x; is the ith combination of p factorial effects. At each x;, n replica-
tions are taken and are assumed to be exponentially distributed with mean
8; = exp(x;8). That is, the data have density fy(t) = (1/6;)exp(-t / 6;).

Consider two data collection schemes S; and S,. If V; and V, are their respective

asymptotic covariance matrices of the maximum likelihood estimator (MLE) for B, then

we define the asymptotic relative efficiency (ARE) of scheme S; to scheme S, as

ARE(B;S.:S,) = (IV, |/ IV, )P, (1)

where | | denotes the determinant of a matrix. Since the determinant of a covariance
matrix is related to the volume of the confidence ellipsoid for the true parameters, it
provides a measure of the information content for a particular collection scheme. The
ARE as defined in (1) allows two collection schemes to be compared and accounts for
the number of parameters by taking the pth root. Also, when one parameter is of par-

ticular interest, ARE(Bi;SI:SQ) = Vy(ii)/ Vi) can be used to study information loss.

When the data are complete or exactly known (E), the asymptotic covariance

matrix of ,[9 is
Vg = (B{-8%1/8B98))" = X'X)*, (2)

where the design matrix X is (x, ...,xm)T and 1 is the log likelihood.

Information for Censored and Grouped Data

Let L be the common censoring point for singly Type I censored data. Grouped

data are recorded as intervals {(aj_, a;)}, where the interval boundaries partitioning
(0, o9 into k+1 groups are ag = 0, ay, ..., 3,1 = 00. Rounded and rounded-censored

data are special cases of grouped data. Rounded data are recorded as {(2i-1)h/2}, the
midpoints of the intervals {[(i-1)h, ih)}, where the interval width h determines the



degree of rounding. Note that equally spaced inspections also yield rounded data. For
rounded-censored data, L is assumed to be a multiple of h with the uncensored data

being rounded as above with interval width h.

Hamada (1989) showed that the asymptotic covariance matrix of 3 for censored
(C) and grouped (G) data is

Vg or Vg = (E{-8%1/ 8808} = (X'DX)!, 3)
where 1 is the appropriate log likelihood and D = diag(d,,...,d). d; can be viewed as

the information at x; since it is the ARE of 8, (i.e., the MLE of the mean 0; = exp(x;0))

for censored or grouped data relative to exactly known data. Thus, the information at

each x; is incorporated into the information for B. For rounded and rounded-censored

data, the ARE 6 expression for grouped data simplifies. The following are the ARE 6
for censored (C), grouped (G), rounded (R) and rounded-censored (RC) data as found
in Hamada (1990):

ARE(f¢) = 1-exp(-L/6) (4)

A k+1
ARE(DG) = 3 pi” ((exp(-a; / 0)(ai / 6)-exp(-ai / 6)(ai 1 /) -

i=1
where p; = (exp(-ai_;/0)—exp(-a;/0)) and exp(-ayy;/0)(axy,/0) =0
ARE(fR) = g(h/8), where g(a) = a’exp(-a) / (1 -exp(-a))? (6)

ARE(fc) = g(h/8)(1-exp(-L /) (7)
Note that for the more general Weibull distribution, the rounding and rounding-
censoring formulas no longer have this simple form.

Using (1), (2) and (3), the information for grouped or censored data relative to

exactly known data is:
ARE(B) = (IX™DX |/ [X™X|)/? (8)

Since the ARE in (4)-(7) are less than one and the covariance matrix for exactly known

data can be written with an mXm identity matrix as its middle matrix, it follows that



the ARE are less than one. That is, the ARE given in (8) are between zero and one,

where values close to one indicate a small loss of information.

Information for Ordinal and Binary Data

In order to compare ordinal and binary data with censored and grouped data, we
assume that the former are generated from a latent exponential regression model.
That is, for ordinal data, the cutpoints that define the group boundaries for grouped
data are no longer known and thus have to estimated. Similarly, for binary data, there
is a single cutpoint defining the two groups. Also, for ordinal and binary data, the
intercept parameter is confounded with the cutpoints so that the intercept is actually

incorporated into the cutpoints.

To obtain the asymptotic covariance matrix of ,3, we first need to calculate the

asymptotic covariance matrix for the MLE of both B and the cutpoints {a;}. Straight-

forward algebra yields the form:

wrix Z (9)

-1
XTDx XTW]

Note that XTDX is exactly the same as that from grouped data and W and Z are

matrices with dimensions, mXk and kXk, respectively.
From (9) it follows that the asymptotic covariance matrix of B is
XT(D-wzwhxy™? . (10)

Formulas for W and Z appear in the Appendix. Using (1), (2) and (10), one can obtain
the information for ordinal data relative to exactly known data. Observe that the mid-
dle matrix is no longer diagonal. This prevents simplification of the information for-

mulas as seen for censored and grouped data in the next section.

For binary data, where a single cutpoint is estimated, (10) simplifies to (XTBX)_I,

where



Bij = d,(l—d]/z dl) for i=j

'—dldj/zdl for i?éj

and d; is the information from two groups.

Information for Factorial Experiments

In this section, we consider information for some simple full and fractional fac-

torial designs, those typically used in industrial experiments. Specifically, some L, and
Lg designs are studied, where the subscript denotes the number of runs used in the
design. Let 2ca”b denote both model and design for a two level factors and ¢ two-factor
interactions based on a 27° fraction of a full factorial design.

The structure in fractional factorial designs simplifies the formulas given in the
previous section for censored and grouped data. For exactly known data, since the
design matrix X is orthogonal, [XTXl = mP, where m is the number of design points

and p is the number of factorial effects. Here, the model assumes an intercept parame-

ter for exactly known, censored, and grouped data.

Results for the L, Design

The L, design matrix is given in Table 1. The 2% and 2%(=2?) designs are
obtained by using the first two and three columns, respectively.
For 22,
ARE(B) = ((d,dpds+d;dgd+d;dad+dydad,)/4)"/5,
where the d; given in the previous section are the individual information at each run.
Note that ARE is an average of all 3-tuples of [d;dydgd].

For 23°1(=23),



ARE(B) = (d,dydad,)/?,

the geometric mean of the information at the four runs of the design. From the pro-
perties of the geometric mean, it follows that the ARE is especially sensitive to small
information at a particular run, much more than that indicated by taking an arith-
metic mean. Also, the form of the ARE for 22 suggests the same phenomenon, albeit

somewhat less since the information at a particular run enters into three out of the

four quantities.

Table 1: Design Matrix for L,

Run 1 2 12
1 1 1 1
2 1 -1 -1
3 -1 1 -1
4 -1 -1 1

Results for the Lg Design

For the Lg design, some of the models with two-factor interactions are identical or

isomorphic to main effects models with a larger number of factors. In fact we need to
consider only one additional model, 2?‘ !, The design matrices of the following designs
are identical: 25 = 22, 23 = 968 o1 — 971 952 — (241 or 252) and 252 = 282
= 274, 21‘1 and 25“1 are isomorphic to 2°! and 2%, respectively. Thus, we need
only consider 93 ot 1 952 963 oT-4 514 2{0”1. The Lg design matrix is given in Table

2 with columns used for different models displayed in Table 3.



Table 2: Design Matrix for Lg

Run 1 2 3 123 12 13 23
1 1 1 1 1 1 1 1
2 1 1 -1 -1 1 -1 -1
3 1 -1 1 -1 -1 -1 1
4 1 -1 -1 1 -1 1 -1
5 -1 1 1 -1 -1 1 -1
6 -1 1 -1 1 -1 -1 1
7 -1 -1 1 1 1 -1 -1
8 -1 -1 -1 -1 1 1 1

Table 3: Columns Used for Lg Models
Model 1 2 3 123 12 13 23
2° X X X
941 X X X X
952 X X X X X
963 X X X X X X
974 X X X X X X X
213 X X X X

Next we present the information formulas for 2°7%, 2 and 27* since they sim-
plify. For the remaining designs (models), their formulas are patterned, but not easily

described and therefore not included here.

For 2°72,

e 4,4
ARE(B) = (1/16)Z (5)5)"°
which averages the product of all 3-tuples of [d;dydsd,] and all 3-tuples of [dsdgd;dg]-
For 2573,

ARE(B) = (1/8)2 ()M,

which averages all 7-tuples of [d;dyd3d,dsdgd7dg].



Finally, for 2774,
ARE([?) = (d1d2d3d4d5d6d7d8)1/ ® )
the geometric mean of the information at the eight runs of the design. As seen for the

L, design, the ARE for this design is especially sensitive to small information at a par-

ticular design point and to a lesser degree for 252 and 2573,

For larger designs, such as the L,z the ARE expressions become more compli-

cated. Only a few models such as the fully saturated model yield simple ARE expres-
sions. Nevertheless, a study of information loss for larger designs can still be carried

out since the formulas are simple to calculate and consequently easy to program.
A Study of Information for Some Examples

In this section, we look at two examples and compare the information for cen-

sored, grouped, ordinal and binary data. First, we look at example using an L, design
based on a real experiment and then consider a more complicated example using an Lg

design.

Example 1 Involving an L, Design

Zelen (1959) presented lifetest data on glass capacitors subjected to various vol-
tage and temperature stresses. Table 4 presents the failure times in hours for four
voltage-temperature combinations. Fitting these data with an exponential regression

mode] using the 22 model (see Table 1) gave the following estimates: B = (6.37, .03,

-.50, -.06), corresponding to intercept, temperature, voltage and temperatureXvoltage.

For this data, voltage is the dominating effect.



Table 4: Example 1 Failure Times for Glass Capacitors

Voltage(kV)

Temp(° C) 200 350
170 439 258
904 258

1092 347

1105 588

180 959 241

' 1065 241

1065 435

1087 455

Without loss of generality, let By=0 since L, h, and {a;} are chosen relative to
means {6;}, i.e., B = (0, .03, -.50, -.06). For comparison’s sake, we also consider 8 =

(0, .10, -.50, -.25). The means at the four design points are given in Table 5 for the two
parameter combinations designated by I and II. Note that the means for II are more

spread out and that there is a three to five fold difference between 6, and 8, for I

and II.

Table 5: Example 1 Means for I and II

Run
1 2 3 4

I {.59 18 .63 1.51
IIr| .52 234 .70 1.16

The amount of censoring L and rounding h used is (.4, .8. 1.2, 1.6). Recall that
for censoring, a failure is observed if it occurs before L and that rounding arises from
equally spaced inspections of length h. For rounding-censoring, (h, L) is (.2, .8), (.4,
.8), (.4, 1.6) and (.8, 1.6), corresponding to 5, 3, 5, and 3 groups, respectively (e.g., (.2,
.8) refers to inspections at .2, .4, .6 and .8). Also, two other group schemes are studied,
(.1, .2, .4, .8) and (.2, .4, .8, 1.6). Recall that for ordinal data the group cutpoints are
unknown and thus have to be estimated. Finally group and binary schemes are com-

pared for a; = (.4, .8, 1.2, 1.6); note that a; is unknown for the binary scheme. The

10



information for these schemes relative to that for complete data is given in Tables 6
and 7.

Table 6: Example 1 Information for Censored and Rounded Data

Censoring L
4 .8 1.2 1.6
I 331 540 .675  .764
II 333 540 .672 .759
Rounding h
4 .8 1.2 1.6
I 980 .922  .837- .737
II 978 918 823 .725

Table 7: Example 1 Information for Rounded-Censored, Grouped and Ordinal Data

R-C/O I i
ML) |RC O |RC O
2 .8 537 517 || 537 510
4.8 528 510 || 527  .503
416 748 728 || 741 716
81.6 702 689 || .693  .675
G/O i i
{a;} G o | ac o

1.2 4.8 535 515 || 534  .508
2.4.81.6 | 744 722 || .737 .710

G/B i il
a, G B G B
4 324 308 | .325 .304
8 495 483 | 491 475
1.2 558 555 || 549 542
1.6 554 554 | 539 .535

In evaluating the information, we use a benchmark ARE of .56 since the ARE for
individual parameters is only slightly smaller than the overall criterion and a ratio of
variances of .56 corresponds to a ratio of standard deviations of .75, not an appreciable

information loss. From Tables 6 and 7, we observe that there is surprisingly little

11



difference between the results for the two parameter combinations I and II. Table 6

reveals that censoring and rounding can be quite heavy (L ~ .50, and h ~6_..) and

still provide adequate information.

Table 7 reveals that even coarse grouping provides adequate information. See, for

example, the results for two groups (a;=1.2). Thus, it is not surprising that given the

same censoring point L, the different grouping schemes provide similar information.
Finally, it is interesting that ordinal and binary data lose little information (from

estimating the group cutpoints) as compared with grouped data.

Example 2 Involving an Lg Design

We consider a more complicated Lg design (see Table 2) with a 2”~* (7 factor main

effects) model and B = (0, 1, .75, .5, .25, .15, .10, .05). Table 8 reveals a 100 fold

difference between 8., and 6;,. In the previous example, the small three to five fold

difference meant that the information at the different design points was more similar.
For this example, however, the large 100 fold difference accounts for the different

results obtained here.

Table 8: Example 2 Means

Run
1 2 3 4 5 6 7 8

.06 .30 .61 1.65 1.11 246 3.32 6.05

The amount of censoring L is (1.0, 1.5, 2.0, 2.5, 3.0, 4.0) and amount of rounding h
is (.1, .25, .5, 1., 1.5, 2). For rounding-censoring, (h, L) is (.25, .5, 1; 2, 3) correspond-
ing to 8, 4, 2, 12, 6, and 3 groups, respectively. Two other group schemes are studied,
(.3, .7, 1.4, 2) and (.45, 1.05, 2.1, 3). Also, group and binary schemes are compared for

a; = (.5, .75, 1, 1.5, 2). The information for these schemes relative to that for com-

plete data is presented in Tables 9 and 10.



Table 9: Example 2 Information for Censored and Rounded Data

Censoring L

1.0 1.5 2.0 2.5 3.0 4.0
494 602 679 .735 .779  .841
Rounding h

1 25 5 1 1.5 2
972 .861 723 627 519 410

Table 10: Example 2 Information for Rounded-Censored, Grouped and Ordinal Data

R-C/O

(h, L) R-C O
252 576  .534
5 2 462 361
12 396 124
253 .664 .611
53 543 413
13 467 141
G/O
{ai} G O

3.7142 538 496
45 1.05 2.1 3 | .547  .445

G/B
ay G B
85} 201 171
75 240 .133
1.0 271 .090
1.5 284  .033
2.0 2568  .010

Table 9 reveals that for this example censoring and rounding can be quite heavy

(L ~.250 ., and h ~ .2560 .. ) and still provide adequate information. Table 10 shows

that while some grouping schemes provide adequate information, others with coarse
grouping do not. Finally, ordinal data loses little information when the information for

grouped data is substantial but the loss is significant when the information for grouped

13



data is small.

Tables 9 and 10 can be used to compare two data types directly. For example, the
information of ordinal data relative to grouped data is much larger; for (h=.5, L=2),
the information is .781 (=.361/462). Although the information of binary relative to
two groups is high (.850 =.171/.201) for a; = .5, one observes that binary data loses

substantially more information for larger a;. Other data types can be compared in a

similar manner. For example, the information for grouping in addition to censoring

(h=.25, L=2) relative to censoring alone is .839 (=.576/.679).

Discussion

In designing experiments with censored and ordinal data, the amount of censoring,
when to do the inspections (i.e., choosing the group cutpoints or the amount of round-
ing) and the choice to collect ordinal or binary data rather than censored or grouped
data needs to be decided. The information from censored, grouped, ordinal and binary
data relative to complete data provides one assessment of an experimental design’s sui-
tability. In this paper, we have provided a unified framework that allows the various
collection schemes to be compared. The information measure is simple to calculate and
therefore is easily programmed. Evaluating the information measure for potential
designs gives the practitioner a useful tool for planning experiments with censored and
ordinal data. In particular, designs which have a significant information loss can be

eliminated from consideration.

Simplifications of the information measure for some factorial designs as well as a
study of two examples presented in this paper suggest certain things to keep in mind
in the planning stage. Recall that the information for a saturated model, where the
number of factorial effects (including an intercept) equals the number of design points,
is the geometric mean of the individual information measures at each design point.
Consequently, this suggests avoiding designs where the individual information at any
one design point is very small. Generally, the examples show that rounding and cen-

soring can be quite heavy and still provide adequate information. Moreover, little

14



information is lost for ordinal data relative to grouped data when the means at the dif-
ferent design point means are similar. The examples demonstrate that the information
loss does depend on the situation, however. Although insensitive for many situations in
the first example, the information loss was substantial in the second. This suggests
that several scenarios be evaluated in the planning stage. Since the information meas-
ure depends on the true parameters which are not known, several guessed values for
the parameters can be tried. If the information loss is substantial or is very sensitive

to the guessed parameter values, alternative designs should be considered.

Gould and Lawless (1988) studied information for the log-Burr regression model
which includes the exponential (more generally Weibull) regression model as well as the
log-logistic regression model. Their study of the log-logistic model (a symmetric distri-
bution as opposed to the asymmetric extreme value distribution for the exponential
and Weibull model) found information for grouped and censored data to be somewhat
larger. An investigation for the various incomplete data types for this more general
model in the industrial context is a topic of future study. Such a study would provide

an assessment of the effect of the assumed distribution.
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Appendix: Details on Information for Ordinal Data

Let {aj} be the unknown cutpoints that define k+1 ordered categories. Also, let
ri; = 0;'a;, e;; = exp(-r;;) and 6; = exp(x;8) for the ith (out of m) combination of fac-
torial effects. Further, assume that there at least three categories. Details for the

matrices W and Z from (10) are as follows.
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The mXk matrix W is given by:

Wi = ei_lei,l(ei,12+ri,lei,l_ei,lei,Q_ri,Q ei2)/((1-¢; 1)(ei 1€ 2))
wij=0f lei,j((ri,j“ri,j—l)ei,j e i1 H(ri 1Ty e € j+1~(Ti jo1 T j1)ei o1 € 1)/ ((ei jo1eij)(ei =i js1).

wix =0 lei,k(ri,k € k-1—Ti k-1 €i k-1)/ (€ k-1—€i k)

The kXk matrix Z is given by:

n
Zji = 2ei_Qei,jQ(ei,j—l"ei,H1)/((ei,j—1_ei,j)(ei,j"'ei,j+1))
=1

n
Zjiig = Zj.j = —), 9526i,j ejj-1/(eij-1—¢i ;)
i=1

Zi,j=0 if |l—j|>].
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