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ABSTRACT

Truncated data arise when a variable is observable only over some portion of its range. In this
note we describe how truncated data arise in studies of the field performance or reliability of
manufactured items. Failure to account for truncation can lead to biased inferences. We present
some useful nonparametric methods, with examples.
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1 Introduction

Truncated data arise when a variable is observable only if it lies in some specified portion
of its range. The purpose of this note is to show how truncated data can occur in studies of
the field performance or reliability of manufactured items. Failure to account for truncation
can lead to biased inferences. A second purpose is to present some useful nonparametric
methods that have been developed in biomedical contexts and are useful for the problems
we discuss. The paper complements the recent article by Nelson (1990). We begin with an

example to motivate what follows.
Example 1. Right-truncated field reliability data

Manufactured items are sold and enter service over time. Field reliability data are often
collected in such a way that only items satisfying cérta.in conditions are observed. Kalbﬁeisch
and Lawless (1988) describe a situation where time to first failure (referred to as the failure
time) and covariate information are collected only for those items that fail over a given
calendar time period (0,T). In this situation, an item that enters service at calendar time u;
in (0,7) and has failure time Y; is observable if and only if Y; < 7;, where 7; = T — u;. This
provides one example of right-truncation. It is key that we find out about an item only when
it fails, as for some warranty or failure reporting schemes. If, on the other hand, we know
about all items that enter service then an item’s failure time is merely censored if Y¥; > 7;.

The difference between censoring and truncation is discussed further in Section 5.

To specify truncation more formally, suppose that observations are taken on a contin-
wous random variable Y which has probability density function (p.d.f.) f(y), cumulative

distribution function (c.d.f.) F(y) = Pr(Y < y) and survivor function F(y) = Pr(Y >y).

A left-truncation mechanism is said to operate when there is associated with Y a trun-



cation variable 7 such that Y is observable only if Y > 7. Independent observations arise
as pairs (Y;,7;), and conditional on 7, the distribution of Y; has density f(y:)/ F(7;) with
y; > 7;. The likelihood function is

_ = f(yi)

=) g

for a random sample of n observations. Similarly, right-truncated data occur in pairs (¥;, 7;)

i=1

with Y; < 7; and give the likelihood function

L= TR g

Simultaneous left- and right-truncation is also possible, and is defined in the obvious way.

We now describe two specific instances of truncated data arising with field reliability and

warranty studies.
Example 2. Data on the brake pad life of automobiles

In a field study to estimate brake pad life for a particular car line, the manufacturer used
its dealer network to select cars at random. The remaining brake pad thickness (actually the
maximum thickness over a specified set of locations on the front brake pads) was measured
for each car. Let W > 0 represent the total brake wear at the time of sampling; W = 0

represents no wear and W = 1 represents the level of brake wear that requires replacement
of the pads. One can think of W values greater than 1 as accumulating additional wear on
subsequent pads. We assume that for a given car W depends linearly with negligible error
on the accumulated mileage and, given the mileage, W does not depend on time in service.
Under these assumptions, an imputed brake pad lifetime ¥ = 7/W can be computed for
each car sampled, where 7 is the mileage accrued at the time of sampling. Of particular
interest is the estimation of the distribution of Y, or equivalently, of the slope of the line

which expresses the mileage 7 as a function of the wear W.



Estimation of the distribution of W is complicated by the following: if a selected car
had already worn out a set of brake pads, it was discarded from the sample. Thus, cars
with rapidly wearing brake pads are underrepresented in the sample. It follows that W is
sampled if and only if W < 1 (right-truncation at 1). If W (or equivalently 7) is distributed
independently of the slope Y, then this translates into a left-truncation of the distribution
of Y at the current mileages 7; for the sampled cars. Then, for the ith car, Y; > 7; and the

data Y; are left-truncated. Figure 1 illustrates the assumptions being made here.

More formally, observations y are subject to the constraint 7/y = w < 1. Thus, if f(y,7)

is the joint p.d.f. of Y and 7, the conditional density of y given 7 and 7/y < 1is

Sl s <1 =16/ [ fm)dy

If f(y,7) = fi(y)f2(7), this reduces to the left-truncated density

1) [ Ay = £@IFE .

This example is discussed further in Section 3.
Example 3. Reporting delays in warranty data

Manufacturers maintain data bases in which warranty claims and other information are
recorded. A problem that hampers the timely presentation of information is the presence of
a reporting delay, namely the time between event occurrence (e.g. generation of a warranty
claim) and the recording of the event in the data base. In many warranty record systems,
delays of three months or longer are not uncommon. As a result, the number of events

reported as occurring in recent time intervals is lower than it should be.

One approach to this problem is to report data on a delayed basis. For example, at mid-

month we might report warranty claims made up to the end of the second last month so that



only claims with reporting delays exceeding 1.5 months would be missed. Another approach,
aimed at presenting data in as timely a way as possible, is to adjust the recent data upwards
to account for the reporting delays. Suppose that the reporting delay for the ¢’th claim is Y;
and that the Y;’s are independent and identically distribﬁted with probability function f(y)
and c.d.f. F(y); we assume for simplicity that y is measured in days (y = 0,1,2,...). Let T
represent the current time and N (t, T) be the number of claims that have been reported to
occur on day t < T. A natural estimate of N(t) = N(t; 00), the number of claims actually

occurring on day ¢ (and eventually to be reported ) is

N = s ®

This is motivated on the grounds that only the fraction F(T —t) of claims with reporting
delays y; < T —t have been reported by day t. See Kalbfleisch, Lawless and Robinson (1991)
for more detail and a treatment that deals with the ages of the units on which claims are

made.

In practice, we need to estimate the reporting delay probabilities F'(y) for the system;
this leads to a truncated data problem. Suppose that n claims have occurred and been
reported up to day T. If the claims occurred on days t,...,t, and were reported on days
ti+yi (i = 1,...,n) then y; must satisfy y; < 7;, where 7, =T —t.. Thus, y; is an observation

from the right-truncated distribution f(y)/F(7), 0 <y < 7.

The remainder of the paper discusses ways of handling truncated data. Section 2 presents
nonparametric estimates of probability distributions and ways of checking parametric models.
Section 3 discusses estimation for Example 2 and 3 above. Section 4 concludes with some
comments on the limitations of truncated data and other points. Truncated data have also
been discussed recently by Nelson (1990), who gives a very careful discription of hazard

plots for left-truncated data. The current paper deals more broadly with truncation in field

4



reliability studies and includes a variety of techniques and plots.

2 Estimation of distributions from truncated data

Consider a random sample (y;,7;), ¢ = 1,...,n where the measurement y; of interest is
right-truncated at 7; (i.e. y; < 7;). If a parametric model f(y;6) for the untruncated density
of Y is used, then 6 and f may by estimated by maximizing the likelihood function L(6) given
by (2). Maximum likelihood and other estimation techniques have been widely discussed for
models such as the normal, exponential and gamma distributions (e.g. see Johnson and Kotz
1970, Sections 13.7, 14.7, 15.7, 17.8, Schneider 1986 or Kulldorf 1961, Chapter 3) and are in
principle straightforward; see Nelson (1990) for some additional references and references to

statistical software.

Our main objective here is to describe simple nonparametric estimates and ways of check-
ing parametric models and independence assumptions. If 7 = max(7;), then the best we can

actually do nonparametrically is to estimate

G(y;*r):M y<rt.

F(r)’ N
A nonparametric estimate of G(y; 7) analogous to the empirical c.d.f. for ordinary (untrun-
cated) data was developed by Lynden-Bell (1971) and subsequently studied by Woodroofe
(1985), Wang, Jewell and Tsai (1986), Lagakos, Barraj and De Gruttola (1988), Keiding and
Gill (1990), Kalbfleisch and Lawless (1991) and others. Let yj,...,y}, denote the distinct
y-values among ¥, ..., Yn; then the nonparametric estimate is

6wn= T (1-2) @)

. n;
Yy J



where d; is the number of y;’s equal to y; and n; is the number of (y;, 7;) pairs satisfying
yi <y; < 7. This estimator is obtained for discrete models by noting that
T
Gly;m)= II 1-90)
J=y+1
where g(y) = f(y)/F(y) = P{Y =y|Y <y},y=0,1,2,..., and estimating g(j) with d;/n;.

An asymptotic variance estimate for é(y; T) is given by

de(nj > d])

\TaE‘{G’(y;T)} = G(y;7) Z m (5)

Jwy; >y
where I(n; — d;) equals 1 if n; > d; and 0 if n; = d;. The similarity with the product-limit

estimator of the survivor function should be noted (cf. Cox and Oakes, 1984, Section 4.2).

For left-truncated data (y;, ;) with y; > 7 (¢ = 1,...,n) parametric maximum likelihood

is based on (1). Nonparametrically all that can be estimated is the truncated survivor

function G(y;7*) where 7* = min(r;) and

Gly; ™) = Ff:((f,)) , oyt

If yI,...,y:, are the distinct values among y1, ...,y then the nonparametric estimate is
Gy = 11 (1 - %) (6)
Iy <y J
where d; is the number of y;’s equal to y} and n; is the number of (y;,7;) pairs satisfying
7 <y} < yi. The estimate (6) is in fact an extension of the product-limit estimator (cf.
Cox and Oakes, 1984, page 178). Nelson (1990) considers an alternative empirical hazard
function estimator. In addition, (4) and (6) are equivalent since, if observations y; are left-
truncated at 7;, then equivalent observations y! = w(y;), where w(-) is a strictly decreasing
fuhction, are right-truncated at 7/ = w(7;). A variance estimate for &(y; 7) is given by the

right hand side of (5) with G(y; 7) replaced by é(y; 7*) and the sum running over j : y; <y.
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The nonparametric estimates portray what is actually estimable from the data when
independence is all that is assumed. In many instances, a parametric model f(y;6) is of
interest. There are two simple ways to check the hypothesized model. One is to compare
plots of G(y; 7,0) = F(y; 0)/F(r;0) and G(y;7) for right-truncated data and to compare
G(y; T*,é) and é(y; 7*) for left-truncated data. The other is to examine residuals based on
the fitted parametric models. For right-truncated data, consider

_ F(y;0)

= L =1, 7
F(r:; ) " )

i

which should look roughly like a random sample from the uniform distribution on (0,1). For

left-truncated data the e;’s are defined with F' replacing F'.

3 Examples

We now use the tools discussed in the preceding section to deal with the problems intro-

duced in Examples 2 and 3.
Example 2 continued

The plan outlined earlier was implemented to obtain data on 98 cars; coded values for
the corresponding odometer readings in kilometers, 7; and imputed lifetimes, y; (with y; > 7;
by design) are reported in Table 1. Since 7* = min(7;) = 6951, the nonparametric estimator
(6) estimates F(y)/F(6951) = P{Y > y|Y > 6951} under the assumption that ¥ and 7
are independent as discussed earlier. If defective brake pads are rare, it is reasonable to
suppose that F(6951) = 1 and the nonparametric estimate (6) is shown in Figure 2 under

this assumption.

We note from the nonparametric estimate that the right tail of the distribution of pad



life is longer than the left. This suggests that we consider parametric models such as the
Weibull or lognormal. For example, a lognormal model, logY; ~ N(g,0?) yields maximum
likelihood estimates from the likelihood (1) of 4 = 11.00 and 6 = .4368. The estimated
survivor function F° (y) =1—®[(logy — it) /6], where ®(z) is the standard normal c.d.f., is
shown as the smooth curve in Figure 2. The agreement with the nonparametric estimate is

good. We remark that a Weibull distribution provides a somewhat poorer fit.

An alternative plot when 7* = 0 is to give a probability plot or hazard plot (Nelson
1990); the former amounts to plotting estimated c.d.f’s on log normal probability paper.
This approach cannot be used if 7 > 0, but residual plots are still available. A further
check on the lognormal model is illustrated in Figure 3, where the ordered values of the

uniform residuals,

_ F(yi;ﬁ,&)
ECTON )
analogous to (7) are plotted against the uniform quantiles (z — .5)/98, ¢ = 1,...,98. The

plotted points lie close to a line with unit slope.

Another point of interest concerns the assumption that Y;’s distribution is independent
of 7;, except for the fact that it is left-truncated at 7;. In some situations this might be
questionable: for example, if recalled cars had been sold around the same time then cars
with larger 7; values might have experienced more long distance driving, possibly giving less
wear on the brakes. Figure 4 shows a plot of the e; residual (8) vs. log; for the 98 cars.

There is nothing to suggest a connection of the sort mentioned.

The lognormal model shown in Figure 2 gives estimated 10th, 50th and 90th percentiles of
brake pad life of approximately 34, 60 and 105 thousand km, respectively. Estimates based
on the nonparametric approach are 32, 61 and 101.5 km, which are in good agreement.

Confidence limits can be obtained for either the parametric or nonparametric cases but we



will not pursue this here. See Lawless (1982, pages 233 ff, 411) for details on how to proceed.
We do note that the agreement between the two c.d.f.’s in Figure 2 is well within sampling

variation.

Finally, we remark that if the left-truncation were (improperly) ignored here, then brake
pad lifetime using either the parametric or nonparametric approach would be slightly overe§~
timated. For example, nonparametric estimates of the 10th, 50th and 90th percentiles Would
be based on the ordinary empirical c.d.f. for the y;’s; these are approximately 30, 64.5 and
103. The degree of overestimation in this case turns out to be insignificant relative to the
differences between the parametric and nonparametric approaches, and to the precision of
either approach as reflected by confidence limits; this is a consequence of the fact that most

truncation times 7; in the data were not small relative to typical brake pad lives.
Example 3 continued

Warranty claims on a single system of one car model were recorded. In total, 36,683
cars were sold, giving rise to 5,760 claims. This example is also considered in Kalbfleisch,
Lawless and Robinson (1991) where a more detailed analysis that addresses problems in
estimation of the claims distribution is considered. For the present analysis, we concentrate
on the estimation of the distribution of reporting delays, questions of stationarity of the

distributions, and adjusted estimates of the total number of claims.

For these analyses, time 0 is taken to be the day at which the first claim occurs. Figure
5 shows estimates of the reporting delay distribution based on the data available at T =
91, 182, 273, 365 and 456 days. The estimates are based on (4) with 7 = T and provide
estimates of the c.d.f. of the delay distribution under the assumption, in each case, that
F(T) = 1. These plots exhibit no systematic difference in the reporting delay distribution

over chronological time. We remark that the roughness of the estimate for 7' = 91 near its



right-hand end is because for j close to T' the number of cars 7; (see (4)) observed for at
least j days is small. The variance of the estimate is also large here and no difference in

reporting delays is indicated.

To illustrate the use of the reporting delay probabilities, Figure 6 gives adjusted estimates
using (3), of the cumulative number of claims actually made up to day t (0 <t < 182) along
with a plot of the observed number reported by day 182. The reporting delay estimates are
based on the data that were available at day 182. The observed numbers for ¢ near 182 are
substantially less than the adjusted estimates; the graph of the actual total number of claims

eventually reported is very close to the latter.

4 Additional Remarks

Truncated data arise in many application areas, and if truncation is not properly ac-
counted for, estimates can be inaccurate and misleading. It is important to ask whether'
there are conditions which the response variable must satisfy before an item is included in
the data set. This identifies the truncation in both of Examples 2 and 3 which are discussed

here, and in other application areas.

Truncation and censoring are sometimes confused. As noted above, truncation arises
when the response variable for an item must satisfy certain conditions before the item is
observed at all. Censoring, on the other hand, arises when the specific response cannot be
observed; in this case the item is observed, but we know only that the actual value of the
response falls in some interval. Suppose, for example, that units are observed until failure
but that observation begins 1000 hours after the unit is first put into service. If the total

number of units in service at time 0 is unknown and only units surviving at 1000 hours are
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observed, this is left-truncation of the failure time data. If on the other hand, it is known
that N items were initially put in service, then any item not observed to be surviving at 1000
hours must have failed at some time earlier. These items are left-censored at 1000 hours. If
f(y;0) is the p.d.f. of the time to failure, the likelihood in the former case is
[T [ (:;6)/ F(1000; )] (9)
=1
where y1,...,y, are the observed failure times (y; > 1000) for the n items observed. In the

latter case, the likelihood is

1 £(5::0) [F(1000;0))" ™" (10)

i=1

The information on 6 is often much greater based on (10) than on (9). Kalbfleisch and
Lawless (1988) provide some examples. Nelson (1990) also stresses the distinction between

truncation and censoring.

The methods discussed above for truncated data can be extended to fit regression models
for the respose Y given covariates . For example, parametric regression models can be fitted

to left-truncated data by using the likelihood

10) = 1 Stk 0)/ Fril:50) (1)
where f(y|z) and F(y|z) are the density and survivor functions of Y given . The principal
difficulties that arise are computational; most standard software does not fit truncated like-

lihoods like (11). Relatively simple analyses for data subject to left-truncation can be based
on the proportional hazards model as discussed by several authors (e.g. Cox and Oakes,
1984, page 178 and Lawless, 1982, page 344). Simply by reversing the time scale a “reverse
time proportional hazards model” can similarly be applied to data which are subject only

to right-truncation and Kalbfleisch and Lawless (1991) give some discussion and examples

in a medical context.
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Data that are subject to both left- and right-truncation cannot be handled by the methods
in this paper. Turnbull (1976) presents an algorithm for nonparametric estimation in the
univariate case but more work is needed to provide convenient calculation of confidence limits

and regression methodology.

Finally, in both Examples 2 and 3, the basic model is bivariate and it is assumed that
a type of independence is present to reduce the problem to one of truncation. In Example
2, for instance, the left-truncation for the distribution of the imputed brake pad lifetime Y;
arises from the assumption that the Y; and the current mileage 7; are independent. A similar
independence between the process generating the warranty claims and the reporting delay is
needed in Example 3. Informal checks for this independence can be based on residual plots
as outlined in Section 3. More formal tests could be derived using regression models, but
further work is needed to allow regression modelling of, for example Y; on 7; with simple

interpretation of the results.
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Table 1. Imputed Brake Pad Life (y) and Odometer Readings (7) for 98 cars‘

y (km) 7 (km) y (km) 7 (km) y (km) 7 (km)
22,207 38,701 18,264 24,818 30,863 42,415
23,002 49,173 17,694 68,762 22,350 34,346
23,982 42409 20,014 68,762 44976 106,569
28,551 73,823 13,152 89,100 18,169 20,758
21,789 46,738 16,886 64,979 30,164 52,003
17,042 44,071 14,894 65,127 21,822 77,179
25,997 61,904 15,531 59,289 18,201 68,934
23,220 39,327 6,951 53,926 22,895 78,661
18,854 49,828 15,841 79,370 27,189 165,543
21,857 46314 | 14,974 47385 | 10915 79,547
27,321 56,150 38,292 61,395 25,503 55,009
13,767 50,540 | 11,204 72826 | 12,350 46,774
23,982 54,930 38,156 53,980 39,869 124,526
20,110 54,039 26,652 37,220 17,693 92,504
15,749 49,170 17,101 44 224 26,296 109,986
26,821 44795 | 28,953 50,826 | 14,091 101,161
27,934 72,238 18,325 65,460 21,011 59,422
15,292 107,783 18,391 86,726 11,201 27,772
28,843 81,609 18,220 43,819 10,757 33,598
15,985 45,228 15,896 100,605 25,692 69,038
23,580 124,637 16,447 67,615 32,372 75,222
53,770 64,018 23,642 89,542 13,592 58,373
21,731 82,957 19,170 60,266 19,102 105,610
28,844 143,550 23,257 103,580 16,112 56,158
17,046 43,382 20,428 82,570 53,281 55,913
16,506 69,644 20,947 87,960 57,298 83,770
15,696 74,750 28,462 42,385 36,450 123,468
27,959 32,881 23,210 68,914 19,651 68,994
13,272 51,483 17,900 95,666 20,755 101,869
16,482 31,767 46,134 78,135 30,788 87,627
24,210 77,633 39,300 83,643 20,000 38,790
17,626 63,745 11,768 18,617 39,620 74,734
27,770 82,965 17,717 92,629




>
wear (w)

Figure 1. The linear relationship between wear w and mileage 7 is illustrated.
The data point (w;, 7;) yields the imputed lifetime y; = 7;/w;. The truncation
of w at 1 (i.e. w < 1) translates into a left-truncation of y at 7(y > 7) under

the assumption that 7, y are independent. See Example 2.
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Figure 2. Parametric and nonparametric estimates of the survivor function F(y)
of brake pad life.
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Figure 3. Probability plot of residuals (8) for the fitted lognormal distribution of
brake pad life.
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Figure 4. Plot of residuals (8) versus log truncation mileage (log 7;).
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Reporting Delay

Figure 5. Estimated reporting delay cumulative distribution functions based on
claims reported up to day T, for T' = 91, 182, 273, 365 and 456.
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Figure 6. Estimated cumulative number of claims made up to day t (upper curve)

and cumulative number reported by day T = 182 (lower curve).
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SUMMARY

Truncated data arise when a variable is observable only over some portion of its range. In this
note we describe how truncated data arise in studies of the field performance or reliability
of manufactured items. Failure to account for truncation can lead to biased inferences. We
present some useful nonparametric methods, with examples.
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